Expansion of Betatorquevirus and/or Gammatorquevirus in Patients with Severe Clinical Outcomes of the Liver Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Samples
2.2. Anellome Sequencing
2.3. Determination of Anellovirus Copy Numbers
2.4. Data Collection from Serum/Plasma Metagenomics Studies
2.5. Analysis of Anellome Composition
2.6. Analysis of Anellome Diversity
2.7. Statistical Analyses
2.8. Phylogenetic Analysis
3. Results
3.1. Comparison of Serum and Liver Anellomes
3.2. Anellome Diversity among Patient Groups
3.3. The Prevalence of TTMV/TTMDV-Expanded Anellomes among Patient Groups
3.4. Longitudinal Anellome Evolutionary Patterns in Patients Undergoing Liver Transplantation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spandole, S.; Cimponeriu, D.; Berca, L.M.; Mihăescu, G. Human anelloviruses: An update of molecular, epidemiological and clinical aspects. Arch. Virol. 2015, 160, 893–908. [Google Scholar] [CrossRef]
- Kaczorowska, J.; van der Hoek, L. Human anelloviruses: Diverse, omnipresent and commensal members of the virome. FEMS Microbiol. Rev. 2020, 44, 305–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shulman, L.M.; Davidson, I. Viruses with circular single-stranded DNA genomes are everywhere! Annu. Rev. Virol. 2017, 4, 159–180. [Google Scholar]
- Varsani, A.; Opriessnig, T.; Celer, V.; Maggi, F.; Okamoto, H.; Blomström, A.L.; Cadar, D.; Harrach, B.; Biagini, P.; Kraberger, S. Taxonomic update for mammalian anelloviruses (family Anelloviridae). Arch. Virol. 2021, 166, 2943–2953. [Google Scholar] [CrossRef]
- Vijay, A.; Valdes, A.M. Role of the gut microbiome in chronic diseases: A narrative review. Eur. J. Clin. Nutr. 2022, 76, 489–501. [Google Scholar] [CrossRef]
- Peng, P.; Xu, Y.; Aurora, R.; Di Bisceglie, A.M.; Fan, X. Within-host quantitation of anellovirus genome complexity from clinical samples. J. Virol. Methods 2022, 302, 114493. [Google Scholar] [PubMed]
- Scheuer, P.J.; Standish, R.A.; Dhillon, A.P. Scoring of chronic hepatitis. Clin. Liver Dis. 2002, 6, 335–347. [Google Scholar]
- Pistello, M.; Morrica, A.; Maggi, F.; Vatteroni, M.L.; Freer, G.; Fornai, C.; Casula, F.; Marchi, S.; Ricchiuti, A.; Ciccorossi, P.; et al. TT virus levels in the plasma of infected individuals with different hepatic and extrahepatic pathology. J. Med. Virol. 2001, 63, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Maggi, F.; Fornai, C.; Vatteroni, M.L.; Siciliano, G.; Menichetti, F.; Tascini, C.; Specter, S.; Pistello, M.; Bendinelli, M. Low prevalence of TT virus in the cerebrospinal fluid of viremic patients with central nervous system disorders. J. Med. Virol. 2001, 65, 418–422. [Google Scholar] [CrossRef]
- Macera, L.; Spezia, P.G.; Medici, C.; Rofi, E.; Del Re, M.; Focosi, D.; Mazzetti, P.; Navarro, D.; Antonelli, G.; Danesi, R.; et al. Comparative evaluation of molecular methods for the quantitative measure of torquetenovirus viremia, the new surrogate marker of immune competence. J. Med. Virol. 2022, 94, 491–498. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef] [PubMed]
- Lindner, M.S.; Renard, B.Y. Metagenomic abundance estimation and diagnostic testing on species level. Nucleic Acids Res. 2013, 41, e10. [Google Scholar] [CrossRef] [PubMed]
- Clauset, A.; Shalizi, C.R.; Newman, M.E.J. Power-law distributions in empirical data. SIAM Rev. 2009, 51, 661–703. [Google Scholar]
- Alstott, J.; Bullmore, E.; Plenz, D. Powerlaw: A Python package for analysis of heavy-tailed distributions. PLoS ONE 2014, 9, e85777. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Murillo, M.; Font, J.G. QSutils: Quasispecies Diversity, R package version 1.16.0. 2022. Available online: https://bioconductor.riken.jp/packages/3.16/bioc/html/QSutils.html (accessed on 29 May 2023).
- Roger, B.J.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar]
- Yue, J.C.; Clayton, M.K. A similarity measure based on species proportions. Commun. Stat. Theory Methods 2005, 34, 2123–2131. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; ISBN 3-900051-07-0. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Kassambara, A. Rstatix: Pipe-Friendly Framework for Basic Statistical Tests, version 0.7.1. 2022. Available online: https://cran.r-project.org/package=rstatix (accessed on 29 May 2023).
- Thijssen, M.; Tacke, F.; Beller, L.; Deboutte, W.; Yinda, K.C.; Nevens, F.; Laleman, W.; Van Ranst, M.; Pourkarim, M.R. Clinical relevance of plasma virome dynamics in liver transplant recipients. EBioMedicine 2020, 60, 103009. [Google Scholar]
- Katoh, K.; Standley, D.M. A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 2016, 32, 1933–1942. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Somasekar, S.; Lee, D.; Rule, J.; Naccache, S.N.; Stone, M.; Busch, M.P.; Sanders, C.; Lee, W.M.; Chiu, C.Y. Viral surveillance in serum samples from patients with acute liver failure by metagenomic next-generation sequencing. Clin. Infect. Dis. 2017, 65, 1477–1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulifaj, D.; Tilloy, V.; Scaon, E.; Guerin, E.; Essig, M.; Pichon, N.; Hantz, S.; De Bernardi, A.; Joannes, M.; Barranger, C.; et al. Viral metagenomics analysis of kidney donors and recipients: Torque teno virus genotyping and prevalence. J. Med. Virol. 2020, 92, 3301–3311. [Google Scholar] [CrossRef]
- Abbas, A.A.; Diamond, J.M.; Chehoud, C.; Chang, B.; Kotzin, J.J.; Young, J.C.; Imai, I.; Haas, A.R.; Cantu, E.; Lederer, D.J.; et al. The perioperative lung transplant virome: Torque teno viruses are elevated in donor lungs and show divergent dynamics in primary graft dysfunction. Am. J. Transplant. 2017, 17, 1313–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, A.A.; Young, J.C.; Clarke, E.L.; Diamond, J.M.; Imai, I.; Haas, A.R.; Cantu, E.; Lederer, D.J.; Meyer, K.; Milewski, R.K.; et al. Bidirectional transfer of Anelloviridae lineages between graft and host during lung transplantation. Am. J. Transplant. 2019, 19, 1086–1097. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhou, Z.; Yao, L.; Xu, Y.; Wang, L.; Fan, X. Full annotation of serum virome in Chinese blood donors with elevated alanine aminotransferase levels. Transfusion 2019, 59, 3177–3185. [Google Scholar] [CrossRef] [PubMed]
- Arze, C.A.; Springer, S.; Dudas, G.; Patel, S.; Bhattacharyya, A.; Swaminathan, H.; Brugnara, C.; Delagrave, S.; Ong, T.; Kahvejian, A.; et al. Global genome analysis reveals a vast and dynamic anellovirus landscape within the human virome. Cell Host Microbe 2021, 29, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Cebriá-Mendoza, M.; Arbona, C.; Larrea, L.; Díaz, W.; Arnau, V.; Peña, C.; Bou, J.V.; Sanjuán, R.; Cuevas, J.M. Deep viral blood metagenomics reveals extensive anellovirus diversity in healthy humans. Sci. Rep. 2021, 11, 6921. [Google Scholar] [CrossRef]
- Cebriá-Mendoza, M.; Bracho, M.A.; Arbona, C.; Larrea, L.; Díaz, W.; Sanjuán, R.; Cuevas, J.M. Exploring the diversity of the human blood virome. Viruses 2021, 13, 2322. [Google Scholar] [CrossRef] [PubMed]
- Fahsbender, E.; da-Costa, A.C.; Gill, D.E.; de Padua Milagres, F.A.; Brustulin, R.; Monteiro, F.J.C.; da Silva, R.M.; D’Athaide, R.E.S.; Sabino, E.C.; Delwart, E. Plasma virome of 781 Brazilians with unexplained symptoms of arbovirus infection include a novel parvovirus and densovirus. PLoS ONE 2020, 15, e0229993. [Google Scholar]
- Cordey, S.; Laubscher, F.; Hartley, M.-A.; Junier, T.; Keitel, K.; Docquier, M.; Guex, N.; Iseli, C.; Vieille, G.; Le Mercier, P.; et al. Blood virosphere in febrile Tanzanian children. Emerg. Microbes Infect. 2021, 10, 982–993. [Google Scholar] [CrossRef]
- Reshetnyak, V.I.; Maev, I.V.; Burmistrov, A.I.; Chekmazov, I.A.; Karlovich, T.I. Torque teno virus in liver diseases: On the way towards unity of view. World J. Gastroenterol. 2020, 26, 1691–1707. [Google Scholar] [PubMed]
- Fan, X.; Xu, Y.; Detre, K.; Di Bisceglie, A.M. Direct evidence for GB virus C/hepatitis G virus (GBV-C/HGV) superinfection: Elimination of resident viral strain by donor strain in a patient undergoing liver transplantation. J. Med. Virol. 2002, 68, 76–81. [Google Scholar] [PubMed]
- Asnicar, F.; Berry, S.E.; Valdes, A.M.; Nguyen, L.H.; Piccinno, G.; Drew, D.A.; Leeming, E.; Gibson, R.; Le Roy, C.; Al Khatib, H.; et al. Microbiome connections with host metabolism and habitual diet from 1098 deeply phenotyped individuals. Nat. Med. 2021, 27, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Bushman, F.D. The human virome: Assembly, composition and host interactions. Nat. Rev. Microbiol. 2021, 19, 514–527. [Google Scholar]
- Kaczorowska, J.; Deijs, M.; Klein, M.; Bakker, M.; Jebbink, M.F.; Sparreboom, M.; Kinsella, C.M.; Timmerman, A.L.; van der Hoek, L. Diversity and long-term dynamics of human blood anelloviruses. J. Virol. 2022, 96, e0010922. [Google Scholar] [CrossRef]
- de Smit, M.H.; Noteborn, M.H. Apoptosis-inducing proteins in chicken anemia virus and TT virus. Curr. Top Microbiol. Immunol. 2009, 331, 131–149. [Google Scholar]
- Kooistra, K.; Zhang, Y.H.; Henriquez, N.V.; Weiss, B.; Mumberg, D.; Noteborn, M.H.M. TT virus-derived apoptosis-inducing protein induces apoptosis preferentially in hepatocellular carcinoma-derived cells. J. Gen. Virol. 2004, 85, 1445–1450. [Google Scholar] [CrossRef]
- Picher, J.; Budeus, B.; Wafzig, O.; Krüger, C.; García-Gómez, S.; Martínez-Jiménez, M.I.; Díaz-Talavera, A.; Weber, D.; Blanco, L.; Schneider, A. TruePrime is a novel method for whole-genome amplification from single cells based on TthPrimPol. Nat. Commun. 2016, 7, 13296. [Google Scholar]
- Maggi, F.; Pistello, M.; Vatteroni, M.; Presciuttini, S.; Marchi, S.; Isola, P.; Fornai, C.; Fagnani, S.; Andreoli, E.; Antonelli, G.; et al. Dynamics of persistent TT virus infection, as determined in patients treated with alpha interferon for concomitant hepatitis C virus infection. J. Virol. 2001, 75, 11999–12004. [Google Scholar] [CrossRef] [Green Version]
- Rezahosseini, O.; Drabe, C.H.; Sørensen, S.S.; Rasmussen, A.; Perch, M.; Ostrowski, S.R.; Nielsen, S.D. Torque-Teno virus viral load as a potential endogenous marker of immune function in solid organ transplantation. Transplant. Rev. 2019, 33, 137–144. [Google Scholar] [CrossRef] [PubMed]
Pt. | Age | Sex | Liver Histology * | HCV | Anellovirus | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Richness ** | Shannon Index ** | Titer | ||||||||||
Stage | Grade | Gen. | Titer (×105 Copies/mL) | Liver | Serum | Liver | Serum | Liver (×105 Copies/g) | Serum (×105 Copies/mL) | |||
1 | 51 | M | 2 | 2 | 1a | 4.41 | 28 | 29 | 0.66 | 0.69 | 15.63 | 3.13 |
2 | 50 | M | 2 | 2 | 1a | 12.44 | 30 | 30 | 0.67 | 0.71 | 0.44 | 0.04 |
3 | 57 | M | 2 | 4 | 1a | 5.42 | 36 | 35 | 0.8 | 0.79 | 1.05 | 0.31 |
4 | 49 | M | 2 | 2 | 1a | 29.80 | 38 | 38 | 0.61 | 0.61 | 0.99 | 0.2 |
5 | 62 | F | 2 | 1 | 1a | 1.86 | 2 | 1 | 1 | 0 | 2.77 | 0.28 |
6 | 56 | F | 2 | 2 | 1a | 0.35 | 27 | 24 | 0.53 | 0.55 | 10.48 | 0.53 |
7 | 25 | M | 2 | 1 | 1a | 11.26 | 7 | 7 | 0.48 | 0.29 | 1.81 | 0.36 |
8 | 32 | F | 2 | 1 | 1a | 3.25 | 7 | 4 | 0.57 | 0.35 | 5.44 | 0.54 |
9 | 61 | F | 2 | 0 | 1a | 25.83 | 5 | 2 | 0.58 | 0.28 | 3.95 | 0.31 |
10 | 54 | F | 3 | 3 | 1a | 1.73 | 17 | 21 | 0.58 | 0.47 | 1.26 | 0.29 |
11 | 54 | M | 3 | 4 | 1a | 9.59 | 22 | 23 | 0.52 | 0.47 | 1.64 | 0.33 |
12 | 43 | F | 1 | 1 | 1a | 3.76 | 14 | 17 | 0.57 | 0.58 | 6.51 | 0.72 |
Group | SRA# | Clinical Diagnosis | Sample | NGS Library | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
Place | Number | Type | Pretreatment | Amplification | Number | Pooled | ||||
G1 | PRJNA389455 | Acute liver failure | USA | 150 | plasma | DNase | Random PCR | 150 | No | [26] |
G2 | PRJNA660895 | liver transplantation | Belgium | 24 | plasma | Nucleases | Random PCR | 140 | No | [23] |
G3 | PRJNA605928 | kidney transplantation | France | 30 | plasma | DNases/RNases | RCA | 64 | No | [27] |
G4 | PRJNA390659 PRJNA419524 | lung transplantation | USA | 50 | serum | No | RCA | 155 | No | [28,29] |
G5 | PRJNA526976 | blood donors | China | 90 | serum | No | MDA | 90 | No | [30] |
PRJNA679286 | blood donors | USA | 53 | serum | No | AV-RCA | 57 | No | [31] | |
G6 | PRJNA691135 PRJNA731624 | blood donors | Spain | 707 | plasma | No | TruePrime WGA | 72 | Yes | [32,33] |
G7 | PRJNA602336 | dengue-like symptom | Brazil | 781 | plasma | DNases/RNases | Random PCR | 102 | Yes | [34] |
G8 | PRJNA666535 | febrile children | Tanzania | 816 | serum | DNase | No | 816 | No | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Park, W.D.; Thijssen, M.; Xu, Y.; Tse, L.P.V.; Pourkarim, M.R.; Aurora, R.; Fan, X. Expansion of Betatorquevirus and/or Gammatorquevirus in Patients with Severe Clinical Outcomes of the Liver Diseases. Viruses 2023, 15, 1635. https://doi.org/10.3390/v15081635
Zhang X, Park WD, Thijssen M, Xu Y, Tse LPV, Pourkarim MR, Aurora R, Fan X. Expansion of Betatorquevirus and/or Gammatorquevirus in Patients with Severe Clinical Outcomes of the Liver Diseases. Viruses. 2023; 15(8):1635. https://doi.org/10.3390/v15081635
Chicago/Turabian StyleZhang, Xiaoan, William D. Park, Marijn Thijssen, Yanjuan Xu, Long Ping Victor Tse, Mahmoud Reza Pourkarim, Rajeev Aurora, and Xiaofeng Fan. 2023. "Expansion of Betatorquevirus and/or Gammatorquevirus in Patients with Severe Clinical Outcomes of the Liver Diseases" Viruses 15, no. 8: 1635. https://doi.org/10.3390/v15081635
APA StyleZhang, X., Park, W. D., Thijssen, M., Xu, Y., Tse, L. P. V., Pourkarim, M. R., Aurora, R., & Fan, X. (2023). Expansion of Betatorquevirus and/or Gammatorquevirus in Patients with Severe Clinical Outcomes of the Liver Diseases. Viruses, 15(8), 1635. https://doi.org/10.3390/v15081635