Utility of ISARIC 4C Mortality Score, Vaccination History, and Anti-S Antibody Titre in Predicting Risk of Severe COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Ethics Statements
2.2. Pandemic Response Measures in Singapore
2.3. Predictors for Severe COVID-19
2.4. Outcomes
2.5. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riou, J.; Althaus, C.L. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance 2020, 25, 2000058. [Google Scholar] [CrossRef] [PubMed]
- Barber, R.M.; Sorensen, R.J.D.; Pigott, D.M.; Bisignano, C.; Carter, A.; Amlag, J.O.; Collins, J.K.; Abbafati, C.; Adolph, C.; Allorant, A.; et al. Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: A statistical analysis. Lancet 2022, 399, 2351–2380. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Paulson, K.R.; Pease, S.A.; Watson, S.; Comfort, H.; Zheng, P.; Aravkin, A.Y.; Bisignano, C.; Barber, R.M.; Alam, T.; et al. Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–21. Lancet 2022, 399, 1513–1536. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Kim, L.; Whitaker, M.; O’Halloran, A.; Cummings, C.; Holstein, R.; Prill, M.; Chai, S.J.; Kirley, P.D.; Alden, N.B.; et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019—COVID-NET, 14 States, March 1–30, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.W.X.; Tham, S.M.; Koh, L.P.; Dugan, C.; Khoo, B.Y.; Ren, D.; Sutjipto, S.; Lee, P.H.; Young, B.E.; Lye, D.C. External validation of the PRIORITY model in predicting COVID-19 critical illness in vaccinated and unvaccinated patients. Clin. Microbiol. Infect. 2022, 28, 884.e1–884.e3. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Harrison, E.M.; Ho, A.; Docherty, A.B.; Knight, S.R.; van Smeden, M.; Abubakar, I.; Lipman, M.; Quartagno, M.; Pius, R.; et al. Development and validation of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: A prospective cohort study. Lancet Respir. Med. 2021, 9, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Knight, S.R.; Ho, A.; Pius, R.; Buchan, I.; Carson, G.; Drake, T.M.; Dunning, J.; Fairfield, C.J.; Gamble, C.; Green, C.A.; et al. Risk stratification of patients admitted to hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: Development and validation of the 4C Mortality Score. BMJ 2020, 370, m3339. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.Z.T.; Ting, Y.-H.; Tang, Y.; Feng, Y.; Lei, X.; Wang, X.; Chen, W.-X.; Huang, S.; Wong, S.-T.; Lu, Z.; et al. Diagnostic Performance of a Deep Learning Model Deployed at a National COVID-19 Screening Facility for Detection of Pneumonia on Frontal Chest Radiographs. Healthcare 2022, 10, 175. [Google Scholar] [CrossRef] [PubMed]
- Tariq, A.; Lee, Y.; Roosa, K.; Blumberg, S.; Yan, P.; Ma, S.; Chowell, G. Real-time monitoring the transmission potential of COVID-19 in Singapore, March 2020. BMC Med. 2020, 18, 166. [Google Scholar] [CrossRef] [PubMed]
- MOH|News Highlights. Available online: https://www.moh.gov.sg/news-highlights/details/preparing-for-our-transition-towards-covid-resilience (accessed on 17 March 2023).
- MOH|News Highlights. Available online: https://www.moh.gov.sg/news-highlights/details/data-on-persons-testing-positive-with-covid-19-serving-quarantine-orders-at-home-and-medical-treatment-provided-to-them/ (accessed on 17 March 2023).
- Premikha, M.; Chiew, C.J.; Wei, W.E.; Leo, Y.S.; Ong, B.; Lye, D.C.; Lee, V.J.; Tan, K.B. Comparative Effectiveness of mRNA and Inactivated Whole-Virus Vaccines Against Coronavirus Disease 2019 Infection and Severe Disease in Singapore. Clin. Infect. Dis. 2022, 75, 1442–1445. [Google Scholar] [CrossRef] [PubMed]
- Abu-Raddad, L.J.; Chemaitelly, H.; Coyle, P.; Malek, J.A.; Ahmed, A.A.; Mohamoud, Y.A.; Younuskunju, S.; Ayoub, H.H.; Al Kanaani, Z.; Al Kuwari, E.; et al. SARS-CoV-2 antibody-positivity protects against reinfection for at least seven months with 95% efficacy. eClinicalMedicine 2021, 35, 100861. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.W.X.; Sutjipto, S.; Lee, P.H.; Dugan, C.; Khoo, B.Y.; Ren, D.; Young, B.E.; Lye, D.C. Validation of ISARIC 4C Mortality and Deterioration Scores in a Mixed Vaccination Status Cohort of Hospitalized Coronavirus Disease 2019 (COVID-19) Patients in Singapore. Clin. Infect. Dis. 2022, 75, e874–e877. [Google Scholar] [CrossRef] [PubMed]
- Spiteri, G.; D’Agostini, M.; Abedini, M.; Ditano, G.; Collatuzzo, G.; Boffetta, P.; Vimercati, L.; Sansone, E.; De Palma, G.; Modenese, A.; et al. Protective role of SARS-CoV-2 anti-S IgG against breakthrough infections among European healthcare workers during pre and post-Omicron surge-ORCHESTRA project. Infection 2024, 52, 1347–1356. [Google Scholar] [CrossRef]
- Chia, T.R.T.; Young, B.E.; Chia, P.Y. The Omicron-transformer: Rise of the subvariants in the age of vaccines. Ann. Acad. Med. 2022, 51, 712–729. [Google Scholar] [CrossRef] [PubMed]
- Moeller, M.E.; Engsig, F.N.; Bade, M.; Fock, J.; Pah, P.; Soerensen, A.L.; Bang, D.; Donolato, M.; Benfield, T. Rapid Quantitative Point-Of-Care Diagnostic Test for Post COVID-19 Vaccination Antibody Monitoring. Microbiol. Spectr. 2022, 10, e00396-22. [Google Scholar] [CrossRef] [PubMed]
- Low, E.V.; Teh, H.S.; Hing, N.Y.L.; Chidambaram, S.K.; Pathmanathan, M.D.; Kim, W.R.; Lee, W.J.; Teh, Z.W.; Appannan, M.R.; Zin, S.M.; et al. Economic Evaluation of Nirmatrelvir/Ritonavir Among Adults Against Hospitalization During the Omicron Dominated Period in Malaysia: A Real-World Evidence Perspective. Drugs-Real World Outcomes 2024, 11, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, L.; Zhou, Z.; Liu, Q.; Wang, G.; Liu, D. Cost-effectiveness of Paxlovid in reducing severe COVID-19 and mortality in China. Front. Public Health 2023, 11, 1174879. [Google Scholar] [CrossRef] [PubMed]
- Levin, E.G.; Lustig, Y.; Cohen, C.; Fluss, R.; Indenbaum, V.; Amit, S.; Doolman, R.; Asraf, K.; Mendelson, E.; Ziv, A.; et al. Waning Immune Humoral Response to BNT162b2 COVID-19 Vaccine over 6 Months. N. Engl. J. Med. 2021, 385, e84. [Google Scholar] [CrossRef] [PubMed]
- Altarawneh, H.N.; Chemaitelly, H.; Ayoub, H.H.; Tang, P.; Hasan, M.R.; Yassine, H.M.; Al-Khatib, H.A.; Smatti, M.K.; Coyle, P.; Al-Kanaani, Z.; et al. Effects of Previous Infection and Vaccination on Symptomatic Omicron Infections. N. Engl. J. Med. 2022, 387, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Collie, S.; Champion, J.; Moultrie, H.; Bekker, L.-G.; Gray, G. Effectiveness of BNT162b2 Vaccine against Omicron Variant in South Africa. N. Engl. J. Med. 2022, 386, 494–496. [Google Scholar] [CrossRef] [PubMed]
Non-Severe COVID (n = 4830) | Severe COVID (n = 499) | Statistical Test (Pearson’s Chi-Squared Test Unless Otherwise Indicated) | |
---|---|---|---|
Demographics | |||
Age (IQR, years) | 45 (34–68) | 75 (62–85) | ^ p-value < 0.001 *** |
Sex (Male) | 3768 (78.0%) | 297 (59.5%) | p-value < 0.001 *** |
Clinical information | |||
Fully vaccinated ≥ 2 doses | 1239 (25.7%) | 165 (33.1%) | p-value < 0.001 *** |
ISARIC 4C (IQR) | 1 (1–5) | 8 (5–10) | ^ p-value < 0.001 *** |
Low ISARIC 4C 0–4 | 3484 (72.1%) | 108 (21.8%) | p-value < 0.001 *** |
Moderate ISARIC 4C 5–9 | 1064 (22.1%) | 231 (46.3%) | |
High ISARIC 4C ≥ 10 | 282 (5.8%) | 160 (31.9%) | |
Serum urea (±SD, mmol/L) | 4.11 ± 2.74 | 7.25 ± 5.48 | # p-value < 0.001 *** |
C-reactive protein (±SD, mg/L) | 14.94 ± 28.24 | 46.17 ± 50.42 | # p-value < 0.001 *** |
Lymphocyte (±SD, 109/L) | 1.60 ± 0.75 | 1.15 ± 0.63 | # p-value < 0.001 *** |
Non-age adjusted Charlson’s comorbidity index (IQR) | 0 (0–0) | 1 (0–2) | ^ p-value < 0.001 *** |
Pneumonia on chest X-ray on admission | 720 (14.9%) | 193 (38.7%) | p-value < 0.001 *** |
Anti-S antibody status (positive) | 904 (87.3%) (n = 1036) | 117 (57.1%) (n = 205) | p-value < 0.001 *** |
Anti-S antibody titre (IQR, U/mL) | 454 (122–1580) | 26.2 (0.8–250) | ^ p-value < 0.001 *** |
COVID-19 presumptive variant | |||
Ancestral (January–September 2020) | 3230 (66.9%) | 163 (32.7%) | p-value < 0.001 *** |
Alpha/Beta (October 2020–April 2021) | 53 (1.1%) | 15 (3.0%) | |
Delta (May–December 2021) | 1547 (32.0%) | 321 (64.3%) |
Models | Crude and Adjusted Odds Ratio with 95% Confidence Interval | ||
---|---|---|---|
Univariate Model | Multivariate Model | ||
Severe COVID-19 | Age (years) | 1.03 (1.02–1.04) *** | 1.02 (1.01–1.03) *** |
Sex (male) | 0.98 (0.94–1.02) | 1.00 (0.96–1.03) | |
Non-age-adjusted Charlson’s Comorbidity Index | 1.10 (1.07–1.12) *** | 1.02 (1.00–1.05) * | |
Serum urea (mmol/L) | 1.19 (1.16–1.22) *** | 1.11 (1.08–1.15) *** | |
C-reactive protein (mg/L) | 1.21 (1.16–1.26) *** | 1.15 (1.11–1.20) *** | |
Fully vaccinated status | 0.83 (0.79–0.86) *** | 0.92 (0.87–0.97) ** | |
Positive anti-S antibody | 0.75 (0.71–0.79) *** | 0.83 (0.78–0.88) *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koh, L.P.; Chia, T.R.T.; Wang, S.S.Y.; Chavatte, J.-M.; Hawkins, R.; Ting, Y.; Sim, J.Z.T.; Chen, W.X.; Tan, K.B.; Tan, C.H.; et al. Utility of ISARIC 4C Mortality Score, Vaccination History, and Anti-S Antibody Titre in Predicting Risk of Severe COVID-19. Viruses 2024, 16, 1604. https://doi.org/10.3390/v16101604
Koh LP, Chia TRT, Wang SSY, Chavatte J-M, Hawkins R, Ting Y, Sim JZT, Chen WX, Tan KB, Tan CH, et al. Utility of ISARIC 4C Mortality Score, Vaccination History, and Anti-S Antibody Titre in Predicting Risk of Severe COVID-19. Viruses. 2024; 16(10):1604. https://doi.org/10.3390/v16101604
Chicago/Turabian StyleKoh, Lin Pin, Travis Ren Teen Chia, Samuel Sherng Young Wang, Jean-Marc Chavatte, Robert Hawkins, Yonghan Ting, Jordan Zheng Ting Sim, Wen Xiang Chen, Kelvin Bryan Tan, Cher Heng Tan, and et al. 2024. "Utility of ISARIC 4C Mortality Score, Vaccination History, and Anti-S Antibody Titre in Predicting Risk of Severe COVID-19" Viruses 16, no. 10: 1604. https://doi.org/10.3390/v16101604
APA StyleKoh, L. P., Chia, T. R. T., Wang, S. S. Y., Chavatte, J.-M., Hawkins, R., Ting, Y., Sim, J. Z. T., Chen, W. X., Tan, K. B., Tan, C. H., Lye, D. C., & Young, B. E. (2024). Utility of ISARIC 4C Mortality Score, Vaccination History, and Anti-S Antibody Titre in Predicting Risk of Severe COVID-19. Viruses, 16(10), 1604. https://doi.org/10.3390/v16101604