A Sensitivity and Consistency Comparison Between Next-Generation Sequencing and Sanger Sequencing in HIV-1 Pretreatment Drug Resistance Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Ethical Statement
2.2. Laboratory Detection
2.3. Bioinformatics Analysis
2.4. Statistical Analysis
3. Results
3.1. The Characteristics of the Overall Rate of Pre-Treatment Drug Resistance (PDR) Mutations in 80 Samples Analyzed via SS and NGS
3.2. An Analysis of the Resistance Mutation Sites Detected via NGS at Different Thresholds
3.3. Comparison of Consistency Between SS and NGS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perelson, A.S.; Neumann, A.U.; Markowitz, M.; Leonard, J.M.; Ho, D.D. HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 1996, 271, 1582–1586. [Google Scholar] [CrossRef]
- Drake, J.W.; Holland, J.J. Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. USA 1999, 96, 13910–13913. [Google Scholar] [CrossRef] [PubMed]
- Duffy, S.; Shackelton, L.A.; Holmes, E.C. Rates of evolutionary change in viruses: Patterns and determinants. Nat. Rev. Genet. 2008, 9, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.Y.; Liu, Y.J.; Guo, D.X.; Wang, Z.; Geng, Q.M.; Li, L.; Zhuang, D.M.; Bao, Z.Y.; Liu, S.Y.; Li, H.P.; et al. Comparison of two HIV-1 drug resistance quasispecies analysis methods. Proc. Acad. Mil. Med. Sci. 2010, 34, 261–264. [Google Scholar]
- Cao, W.; Hsieh, E.; Li, T. Optimizing Treatment for Adults with HIV/AIDS in China: Successes over Two Decades and Remaining Challenges. Curr. HIV/AIDS Rep. 2020, 17, 26–34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johnson, J.A.; Li, J.F.; Wei, X.; Lipscomb, J.; Irlbeck, D.; Craig, C.; Smith, A.; Bennett, D.E.; Monsour, M.; Sandstrom, P.; et al. Minority HIV-1 drug resistance mutations are present in antiretroviral treatment-naïve populations and associate with reduced treatment efficacy. PLoS Med. 2008, 5, e158. [Google Scholar] [CrossRef]
- HIV Infection. Nat. Rev. Dis. Primers 2015, 1, 15060. [CrossRef] [PubMed]
- Ji, H.; Enns, E.; Brumme, C.J.; Parkin, N.; Howison, M.; Lee, E.R.; Capina, R.; Marinier, E.; Avila-Rios, S.; Sandstrom, P.; et al. Bioinformatic data processing pipelines in support of next-generation sequencing-based HIV drug resistance testing: The Winnipeg Consensus. J. Int. AIDS Soc. 2018, 21, e25193. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- World Health Organization. Global Action Plan on HIV Drug Resistance 2017–2021; World Health Organization: Geneva, Switzerland, 2017; ISBN 9789241512848. [Google Scholar]
- Dai, L.L.; Chen, R.F.; Chen, Y.K.; Ding, H.B.; He, Y.; Hua, W.; Huang, H.H.; Jin, J.; Li, X.; Liu, S.; et al. Expert consensus on rapid initiation of HIV/AIDS antiviral therapy. China J. AIDS Sex. Transm. Dis. 2023, 29, 737–744. [Google Scholar]
- Alidjinou, E.K.; Deldalle, J.; Hallaert, C.; Robineau, O.; Ajana, F.; Choisy, P.; Hober, D.; Bocket, L. RNA and DNA Sanger sequencing versus next-generation sequencing for HIV-1 drug resistance testing in treatment-naive patients. J. Antimicrob. Chemother. 2017, 72, 2823–2830. [Google Scholar] [CrossRef] [PubMed]
- McCluskey, S.M.; Siedner, M.J.; Marconi, V.C. Management of Virologic Failure and HIV Drug Resistance. Infect. Dis. Clin. N. Am. 2019, 33, 707–742. [Google Scholar] [CrossRef] [PubMed]
- Kyeyune, F.; Gibson, R.M.; Nankya, I.; Venner, C.; Metha, S.; Akao, J.; Ndashimye, E.; Kityo, C.M.; Salata, R.A.; Mugyenyi, P.; et al. Low-Frequency Drug Resistance in HIV-Infected Ugandans on Antiretroviral Treatment Is Associated with Regimen Failure. Antimicrob. Agents Chemother. 2016, 60, 3380–3397. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ouyang, F.; Yuan, D.; Zhai, W.; Liu, S.; Zhou, Y.; Yang, H. HIV-1 Drug Resistance Detected by Next-Generation Sequencing among ART-Naïve Individuals: A Systematic Review and Meta-Analysis. Viruses 2024, 16, 239. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ávila-Ríos, S.; Parkin, N.; Swanstrom, R.; Paredes, R.; Shafer, R.; Ji, H.; Kantor, R. Next-Generation Sequencing for HIV Drug Resistance Testing: Laboratory, Clinical, and Implementation Considerations. Viruses 2020, 12, 617. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xun, J.; Chen, R.; Chen, J.; Wei, H.; Xie, R.; Wang, Z.; Tang, Q.; Zhang, R.; Liu, L.; Lu, H. Investigation on drug resistance of HIV-infected people before antiviral therapy in three cities. Chin. J. HIV STD 2020, 26, 805–808. (In Chinese) [Google Scholar] [CrossRef]
- Pyne, M.T.; Simmon, K.E.; Mallory, M.A.; Hymas, W.C.; Stevenson, J.; Barker, A.P.; Hillyard, D.R. HIV-1 Drug Resistance Assay Using Ion Torrent Next Generation Sequencing and On-Instrument End-to-End Analysis Software. J. Clin. Microbiol. 2022, 60, e0025322. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Teo, C.H.Y.; Norhisham, N.H.B.; Lee, O.F.; Png, S.; Chai, C.N.; Yan, G.; Tang, J.W.; Lee, C.K. Towards Next-Generation Sequencing for HIV-1 Drug Resistance Testing in a Clinical Setting. Viruses 2022, 14, 2208. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lataillade, M.; Chiarella, J.; Yang, R.; Schnittman, S.; Wirtz, V.; Uy, J.; Seekins, D.; Krystal, M.; Mancini, M.; McGrath, D.; et al. Prevalence and clinical significance of HIV drug resistance mutations by ultra-deep sequencing in antiretroviral-naïve subjects in the CASTLE study. PLoS ONE 2010, 5, e10952. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fokam, J.; Takou, D.; Teto, G.; Nforbih, S.E.; Kome, O.P.; Santoro, M.M.; Ngoufack, E.S.; Eyongetah, M.; Palmer, D.; Fokunang, E.T.; et al. Pre-treatment drug resistance and HIV-1 genetic diversity in the rural and urban settings of Northwest-Cameroon. PLoS ONE 2020, 15, e0235958. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mangala, C.; Takou, D.; Maulot-Bangola, D.; Beloumou, G.; Rebienot Pellegrin, O.; Sosso, S.M.; Ambe Chenwi, C.; Ngoufack Jagni Semengue, E.; Vigan Codjo, F.; Boussougou, O.; et al. HIV-1 residual risk and pre-treatment drug resistance among blood donors: A sentinel surveillance from Gabon. PLoS ONE 2024, 19, e0305935. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, F.; Li, Q.; Wang, L.; Zhao, H.; Wu, H.; Yang, S.; Tang, Y.; Xiao, J.; Zhang, F. Drug Resistance to HIV-1 Integrase Inhibitors Among Treatment-Naive Patients in Beijing, China. Pharmgenom. Pers. Med. 2022, 15, 195–203. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rothberg, J.; Hinz, W.; Rearick, T.; Schultz, J.; Mileski, W.; Davey, M.; Leamon, J.H.; Johnson, K.; Milgrew, M.J.; Edwards, M.; et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011, 475, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Capina, R.; Li, K.; Kearney, L.; Vandamme, A.M.; Harrigan, P.R.; Van Laethem, K. Quality Control of Next-Generation Sequencing-Based HIV-1 Drug Resistance Data in Clinical Laboratory Information Systems Framework. Viruses 2020, 12, 645. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Novitsky, V.; Nyandiko, W.; Vreeman, R.; DeLong, A.K.; Manne, A.; Scanlon, M.; Ngeresa, A.; Aluoch, J.; Sang, F.; Ashimosi, C.; et al. Added Value of Next Generation over Sanger Sequencing in Kenyan Youth with Extensive HIV-1 Drug Resistance. Microbiol. Spectr. 2022, 10, e0345422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tzou, P.L.; Kosakovsky Pond, S.L.; Avila-Rios, S.; Holmes, S.P.; Kantor, R.; Shafer, R.W. Analysis of unusual and signature APOBEC-mutations in HIV-1 pol next-generation sequences. PLoS ONE 2020, 15, e0225352. [Google Scholar] [CrossRef]
Resistance Patterns | Sanger Sequencing | Next-Generation Sequencing | ||||
---|---|---|---|---|---|---|
20% Threshold | 15% Threshold | 10% Threshold | 5% Threshold | 2% Threshold | ||
Resistant samples, n (%) | 11 (13.8) | 14 (17.9) | 16 (20.5) | 17 (21.8) | 19 (23.8) | 20 (25.0) |
PI resistance, n (%) | 2 (2.5) | 3 (3.8) | 5 (6.3) | 5 (6.3) | 5 (6.3) | 5 (6.3) |
NRTI resistance, n (%) | 2 (2.5) | 2 (2.6) | 2 (2.6) | 3 (3.8) | 4 (5.1) | 4 (5.1) |
NNRTI class resistance, n (%) | 8 (10.0) | 8 (10.3) | 8 (10.3) | 8 (10.3) | 8 (10.3) | 8 (10.3) |
INSTI resistance, n (%) | 0 | 2 (2.6) | 3 (3.8) | 3 (300.8) | 3 (3.8) | 5 (6.3) |
Drug Classes | Mutation Site | Next-Generation-Sequencing Detection Threshold | Sanger Sequencing | ||||
---|---|---|---|---|---|---|---|
2% | 5% | 10% | 15% | 20% | |||
PIs | L33F | 3 | 3 | 3 | 3 | 3 | 3 |
M46I | 1 | 1 | 1 | 1 | 1 | 1 | |
I47AV | 1 | 1 | 1 | 1 | 0 | 0 | |
F53L | 3 | 3 | 3 | 3 | 1 | 0 | |
Q58E | 1 | 1 | 1 | 1 | 1 | 1 | |
L89LMV | 1 | 1 | 1 | 1 | 1 | 0 | |
total | 11 | 10 | 11 | 11 | 9 | 5 | |
NRTIs | E40F | 0 | 1 | 1 | 1 | 1 | 0 |
M41L | 1 | 1 | 1 | 1 | 1 | 1 | |
E44EDV | 0 | 1 | 0 | 0 | 0 | 0 | |
S68SG | 27 | 27 | 20 | 12 | 8 | 0 | |
S68G | 2 | 2 | 2 | 2 | 2 | 3 | |
D67N | 1 | 1 | 1 | 1 | 1 | 1 | |
T69D | 1 | 1 | 1 | 1 | 1 | 1 | |
D67del | 0 | 0 | 0 | 0 | 0 | 1 | |
T69TADN | 1 | 1 | 0 | 0 | 0 | 0 | |
F77FL | 1 | 0 | 0 | 0 | 0 | 0 | |
T215TS | 1 | 1 | 1 | 0 | 0 | 0 | |
K219KN | 2 | 2 | 2 | 2 | 1 | 0 | |
K219KQ | 1 | 1 | 0 | 0 | 0 | 0 | |
K219KR | 1 | 1 | 0 | 0 | 0 | 0 | |
total | 39 | 40 | 29 | 20 | 15 | 7 | |
NNRTIs | K101E | 1 | 1 | 1 | 1 | 1 | 1 |
K103KE | 5 | 5 | 5 | 2 | 1 | 0 | |
K103N | 2 | 2 | 3 | 3 | 3 | 4 | |
K103NS | 1 | 1 | 0 | 0 | 0 | 0 | |
K103S | 1 | 1 | 1 | 1 | 1 | 1 | |
V106VI | 1 | 0 | 0 | 0 | 0 | 0 | |
E138EA | 1 | 1 | 1 | 1 | 1 | 0 | |
E138EG | 1 | 1 | 1 | 1 | 1 | 1 | |
E138EK | 1 | 1 | 0 | 0 | 0 | 0 | |
V179D | 3 | 3 | 3 | 3 | 3 | 1 | |
V179E | 8 | 8 | 8 | 8 | 7 | 5 | |
Y181C | 1 | 1 | 1 | 1 | 1 | 1 | |
Y181V | 1 | 1 | 1 | 1 | 1 | 1 | |
G190S | 1 | 1 | 1 | 1 | 1 | 1 | |
P225PH | 1 | 1 | 1 | 1 | 1 | 1 | |
total | 29 | 28 | 27 | 24 | 22 | 17 | |
INSTIs | T66A | 0 | 0 | 1 | 0 | 0 | 0 |
E138EA | 5 | 3 | 3 | 3 | 2 | 0 | |
A128AT | 1 | 0 | 0 | 0 | 0 | 1 | |
S153A | 4 | 1 | 1 | 1 | 1 | 1 | |
D232N | 1 | 1 | 1 | 1 | 1 | 0 | |
total | 11 | 5 | 5 | 5 | 4 | 2 |
Detection Threshold | Drug-Resistant Samples | PIs | NRTIs | NNRTIs | INSTIs |
---|---|---|---|---|---|
2% | Only detected via NGS | 6.25% | 36.25% | 18.75% | 11.25% |
Only detected via SS | 1.25% | 1.25% | 2.50% | 1.25% | |
Consistency | 92.50% | 62.50% | 78.75% | 87.50% | |
5% | Only detected via NGS | 6.25% | 37.50% | 16.25% | 7.50% |
Only detected via SS | 1.25% | 1.25% | 2.50% | 2.50% | |
Consistency | 92.50% | 62.50% | 81.25% | 90.00% | |
10% | Only detected via NGS | 6.25% | 26.25% | 15.00% | 6.25% |
Only detected via SS | 1.25% | 1.25% | 2.50% | 2.50% | |
Consistency | 92.50% | 72.5% | 82.50% | 91.25% | |
15% | Only detected via NGS | 5.00% | 15.00% | 11.25% | 5.00% |
Only detected via SS | 1.25% | 1.25% | 2.50% | 2.50% | |
Consistency | 93.75% | 83.75% | 86.25% | 92.50% | |
20% | Only detected via NGS | 3.75% | 13.75% | 10.00% | 3.75% |
Only detected via SS | 1.25% | 1.25% | 2.50% | 1.25% | |
Consistency | 95.00% | 85.00% | 87.50% | 95.00% |
NGS | SS | Sensitivity | Specificity | p | Kappa Value | 95% CI | ||
---|---|---|---|---|---|---|---|---|
Detected | Not Detected | |||||||
PIs | ||||||||
2%/5%/10% | Detected | 4 | 5 | 80.0% | 93.3% | 0.109 | 0.534 | 0.211–0.857 |
Not detected | 1 | 70 | ||||||
15% | Detected | 4 | 4 | 80.0% | 94.6% | 0.109 | 0.583 | 0.257–0.810 |
Not detected | 1 | 71 | ||||||
20% | Detected | 4 | 3 | 80.0% | 96.0% | 0.109 | 0.640 | 0.315–0.965 |
Not detected | 1 | 72 | ||||||
NRTIs | ||||||||
2% | Detected | 3 | 29 | 75.0% | 61.8% | <0.001 | 0.085 | −0.042–0.212 |
Not detected | 1 | 47 | ||||||
5% | Detected | 3 | 30 | 75.0% | 60.5% | <0.001 | 0.080 | −0.042–0.202 |
Not detected | 1 | 46 | ||||||
10% | Detected | 3 | 21 | 75.0% | 72.4% | <0.001 | 0.141 | −0.033–0.315 |
Not detected | 1 | 55 | ||||||
15% | Detected | 3 | 12 | 75.0% | 84.2% | 0.003 | 0.257 | −0.004–0.518 |
Not detected | 1 | 64 | ||||||
20% | Detected | 2 | 11 | 50.0% | 86.8% | 0.006 | 0.278 | 0.004–0.552 |
Not detected | 1 | 66 | ||||||
NNRTIs | ||||||||
2% | Detected | 11 | 10 | 84.6% | 85.1% | 0.019 | 0.558 | 0.342–0.774 |
Not detected | 2 | 57 | ||||||
5% | Detected | 11 | 8 | 84.6% | 88.1% | <0.001 | 0.409 | 0.168–0.650 |
Not detected | 2 | 59 | ||||||
10% | Detected | 11 | 9 | 84.6% | 86.6% | 0.033 | 0.585 | 0.369–0.801 |
Not detected | 2 | 58 | ||||||
15% | Detected | 11 | 8 | 84.6% | 88.1% | 0.055 | 0.613 | 0.399–0.823 |
Not detected | 2 | 59 | ||||||
20% | Detected | 11 | 7 | 84.6% | 89.6% | <0.001 | 0.599 | 0.322–0.796 |
Not detected | 2 | 60 | ||||||
mutation variant | ||||||||
2% | Detected | 20 | 32 | 87.0% | 43.9% | <0.001 | 0.224 | 0.071–0.377 |
Not detected | 3 | 25 | ||||||
5% | Detected | 20 | 30 | 87.0% | 47.4% | <0.001 | 0.254 | 0.095–0.413 |
Not detected | 3 | 27 | ||||||
10% | Detected | 19 | 25 | 82.6% | 56.1% | <0.001 | 0.305 | 0.129–0.481 |
Not detected | 4 | 32 | ||||||
15% | Detected | 19 | 18 | 82.6% | 68.4% | <0.001 | 0.417 | 0.231–0.603 |
Not detected | 4 | 39 | ||||||
20% | Detected | 17 | 19 | 81.0% | 67.8% | <0.001 | 0.396 | 0.206–0.586 |
Not detected | 4 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Ouyang, F.; Liu, X.; Lu, J.; Hu, H.; Sun, Q.; Yang, H. A Sensitivity and Consistency Comparison Between Next-Generation Sequencing and Sanger Sequencing in HIV-1 Pretreatment Drug Resistance Testing. Viruses 2024, 16, 1713. https://doi.org/10.3390/v16111713
Zhou Y, Ouyang F, Liu X, Lu J, Hu H, Sun Q, Yang H. A Sensitivity and Consistency Comparison Between Next-Generation Sequencing and Sanger Sequencing in HIV-1 Pretreatment Drug Resistance Testing. Viruses. 2024; 16(11):1713. https://doi.org/10.3390/v16111713
Chicago/Turabian StyleZhou, Ying, Fei Ouyang, Xiaoyan Liu, Jing Lu, Haiyang Hu, Qi Sun, and Haitao Yang. 2024. "A Sensitivity and Consistency Comparison Between Next-Generation Sequencing and Sanger Sequencing in HIV-1 Pretreatment Drug Resistance Testing" Viruses 16, no. 11: 1713. https://doi.org/10.3390/v16111713
APA StyleZhou, Y., Ouyang, F., Liu, X., Lu, J., Hu, H., Sun, Q., & Yang, H. (2024). A Sensitivity and Consistency Comparison Between Next-Generation Sequencing and Sanger Sequencing in HIV-1 Pretreatment Drug Resistance Testing. Viruses, 16(11), 1713. https://doi.org/10.3390/v16111713