Sotrovimab: A Review of Its Efficacy against SARS-CoV-2 Variants
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Outpatient RCT Efficacy
3.2. Inpatient RCT Efficacy
3.3. Viral Evolution and Baseline SARS-CoV-2 Susceptibility to Sotrovimab
3.4. Sotrovimab Treatment-Emergent Immune Escape
3.5. Real-World Evidence
4. Discussion
WHO VOC | PANGOLIN Name | NextStrain Name | UKHSA/PHE Name | Nick Name | Median Fold-Reduction in Neutralization Titers Compared to Wild-Type | IC50 (ng/mL) from Selected Studies |
---|---|---|---|---|---|---|
wild-type | B.1 | - | - | - | - | 140 [49], 200 [50], 100 [51], 1000 [52], 58 [53], 94 [54], 27 [55], 32 [56] |
Alpha | B.1.1.7 | 20I/S:501Y.V1 | VOC-20DEC-01 | - | 1.8 | 187.2 [51], 50 [57], 80 [53], 81 [56] |
Beta | B.1.351 | 20H/S:501Y.V2 | VOC-20DEC-02 | - | 1 | 71.9 [51], 50 [58], 50 [53], 31 [56] |
Gamma | P.1 | 20J/S:501Y.V3 | VOC-21JAN-02 | - | 1 | 73.11 [51], 66 [53] |
Delta | B.1.617.2 | 21A/S:478K and descendants 21I/21J | VUI-21APR02 | - | 1.1 | 51.3 [51], 73 [53], 42 [56] |
Kappa | B.1.617.1 | 21B | - | - | - | 119 [51] |
Omicron | BA.1 | 21K (descendant of 21M) | VUI-21NOV-01 | - | 3.8 | 340 [49], 169.2 [51], 181 [53], 138 [56] |
BA.1.1 | - | - | - | 2.7 | 165 [51], 130 [56] | |
BA.2 | 21L (descendant of 21M) | VUI-22JAN-01 | - | 20 | 1507 [50], 2090 [49], 972.8 [51], 559 [59], 559 [59], 2190 [54], 1240 [56] | |
BA.2.12.1 | 22C | - | - | 20 | 629 [54], 1035 [56] | |
BA.2.75 | 22D | - | Centaurus | 12 | 436 [55], 960 [56] | |
BA.4 BA.5 | 22A 22B | VOC-22APR-03 VOC-22APR-04 | - | 22 | 1260 [49], 1261 [54], 577 [55], 1120 [56] | |
BF.7 | - | - | Minotaur | 48 | 1520 [56] | |
CH.1.1 | - | - | Orthrus | 16 | 437 [55], 711 [56] | |
BQ.1.1 | 22E | V-22OCT-01 | Cerberus | 118 | 4263 [56] | |
XBB.1.5 | 23A | V-23JAN-01 | Kraken | 15 | 970 [11], 416 [59], 338 [59], 900 [60], 1300 [49], 970 [11,61], 575 [56] | |
XBB.1.5 + E554K | - | - | - | - | 950 [60] | |
XBB.1.5 + L455F | - | - | - | - | 740 [49], 880 [61] | |
XBB.1.5 + F456L | - | - | - | - | 1170 [49], 880 [61] | |
XBB.1.5 + FLip | - | - | - | - | 5500 [49], 1020 [61] | |
XBB.1.9.1 | 23D | - | Hyperion | - | >50,000 [62] | |
XBB.1.16 | 23B | V-23APR-01 | Arcturus | 9.7 | 780 [63], >3840 [64] | |
XBB.1.16.1 | - | - | - | - | >10,000 [52] | |
EG.5.1 | 23F | V-23JUL-01 | Eris | 2.7 | 532 [50], 880 [11] (EG.5), 1130 [49] | |
EG.5.1.3 | - | - | - | 5 | 5000 [52] | |
BA.2.86 | 23I | V-23AUG-01 | Pirola clan | >5 | 26,042 [50], 1890 [11,60], >10,000 [59], >12,000 [49] | |
BA.2.86.1 | - | - | >10 | >10,000 [52] | ||
JN.1 | - | - | - | 2300 [11] | ||
JD.1.1 | - | - | FLip’s | - | 1030 [11] | |
HV.1 | - | - | - | 1190 [11] | ||
HK.3 | 23H | - | - | 1220 [11] |
Spike Mutation | Reference |
---|---|
S:337H (6) | [51,65] |
S:337L (180) | [51,65] |
S:337R (>192) | [51,65] |
S:337T (7) | [51,65] |
S:340A (>100) | [51,65] |
S:340D (12) | [51,66] |
S:340G (22) | [51,65] |
S:340K (>297) | [51,65,66,67] |
S:340Q (>50) | [51] |
S:340V (>200) | [51] |
S:356T (5.9) | [51] |
S:371F (13) | [68,69,70] |
S:371L (12) | [70] |
S:377K (>704) | [51] |
Reference | Incidence of Treatment-Emergent Resistance | SARS-CoV-2 Sublineage | Treatment-Emergent Spike Mutations |
---|---|---|---|
Rockett et al. [24] | 4 cases out of 100 (4%) | Delta | E340K/A/V |
Birnie et al. [25] | 10 cases out of 18 (55.6%) (15 immunocompromised patients) | BA.1 (94%) BA.2 (6%) | E340K/A/V/D/G/Q, P337L/R/S |
Focosi et al. [26] | 3 cases out of 16 (18.8%) immunocompromised patients | 2 BA.1, 1 BA.2 | E340D |
Vellas et al. [27] | 18 cases out of 34 (52.9%) immunocompromised patients | 17 BA.1 1 BA.2 | P337L/S, E340A/K/D/G, K356T, S371F |
Huygens et al. [28] | 4 cases of 25 (16%) BA.1-infected patients; 2 cases of 7 (28.6%) BA.2-infected | BA.1 BA.2 | P337X, E340X |
Andrés et al. [29] | 5 cases out of 8 (62.5%) immunocompromised patients | BA.1 (7) AY.100 (1) | P337L, E340D/R/K/V/Q, R346T, K356T |
Destras et al. [30] | 8 patients | BA.1 | P337R/S, E340A/D/K/Q |
Gupta et al. [31] | 9 cases out of 34 (26.5%) | BA.1.1 (n = 14) BA.1 (n = 13) BA.2 (n = 7) | E340K/D/V |
Ragonnet-Cronin et al. [32] | 54 out of 134 (40.3%) patients | Delta, BA.1, BA.2 | P337R/S, E340A/D/K/V, K356T |
Palomino-Cabrera et al. [33] | 15 out of 22 (68%) patients | BA.5 | P337S/R/T/L/A/H, E340Q/A/D/K/V/G, R346T and K356T |
Mazzetti et al. [34] | 1 immunocompromised patient | BA.1.1.16 | E340A |
Gliga et al. [66] | 14 out of 43 (32.6%) patients | BA.1 | P337S/H/L/R, E340D/K/V |
Leducq et al. [71] | 47 out of 166 patients (131 immunocompromised) | BA.1 (61%) BA.2 (39%) | P337S/R/L/H (10%) K356T/R (13%) E340D/K/A/Q/V/G (10%) |
Hirotsu et al. [48] | 1 immunocompromised patient | BA.1.1 | P337L and E340K |
Subramanian et al. [12] | 35 out of 170 (20.6%) patients | P337L, E340A/K/V, and C361T |
Author Contributions
Funding
Conflicts of Interest
References
- Pinto, D.; Park, Y.J.; Beltramello, M.; Walls, A.C.; Tortorici, M.A.; Bianchi, S.; Jaconi, S.; Culap, K.; Zatta, F.; De Marco, A.; et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 2020, 583, 290–295. [Google Scholar] [CrossRef]
- Piccoli, L.; Park, Y.J.; Tortorici, M.A.; Czudnochowski, N.; Walls, A.C.; Beltramello, M.; Silacci-Fregni, C.; Pinto, D.; Rosen, L.E.; Bowen, J.E.; et al. Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell 2020, 183, 1024–1042.e1021. [Google Scholar] [CrossRef]
- Finkelstein, M.T.; Mermelstein, A.G.; Parker Miller, E.; Seth, P.C.; Stancofski, E.D.; Fera, D. Structural Analysis of Neutralizing Epitopes of the SARS-CoV-2 Spike to Guide Therapy and Vaccine Design Strategies. Viruses 2021, 13, 134. [Google Scholar] [CrossRef]
- Barnes, C.O.; Jette, C.A.; Abernathy, M.E.; Dam, K.-M.A.; Esswein, S.R.; Gristick, H.B.; Malyutin, A.G.; Sharaf, N.G.; Huey-Tubman, K.E.; Lee, Y.E.; et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 2020, 588, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, X.; Zhou, H.; Zhu, H.; Jiang, S.; Wang, P. Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses. Nat. Rev. Immunol. 2023, 23, 189–199. [Google Scholar] [CrossRef]
- Taylor, P.C.; Adams, A.C.; Hufford, M.M.; de la Torre, I.; Winthrop, K.; Gottlieb, R.L. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat. Rev. Immunol. 2021, 21, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Corti, D.; Purcell, L.A.; Snell, G.; Veesler, D. Tackling COVID-19 with neutralizing monoclonal antibodies. Cell 2021, 184, 3086–3108. [Google Scholar] [CrossRef]
- Bartel, A.; Grau, J.H.; Bitzegeio, J.; Werber, D.; Linzner, N.; Schumacher, V.; Garske, S.; Liere, K.; Hackenbeck, T.; Rupp, S.I.; et al. Timely Monitoring of SARS-CoV-2 RNA Fragments in Wastewater Shows the Emergence of JN.1 (BA.2.86.1.1, Clade 23I) in Berlin, Germany. Viruses 2024, 16, 102. [Google Scholar] [CrossRef]
- Paciello, I.; Maccari, G.; Pantano, E.; Andreano, E.; Rappuoli, R. High-resolution map of the Fc functions mediated by COVID-19-neutralizing antibodies. Proc. Natl. Acad. Sci. USA 2024, 121, e2314730121. [Google Scholar] [CrossRef] [PubMed]
- Kaku, Y.; Okumura, K.; Padilla-Blanco, M.; Kosugi, Y.; Uriu, K.; Alfredo Amolong Hinay, J.; Chen, L.; Plianchaisuk, A.; Kobiyama, K.; Ishii, K.J.; et al. Virological characteristics of the SARS-CoV-2 JN.1 variant. Lancet Infect. Dis. 2023, 24, E82. [Google Scholar] [CrossRef]
- Yang, S.; Yu, Y.; Xu, Y.; Jian, F.; Song, W.; Yisimayi, A.; Wang, P.; Wang, J.; Liu, J.; Yu, L.; et al. Fast evolution of SARS-CoV-2 BA.2.86 to JN.1 under heavy immune pressure. Lancet Infect. Dis. 2023, 24, E70–E72. [Google Scholar] [CrossRef]
- Subramanian, S.; Schnell, G.; Iulio, J.D.; Gupta, A.K.; Shapiro, A.E.; Sarkis, E.H.; Lopuski, A.; Peppercorn, A.; Aldinger, M.; Hebner, C.M.; et al. Resistance analysis following sotrovimab treatment in participants with COVID-19 during the phase III COMET-ICE study. Future Virol. 2023, 18, 975–990. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Crespo Casal, M.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Early Treatment for COVID-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N. Engl. J. Med. 2021, 385, 1941–1950. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Crespo Casal, M.; Moya, J.; Rodrigues Falci, D.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Effect of Sotrovimab on Hospitalization or Death Among High-risk Patients with Mild to Moderate COVID-19: A Randomized Clinical Trial. JAMA 2022, 327, 1236–1246. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.J.; Focosi, D.; Hanley, D.F.; Cruciani, M.; Franchini, M.; Ou, J.; Casadevall, A.; Paneth, N. Outpatient randomized controlled trials to reduce COVID-19 hospitalization: Systematic review and meta-analysis. J. Med. Virol. 2023, 95, e29310. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferri, F.; Mirandola, M.; Savoldi, A.; De Nardo, P.; Morra, M.; Tebon, M.; Armellini, M.; De Luca, G.; Calandrino, L.; Sasset, L.; et al. Exploratory data on the clinical efficacy of monoclonal antibodies against SARS-CoV-2 Omicron variant of concern. eLife 2022, 11, e79639. [Google Scholar] [CrossRef]
- Siripongboonsitti, T.; Nontawong, N.; Tawinprai, K.; Suptawiwat, O.; Soonklang, K.; Poovorawan, Y.; Mahanonda, N. Efficacy of combined COVID-19 convalescent plasma with oral RNA-dependent RNA polymerase inhibitor treatment versus neutralizing monoclonal antibody therapy in COVID-19 outpatients: A multi-center, non-inferiority, open-label randomized controlled trial (PlasMab). Microbiol. Spectr. 2023, 11, e0325723. [Google Scholar] [CrossRef]
- Gonzalez-Bocco, I.H.; Beluch, K.; Cho, A.; Lahoud, C.; Reyes, F.A.; Moshovitis, D.G.; Unger-Mochrie, G.M.; Wang, W.; Hammond, S.P.; Manne-Goehler, J.; et al. Safety and tolerability study of sotrovimab (VIR-7831) prophylaxis against COVID-19 infection in immunocompromised individuals with impaired SARS-CoV-2 humoral immunity. Pilot. Feasibility Stud. 2023, 9, 100. [Google Scholar] [CrossRef]
- Self, W.H.; Sandkovsky, U.; Reilly, C.S.; Vock, D.M.; Gottlieb, R.L.; Mack, M.; Golden, K.; Dishner, E.; Vekstein, A.; Ko, E.R.; et al. Efficacy and safety of two neutralising monoclonal antibody therapies, sotrovimab and BRII-196 plus BRII-198, for adults hospitalised with COVID-19 (TICO): A randomised controlled trial. Lancet Infect. Dis. 2022, 22, 622–635. [Google Scholar] [CrossRef]
- Senefeld, J.W.; Gorman, E.K.; Johnson, P.W.; Moir, M.E.; Klassen, S.A.; Carter, R.E.; Paneth, N.S.; Sullivan, D.J.; Morkeberg, O.H.; Wright, R.S.; et al. Rates among Hospitalized Patients with COVID-19 Treated with Convalescent Plasma: A Systematic Review and Meta-Analysis. Mayo Clin. Proc. Innov. Qual. Outcomes 2023, 7, 499–513. [Google Scholar] [CrossRef]
- Misset, B.; Piagnerelli, M.; Hoste, E.; Dardenne, N.; Grimaldi, D.; Michaux, I.; De Waele, E.; Dumoulin, A.; Jorens, P.G.; van der Hauwaert, E.; et al. Convalescent Plasma for COVID-19–Induced ARDS in Mechanically Ventilated Patients. N. Engl. J. Med. 2023, 389, 1590–1600. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Spezia, P.G.; Gueli, F.; Maggi, F. The Era of the FLips: How Spike Mutations L455F and F456L (and A475V) Are Shaping SARS-CoV-2 Evolution. Viruses 2024, 16, 3. [Google Scholar] [CrossRef]
- Focosi, D.; Spezia, P.G.; Maggi, F. SARS-CoV-2 BA.2.86 (“Pirola”): Is it Pi or Just Another Omicron Sublineage? Vaccines 2023, 11, 1634. [Google Scholar] [CrossRef]
- Rockett, R.J.; Basile, K.; Maddocks, S.; Fong, W.; Agius, J.E.; Johnson-Mackinnon, J.; Arnott, A.; Chandra, S.; Gall, M.; Draper, J.L.; et al. Resistance mutations in SARS-CoV-2 Delta variant after sotrovimab use. N. Engl. J. Med. 2021, 386, 1477–1479. [Google Scholar] [CrossRef] [PubMed]
- Birnie, E.; Biemond, J.J.; Appelman, B.; de Bree, G.J.; Jonges, M.; Welkers, M.R.A.; Wiersinga, W.J. Development of Resistance-Associated Mutations after Sotrovimab Administration in High-risk Individuals Infected with the SARS-CoV-2 Omicron Variant. JAMA 2022, 328, 1104–1107. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Novazzi, F.; Baj, A.; Ferrante, F.D.; Boutahar, S.; Genoni, A.P.; Gasperina, D.D.; Maggi, F. Sotrovimab-emergent resistance in SARS-CoV-2 Omicron: A series of three cases. J. Clin. Virol. Plus 2022, 2, 100097. [Google Scholar] [CrossRef]
- Vellas, C.; Trémeaux, P.; Del Bello, A.; Latour, J.; Jeanne, N.; Ranger, N.; Danet, C.; Martin-Blondel, G.; Delobel, P.; Kamar, N.; et al. Resistance mutations in SARS-CoV-2 Omicron variant in patients treated with sotrovimab. Clin. Microbiol. Infect. 2022, 28, 1297–1299. [Google Scholar] [CrossRef]
- Huygens, S.; Munnink, B.O.; Gharbharan, A.; Koopmans, M.; Rijnders, B. Sotrovimab resistance and viral persistence after treatment of immunocompromised patients infected with the SARS-CoV-2 Omicron variant. Clin. Infect. Dis. 2023, 76, e507–e509. [Google Scholar] [CrossRef]
- Andrés, C.; González-Sánchez, A.; Jiménez, M.; Márquez-Algaba, E.; Piñana, M.; Fernández-Naval, C.; Esperalba, J.; Saubi, N.; Quer, J.; Rando-Segura, A.; et al. Emergence of Delta and Omicron variants carrying resistance-associated mutations in immunocompromised patients undergoing sotrovimab treatment with long-term viral excretion. Clin. Microbiol. Infect. 2023, 29, 240–246. [Google Scholar] [CrossRef]
- Destras, G.; Bal, A.; Simon, B.; Lina, B.; Josset, L. Sotrovimab drives SARS-CoV-2 Omicron variant evolution in immunocompromised patients. Lancet. Microbe 2022, 3, E559. [Google Scholar] [CrossRef]
- Gupta, A.; Konnova, A.; Smet, M.; Berkell, M.; Savoldi, A.; Morra, M.; Van Averbeke, V.; De Winter, F.; Peserico, D.; Danese, E.; et al. Host immunological responses facilitate development of SARS-CoV-2 2 mutations in patients receiving monoclonal antibody treatments. J. Clin. Investig. 2023, 133, e166032. [Google Scholar] [CrossRef]
- Ragonnet-Cronin, M.; Nutalai, R.; Huo, J.; Dijokaite-Guraliuc, A.; Das, R.; Tuekprakhon, A.; Supasa, P.; Liu, C.; Selvaraj, M.; Groves, N.; et al. Generation of SARS-CoV-2 escape mutations by monoclonal antibody therapy. Nat. Commun. 2023, 14, 3334. [Google Scholar] [CrossRef]
- Palomino-Cabrera, R.; Tejerina, F.; Molero-Salinas, A.; Ferris, M.; Veintimilla, C.; Catalán, P.; Rodríguez Macias, G.; Alonso, R.; Muñoz, P.; de Viedma, D.G.; et al. Frequent emergence of resistance mutations following complex intra-host genomic dynamics in SARS-CoV-2 patients receiving Sotrovimab. Antimicrob. Agents Chemother. 2023, 67, e0026623. [Google Scholar] [CrossRef]
- Mazzetti, P.; Spezia, P.G.; Capria, A.L.; Freer, G.; Sidoti, M.; Costarelli, S.; Cara, A.; Rosellini, A.; Frateschi, S.; Moscato, G.; et al. SARS-CoV-2 evolution during persistent infection in a CAR-T recipient shows an escape to both sotrovimab and T-cell responses. J. Clin. Virol. Plus 2023, 3, 100149. [Google Scholar] [CrossRef]
- Focosi, D.; McConnell, S.; Sullivan, D.J.; Casadevall, A. Analysis of SARS-CoV-2 mutations associated with resistance to therapeutic monoclonal antibodies that emerge after treatment. Drug Resist. Updates Rev. Comment. Antimicrob. Anticancer. Chemother. 2023, 71, 100991. [Google Scholar] [CrossRef]
- Aggarwal, N.R.; Beaty, L.E.; Bennett, T.D.; Carlson, N.E.; Davis, C.B.; Kwan, B.M.; Mayer, D.A.; Ong, T.C.; Russell, S.; Steele, J.; et al. Real-World Evidence of the Neutralizing Monoclonal Antibody Sotrovimab for Preventing Hospitalization and Mortality in COVID-19 Outpatients. J. Infect. Dis. 2022, 226, 2129–2136. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.W.X.; Ren, D.; Lee, P.H.; Sutjipto, S.; Dugan, C.; Khoo, B.Y.; Tay, J.X.; Vasoo, S.; Young, B.E.; Lye, D.C. Real-World Use of Sotrovimab for Pre-Emptive Treatment in High-Risk Hospitalized COVID-19 Patients: An Observational Cross-Sectional Study. Antibiotics 2022, 11, 345. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, N.R.; Beaty, L.E.; Bennett, T.D.; Carlson, N.E.; Mayer, D.A.; Molina, K.C.; Peers, J.L.; Russell, S.; Wynia, M.K.; Ginde, A.A. Change in effectiveness of sotrovimab for preventing hospitalization and mortality for at-risk COVID-19 outpatients during an Omicron BA.1 and BA.1.1-predominant phase. Int. J. Infect. Dis. 2023, 128, 310–317. [Google Scholar] [CrossRef]
- Cheng, M.M.; Reyes, C.; Satram, S.; Birch, H.; Gibbons, D.C.; Drysdale, M.; Bell, C.F.; Suyundikov, A.; Ding, X.; Maher, M.C.; et al. Real-World Effectiveness of Sotrovimab for the Early Treatment of COVID-19 During SARS-CoV-2 Delta and Omicron Waves in the USA. Infect. Dis. Ther. 2023, 12, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.; Qi, C.; Adebayo, J.O.; Underwood, J.; Coulson, J.; Bailey, R.; Lyons, R.; Edwards, A.; Cooper, A.; John, G.; et al. Real-world effectiveness of molnupiravir, nirmatrelvir-ritonavir, and sotrovimab on preventing hospital admission among higher-risk patients with COVID-19 in Wales: A retrospective cohort study. J. Infect. 2023, 86, 352–360. [Google Scholar] [CrossRef]
- Zheng, B.; Tazare, J.; Nab, L.; Green, A.C.A.; Curtis, H.J.; Mahalingasivam, V.; Herrett, E.L.; Costello, R.E.; Eggo, R.M.; Speed, V.; et al. Comparative effectiveness of nirmatrelvir/ritonavir versus sotrovimab and molnupiravir for preventing severe COVID-19 outcomes in non-hospitalised high-risk patients during Omicron waves: Observational cohort study using the OpenSAFELY platform. Lancet Reg. Health Eur. 2023, 34, 100741. [Google Scholar] [CrossRef]
- Drysdale, M.; Berktas, M.; Gibbons, D.C.; Rolland, C.; Lavoie, L.; Lloyd, E.J. Real-world effectiveness of sotrovimab for the treatment of SARS-CoV-2 infection during Omicron BA.2 and BA.5 subvariant predominance: A systematic literature review. medRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.S.; O’Donoghue, A.; Mechanic, O.; Dechen, T.; Stevens, J. Administration of Anti–SARS-CoV-2 Monoclonal Antibodies After US Food and Drug Administration Deauthorization. JAMA Netw. Open 2022, 5, e2228997. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Tuccori, M. Prescription of Anti-Spike Monoclonal Antibodies in COVID-19 Patients with Resistant SARS-CoV-2 Variants in Italy. Pathogens 2022, 11, 823. [Google Scholar] [CrossRef] [PubMed]
- Coelho, C.H.; Bloom, N.; Ramirez, S.I.; Parikh, U.M.; Heaps, A.; Sieg, S.F.; Greninger, A.; Ritz, J.; Moser, C.; Eron, J.J.; et al. SARS-CoV-2 monoclonal antibody treatment followed by vaccination shifts human memory B cell epitope recognition suggesting antibody feedback. bioRxiv 2023. [Google Scholar] [CrossRef]
- Bournazos, S.; Corti, D.; Virgin, H.W.; Ravetch, J.V. Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection. Nature 2020, 588, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Weitzenfeld, P.; Bournazos, S.; Ravetch, J.V. Antibodies targeting sialyl Lewis A mediate tumor clearance through distinct effector pathways. J. Clin. Investig. 2019, 129, 3952–3962. [Google Scholar] [CrossRef]
- Hirotsu, Y.; Kobayashi, H.; Kakizaki, Y.; Saito, A.; Tsutsui, T.; Kawaguchi, M.; Shimamura, S.; Hata, K.; Hanawa, S.; Toyama, J.; et al. Multidrug-resistant mutations to antiviral and antibody therapy in an immunocompromised patient infected with SARS-CoV-2. Med. 2023, 4, 813–824.e4. [Google Scholar] [CrossRef]
- Qu, P.; Xu, K.; Faraone, J.N.; Goodarzi, N.; Zheng, Y.-M.; Carlin, C.; Bednash, J.S.; Horowitz, J.C.; Mallampalli, R.K.; Saif, L.J.; et al. Immune Evasion, Infectivity, and Fusogenicity of SARS-CoV-2 Omicron BA.2.86 and FLip Variants. bioRxiv 2023. [Google Scholar] [CrossRef]
- Uriu, K.; Ito, J.; Kosugi, Y.; Tanaka, Y.L.; Mugita, Y.; Guo, Z.; Hinay, A.A., Jr.; Putri, O.; Kim, Y.; Shimizu, R.; et al. Transmissibility, infectivity, and immune evasion of the SARS-CoV-2 BA.2.86 variant. Lancet Infect. Dis. 2023, 23, e460–e461. [Google Scholar] [CrossRef]
- Cathcart, A.L.; Havenar-Daughton, C.; Lempp, F.A.; Ma, D.; Schmid, M.; Agostini, M.L.; Guarino, B.; Di Iulio, J.; Rosen, L.; Tucker, H.; et al. The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2. bioRxiv 2021. [Google Scholar] [CrossRef]
- Planas, D.; Staropoli, I.; Michel, V.; Lemoine, F.; Donati, F.; Prot, M.; Porrot, F.; Benhassine, F.G.; Jeyarajah, B.; Brisebarre, A.; et al. Distinct evolution of SARS-CoV-2 Omicron XBB and BA.2.86 lineages combining increased fitness and antibody evasion. bioRxiv 2023. [Google Scholar] [CrossRef]
- Cao, Y.R.; Wang, J.; Jian, F.; Xiao, T.; Song, W.; Yisimayi, A.; Huang, W.; Li, Q.; Wang, P.; An, R.; et al. Omicron escapes the majority of SARS-CoV-2 neutralizing antibodies of diverse epitopes. Nature 2021, 602, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Yamasoba, D.; Kosugi, Y.; Kimura, I.; Fujita, S.; Uriu, K.; Ito, J.; Sato, K.; for the Genotype to Phenotype Japan (G2P-Japan) Consortium. Neutralisation sensitivity of SARS-CoV-2 omicron subvariants to therapeutic monoclonal antibodies. Lancet Infect. Dis. 2022, 22, 942–943. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, Z.; Guo, Y.; Mellis, I.A.; Iketani, S.; Liu, M.; Yu, J.; Valdez, R.; Lauring, A.S.; Sheng, Z.; et al. Evolving antibody evasion and receptor affinity of the Omicron BA.2.75 sublineage of SARS-CoV-2. bioRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Casner, R.G.; Guo, Y.; Wang, Q.; Iketani, S.; Chan, J.F.-W.; Yu, J.; Dadonaite, B.; Nair, M.S.; Mohri, H.; et al. Antibodies that neutralize all current SARS-CoV-2 variants of concern by conformational locking. bioRxiv 2023. [Google Scholar] [CrossRef]
- Wang, P.; Nair, M.S.; Liu, L.; Iketani, S.; Luo, Y.; Guo, Y.; Wang, M.; Yu, J.; Zhang, B.; Kwong, P.D.; et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 2021, 593, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, M.; Yu, J.; Cerutti, G.; Nair, M.S.; Huang, Y.; Kwong, P.D.; Shapiro, L.; Ho, D.D. Increased Resistance of SARS-CoV-2 Variant P.1 to Antibody Neutralization. Cell Host Microbe 2021, 29, 747–751. [Google Scholar] [CrossRef] [PubMed]
- Sheward, D.J.; Yang, Y.; Westerberg, M.; Öling, S.; Muschiol, S.; Sato, K.; Peacock, T.P.; Hedestam, G.B.K.; Albert, J.; Murrell, B. Sensitivity of BA.2.86 to prevailing neutralising antibody responses. Lancet Infect. Dis. 2023, 23, E462–E463. [Google Scholar] [CrossRef]
- Yang, S.; Yu, Y.; Jian, F.; Song, W.; Yisimayi, A.; Chen, X.; Xu, Y.; Wang, P.; Wang, J.; Yu, L.; et al. Antigenicity and infectivity characterization of SARS-CoV-2 BA.2.86. Lancet Infect. Dis. 2023, 23, e457–e459. [Google Scholar] [CrossRef]
- Jian, F.; Feng, L.; Yang, S.; Yu, Y.; Wang, L.; Song, W.; Yisimayi, A.; Chen, X.; Xu, Y.; Wang, P.; et al. Convergent evolution of SARS-CoV-2 XBB lineages on receptor-binding domain 455–456 synergistically enhances antibody evasion and ACE2 binding. PLoS Pathog. 2023, 19, e1011868. [Google Scholar] [CrossRef]
- Pochtovyi, A.A.; Kustova, D.D.; Siniavin, A.E.; Dolzhikova, I.V.; Shidlovskaya, E.V.; Shpakova, O.G.; Vasilchenko, L.A.; Glavatskaya, A.A.; Kuznetsova, N.A.; Iliukhina, A.A.; et al. In Vitro Efficacy of Antivirals and Monoclonal Antibodies against SARS-CoV-2 Omicron Lineages XBB.1.9.1, XBB.1.9.3, XBB.1.5, XBB.1.16, XBB.2.4, BQ.1.1.45, CH.1.1, and CL.1. Vaccines 2023, 11, 1533. [Google Scholar] [CrossRef]
- Faraone, J.N.; Qu, P.; Zheng, Y.M.; Carlin, C.; Jones, D.; Panchal, A.R.; Saif, L.J.; Oltz, E.M.; Gumina, R.J.; Liu, S.L. Continued evasion of neutralizing antibody response by Omicron XBB.1.16. Cell Rep. 2023, 42, 113193. [Google Scholar] [CrossRef] [PubMed]
- Yamasoba, D.; Uriu, K.; Plianchaisuk, A.; Kosugi, Y.; Pan, L.; Zahradnik, J.; Ito, J.; Sato, K. Virological characteristics of the SARS-CoV-2 omicron XBB.1.16 variant. Lancet Infect. Dis. 2023, 23, 655–656. [Google Scholar] [CrossRef]
- Fact Sheet for Healthcare Providers Emergency Use Authorization (EUA) of Sotrovimab. Available online: https://www.fda.gov/media/149534/download (accessed on 22 February 2023).
- Gliga, S.; Luebke, N.; Killer, A.; Gruell, H.; Walker, A.; Dilthey, A.T.; Lohr, C.; Flaßhove, C.; Orth, H.M.; Feldt, T.; et al. Rapid selection of sotrovimab escape variants in SARS-CoV-2 Omicron infected immunocompromised patients. Clin. Infect. Dis. 2023, 76, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Sun, X.; Lin, Y.; Gu, C.; Ding, L.; Lu, X.; Yang, Z.; Zhang, Y.; Ma, L.; Gu, W.; et al. Comprehensive mapping of binding hot spots of SARS-CoV-2 RBD-specific neutralizing antibodies for tracking immune escape variants. Genome Med. 2021, 13, 164. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Dcosta, B.M.; Landau, N.R.; Tada, T. Resistance of SARS-CoV-2 Omicron BA.1 and BA.2 Variants to Vaccine-Elicited Sera and Therapeutic Monoclonal Antibodies. Viruses 2022, 14, 1334. [Google Scholar] [CrossRef] [PubMed]
- Iketani, S.; Liu, L.; Guo, Y.; Liu, L.; Huang, Y.; Wang, M.; Luo, Y.; Yu, J.; Yin, M.T.; Sobieszczyk, M.E.; et al. Antibody Evasion Properties of SARS-CoV-2 Omicron Sublineages. Nature 2022, 604, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Ai, J.; Wang, X.; He, X.; Zhao, X.; Zhang, Y.; Jiang, Y.; Li, M.; Cui, Y.; Chen, Y.; Qiao, R.; et al. Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages. Cell Host Microbe 2022, 30, 1077–1083.e1074. [Google Scholar] [CrossRef]
- Leducq, V.; Zafilaza, K.; Fauchois, A.; Ghidaoui, E.; Sayon, S.; Dorival, C.; Meledje, M.L.; Lusivika-Nzinga, C.; Yordanov, Y.; Martin-Blondel, G.; et al. Spike protein genetic evolution in patients at high-risk of severe COVID-19 treated by monoclonal antibodies. J. Infect. Dis. 2023. [Google Scholar] [CrossRef]
- Chen, C.; Nadeau, S.; Yared, M.; Voinov, P.; Xie, N.; Roemer, C.; Stadler, T. CoV-Spectrum: Analysis of globally shared SARS-CoV-2 data to identify and characterize new variants. Bioinformatics 2021, 38, 1735–1737. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Focosi, D.; Casadevall, A.; Franchini, M.; Maggi, F. Sotrovimab: A Review of Its Efficacy against SARS-CoV-2 Variants. Viruses 2024, 16, 217. https://doi.org/10.3390/v16020217
Focosi D, Casadevall A, Franchini M, Maggi F. Sotrovimab: A Review of Its Efficacy against SARS-CoV-2 Variants. Viruses. 2024; 16(2):217. https://doi.org/10.3390/v16020217
Chicago/Turabian StyleFocosi, Daniele, Arturo Casadevall, Massimo Franchini, and Fabrizio Maggi. 2024. "Sotrovimab: A Review of Its Efficacy against SARS-CoV-2 Variants" Viruses 16, no. 2: 217. https://doi.org/10.3390/v16020217
APA StyleFocosi, D., Casadevall, A., Franchini, M., & Maggi, F. (2024). Sotrovimab: A Review of Its Efficacy against SARS-CoV-2 Variants. Viruses, 16(2), 217. https://doi.org/10.3390/v16020217