Low gH/gL (Sub)Species-Specific Antibody Levels Indicate Elephants at Risk of Fatal Elephant Endotheliotropic Herpesvirus Hemorrhagic Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Serum Samples
2.2. Phylogenetic Analyses
2.3. Expression of Recombinant EEHV Proteins
2.4. ELISAs
2.5. Statistical Analyses
3. Results
3.1. High Levels of EEHV gB-Specific Antibodies Found in Sera of Several EEHV-HD Fatalities
3.2. Development of gB and gH/gL ELISAs for EEHV1A, 1B, 4, and 5A
3.3. Correlation amongst gB and gH/gL-Specific Antibody Levels of the Different EEHV (Sub)Species
3.4. Antibodies Specific for gH/gL of a Single EEHV (Sub)Species Were Discerned in Several Animals
3.5. EEHV-HD Fatalities Never Have High Antibody Levels to gH/gL of the (Sub)Species They Succumbed to
3.6. Seropositivity to gH/gL of the Different EEHV (Sub)Species Increases with Age
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, S.Y.; Latimer, E.M.; Hayward, G.S. Review of Elephant Endotheliotropic Herpesviruses and Acute Hemorrhagic Disease. ILAR J. 2016, 56, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Fuery, A.; Pursell, T.; Tan, J.; Peng, R.; Burbelo, P.D.; Hayward, G.S.; Ling, P.D. Lethal Hemorrhagic Disease and Clinical Illness Associated with Elephant Endotheliotropic Herpesvirus 1 Are Caused by Primary Infection: Implications for the Detection of Diagnostic Proteins. J. Virol. 2020, 94, e01528-19. [Google Scholar] [CrossRef] [PubMed]
- Hoornweg, T.E.; Schaftenaar, W.; Maurer, G.; van den Doel, P.B.; Molenaar, F.M.; Chamouard-Galante, A.; Vercammen, F.; Rutten, V.; de Haan, C.A.M. Elephant Endotheliotropic Herpesvirus Is Omnipresent in Elephants in European Zoos and an Asian Elephant Range Country. Viruses 2021, 13, 283. [Google Scholar] [CrossRef] [PubMed]
- Pursell, T.; Spencer Clinton, J.L.; Tan, J.; Peng, R.; Qin, X.; Doddapaneni, H.; Menon, V.; Momin, Z.; Kottapalli, K.; Howard, L.; et al. Primary Infection May Be an Underlying Factor Contributing to Lethal Hemorrhagic Disease Caused by Elephant Endotheliotropic Herpesvirus 3 in African Elephants (Loxodonta africana). Microbiol. Spectr. 2021, 9, e0098321. [Google Scholar] [CrossRef] [PubMed]
- Hoornweg, T.E.; Perera, V.P.; Karunarathne, R.N.S.; Schaftenaar, W.; Mahakapuge, T.A.N.; Kalupahana, A.W.; Rutten, V.; de Haan, C.A.M. Young elephants in a large herd maintain high levels of elephant endotheliotropic herpesvirus-specific antibodies and do not succumb to fatal haemorrhagic disease. Transbound. Emerg. Dis. 2022, 69, e3379–e3385. [Google Scholar] [CrossRef] [PubMed]
- Stanton, J.J.; Zong, J.C.; Latimer, E.; Tan, J.; Herron, A.; Hayward, G.S.; Ling, P.D. Detection of pathogenic elephant endotheliotropic herpesvirus in routine trunk washes from healthy adult Asian elephants (Elephas maximus) by use of a real-time quantitative polymerase chain reaction assay. Am. J. Vet. Res. 2010, 71, 925–933. [Google Scholar] [CrossRef]
- Ackermann, M.; Hatt, J.-M.; Schetle, N.; Steinmetz, H. Identification of shedders of elephant endotheliotropic herpesviruses among Asian elephants (Elephas maximus) in Switzerland. PLoS ONE 2017, 12, e0176891. [Google Scholar] [CrossRef] [PubMed]
- Howard, L.; Schaftenaar, W. Elephant Endotheliotropic Herpesvirus. In Fowler’s Zoo and Wild Animal Medicine Current Therapy; Elsevier: Saunders, PA, USA, 2018; Volume 9. [Google Scholar]
- Perrin, K.L.; Saxmose Nielsen, S.; Martinussen, T.; Bertelsen, M.F. Quantification and risk factor analysis of elephant endotheliotropic herpesvirus-haemorrhagic disease fatalities in Asian elephants (Elephas maximus) in Europe (1985–2017). J. Zoo Aquar. Res. 2021, 9, 8–13. [Google Scholar]
- Jesus, S.A.; Doherr, M.G.; Hildebrandt, T.B. Elephant Endotheliotropic Herpesvirus Impact in the European Asian Elephant (Elephas maximus) Population: Are Hereditability and Zoo-Associated Factors Linked with Mortality? Animals 2021, 11, 2816. [Google Scholar] [CrossRef]
- Reid, C.E.; Hildebrandt, T.B.; Marx, N.; Hunt, M.; Thy, N.; Reynes, J.M.; Schaftenaar, W.; Fickel, J. Endotheliotropic elephant herpes virus (EEHV) infection. The first PCR-confirmed fatal case in Asia. Vet. Q. 2006, 28, 61–64. [Google Scholar] [CrossRef]
- Zachariah, A.; Sajesh, P.K.; Santhosh, S.; Bathrachalam, C.; Megha, M.; Pandiyan, J.; Jishnu, M.; Kobragade, R.S.; Long, S.Y.; Zong, J.C.; et al. Extended genotypic evaluation and comparison of twenty-two cases of lethal EEHV1 hemorrhagic disease in wild and captive Asian elephants in India. PLoS ONE 2018, 13, e0202438. [Google Scholar] [CrossRef]
- Oo, Z.M.; Aung, Y.H.; Aung, T.T.; San, N.; Tun, Z.M.; Hayward, G.S.; Zachariah, A. Elephant Endotheliotropic Herpesvirus Hemorrhagic Disease in Asian Elephant Calves in Logging Camps, Myanmar. Emerg. Infect. Dis. 2020, 26, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Fayette, M.A.; Brenner, E.E.; Garner, M.M.; Bowman, M.R.; Latimer, E.; Proudfoot, J.S. Acute hemorrhagic disease due to elephant endotheliotropic herpesvirus 3A infection in five African elephants (Loxodonta africana) at one North American zoological institution. J. Wildl. Wildl. Med. 2021, 52, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Nofs, S.A.; Atmar, R.L.; Keitel, W.A.; Hanlon, C.; Stanton, J.J.; Tan, J.; Flanagan, J.P.; Howard, L.; Ling, P.D. Prenatal passive transfer of maternal immunity in Asian elephants (Elephas maximus). Vet. Immunol. Immunopathol. 2013, 153, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Iyer, M.L.; Molter, C.M.; Flanagan, J.P.; Bauer, K.L.; Bernardy, R.; Hoffman, D.; Parkinson, L.; Brainard, B.M.; Evans, T.S.; Pursell, T.; et al. Novel diagnostic and therapeutic approaches to elephant endotheliotropic herpesvirus 1A hemorrhagic disease in a captive juvenile Asian elephant (Elephas maximus). J. Zoo Wildl. Med. 2022, 53, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Trifinopoulos, J.; Nguyen, L.T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, W232-5. [Google Scholar] [CrossRef] [PubMed]
- Frank, S.A. Immunology and Evolution of Infectious Disease; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Zhong, L.; Zhang, W.; Krummenacher, C.; Chen, Y.; Zheng, Q.; Zhao, Q.; Zeng, M.-S.; Xia, N.; Zeng, Y.-X.; Xu, M.; et al. Targeting herpesvirus entry complex and fusogen glycoproteins with prophylactic and therapeutic agents. Trends Microbiol. 2023, 31, 788–804. [Google Scholar] [CrossRef]
- Chen, W.-H.; Kim, J.; Bu, W.; Board, N.L.; Tsybovsky, Y.; Wang, Y.; Hostal, A.; Andrews, S.F.; Gillespie, R.A.; Choe, M.; et al. Epstein-Barr virus gH/gL has multiple sites of vulnerability for virus neutralization and fusion inhibition. Immunity 2022, 55, 2135–2148.e6. [Google Scholar] [CrossRef]
- Fricke, T.; Großkopf, A.K.; Ensser, A.; Backovic, M.; Hahn, A.S. Antibodies Targeting KSHV gH/gL Reveal Distinct Neutralization Mechanisms. Viruses 2022, 14, 541. [Google Scholar] [CrossRef]
- Zehner, M.; Alt, M.; Ashurov, A.; Goldsmith, J.A.; Spies, R.; Weiler, N.; Lerma, J.; Gieselmann, L.; Stöhr, D.; Gruell, H.; et al. Single-cell analysis of memory B cells from top neutralizers reveals multiple sites of vulnerability within HCMV Trimer and Pentamer. Immunity 2023, 56, 2602–2620.e10. [Google Scholar] [CrossRef]
- Peng, T.; Ponce-de-Leon, M.; Jiang, H.; Dubin, G.; Lubinski, J.M.; Eisenberg, R.J.; Cohen, G.H. The gH-gL complex of herpes simplex virus (HSV) stimulates neutralizing antibody and protects mice against HSV type 1 challenge. J. Virol. 1998, 72, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Pursell, T.; Spencer Clinton, J.L.; Tan, J.; Peng, R.; Ling, P.D. Modified vaccinia Ankara expressing EEHV1A glycoprotein B elicits humoral and cell-mediated immune responses in mice. PLoS ONE 2022, 17, e0265424. [Google Scholar] [CrossRef] [PubMed]
- Spencer Clinton, J.L.; Hoornweg, T.E.; Tan, J.; Peng, R.; Schaftenaar, W.; Rutten, V.; de Haan, C.A.M.; Ling, P.D. EEHV1A glycoprotein B subunit vaccine elicits humoral and cell-mediated immune responses in mice. Vaccine 2022, 40, 5131–5140. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.S.; Herold, B.C.; Permar, S.R. A new era in cytomegalovirus vaccinology: Considerations for rational design of next-generation vaccines to prevent congenital cytomegalovirus infection. Npj Vaccines 2018, 3, 38. [Google Scholar] [CrossRef]
Protein | EEHV Subspecies | Strain | GenBank Accession Number | Amino Acid Residues Included | Induced Amino Acid Substitutions | Reference |
---|---|---|---|---|---|---|
gB | 1A | Case 8 | AAN03667 | 43-685 | F126H, Y128T, W209A, R432K, R433K, R434K, R436K | [3] |
gB | 1B | Emelia | AGE09921 | 30-671 | F113H, Y115T, W196A, R418K, R419K, R421K | - |
gB | 4 | Baylor | YP_009179298 | 55-700 | Y145H, Y147T, W227A, R447K, R450K | - |
gB | 5A | Vijay | YP_009052019 | 29-671 | V112H, Y114T, W195A, R417K, R420K | - |
gH | 1A | Kimba | AGG16086 | 30-706 | - | [3] |
gH | 1B | Emelia | AGE09937 | 26-704 | - | - |
gH | 4 | Baylor | YP_009179315 | 43-723 | - | - |
gH | 5A | Vijay | YP_009052002 | 28-712 | - | - |
gL | 1A | Kimba | AGG16117 | 57-304 | - | [3] |
gL | 1B | Emelia | AGE09964 | 19-264 | - | - |
gL | 4 | Baylor | YP_009179345 | 21-275 | - | - |
gL | 5A | Vijay | YP_009051970 | 11-266 | - | - |
EEHV (Sub)Species | 1A | 6 | 1B | 5A | 5B | 2 | 3A | 3B | 4 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Natural host | EM | Lox | EM | EM | EM | Lox | Lox | Lox | EM | ||
Genbank accession number | AGG16070 | AEM72556 | AGE09921 | YP_009052019 | UVZ35238 | ADK70917 | QOE74422 | UVZ34364 | YP_009179298 | ||
1A | EM | AGG16070 | 89.6 | 87.4 | 79.7 | 80.6 | 81.1 | 64.5 | 65.3 | 64.1 | |
6 | Lox | AEM72556 | 89.6 | 87.9 | 81.2 | 82.3 | 82.1 | 64.8 | 64.9 | 64.5 | |
1B | EM | AGE09921 | 87.4 | 87.9 | 81.0 | 81.8 | 82.0 | 65.0 | 65.6 | 64.3 | |
5A | EM | YP_009052019 | 79.7 | 81.2 | 81.0 | 95.8 | 92.6 | 67.0 | 67.4 | 65.4 | |
5B | EM | UVZ35238 | 80.6 | 82.3 | 81.8 | 95.8 | 93.5 | 67.7 | 68.6 | 66.8 | |
2 | Lox | ADK70917 | 81.1 | 82.1 | 82.0 | 92.6 | 93.5 | 67.2 | 67.8 | 66.4 | |
3A | Lox | QOE74422 | 64.5 | 64.8 | 65.0 | 67.0 | 67.7 | 67.2 | 94.3 | 89.9 | |
3B | Lox | UVZ34364 | 65.3 | 64.9 | 65.6 | 67.4 | 68.6 | 67.8 | 94.3 | 90.9 | |
4 | EM | YP_009179298 | 64.1 | 64.5 | 64.3 | 65.4 | 66.8 | 66.4 | 89.9 | 90.9 |
EEHV (Sub)Species | 1A | 6 | 1B | 5B | 2 | 5A | 4 | 3A | ||
---|---|---|---|---|---|---|---|---|---|---|
Natural host | EM | Lox | EM | EM | Lox | EM | EM | Lox | ||
Genbank accession number | AGG16086/AGG16117 | AEW50143/AGZ17149 | AGE09937/AGE09964 | UVZ35255/UVZ35286 | ADK70927/AGL61575 | YP_009052002/YP_009051970 | YP_009179315/YP_009179345 | QOE74439/QOE74469 | ||
1A | EM | AGG16086/AGG16117 | 82.0 | 67.5 | 60.8 | 58.9 | 58.2 | 43.8 | 42.0 | |
6 | Lox | AEW50143/AGZ17149 | 82.0 | 67.3 | 60.4 | 58.9 | 59.1 | 44.5 | 42.9 | |
1B | EM | AGE09937/AGE09964 | 67.5 | 67.3 | 62.1 | 60.3 | 59.5 | 44.7 | 44.7 | |
5B | EM | UVZ35255/UVZ35286 | 60.8 | 60.4 | 62.1 | 64.2 | 64.0 | 44.6 | 43.9 | |
2 | Lox | ADK70927/AGL61575 | 58.9 | 58.9 | 60.3 | 64.2 | 87.0 | 46.5 | 43.8 | |
5A | EM | YP_009052002/YP_009051970 | 58.2 | 59.1 | 59.5 | 64.0 | 87.0 | 45.9 | 43.0 | |
4 | EM | YP_009179315/YP_009179345 | 43.8 | 44.5 | 44.7 | 44.6 | 46.5 | 45.9 | 67.7 | |
3A | Lox | QOE74439/QOE74469 | 42.0 | 42.9 | 44.7 | 43.9 | 43.8 | 43.0 | 67.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoornweg, T.E.; Schaftenaar, W.; Rutten, V.P.M.G.; de Haan, C.A.M. Low gH/gL (Sub)Species-Specific Antibody Levels Indicate Elephants at Risk of Fatal Elephant Endotheliotropic Herpesvirus Hemorrhagic Disease. Viruses 2024, 16, 268. https://doi.org/10.3390/v16020268
Hoornweg TE, Schaftenaar W, Rutten VPMG, de Haan CAM. Low gH/gL (Sub)Species-Specific Antibody Levels Indicate Elephants at Risk of Fatal Elephant Endotheliotropic Herpesvirus Hemorrhagic Disease. Viruses. 2024; 16(2):268. https://doi.org/10.3390/v16020268
Chicago/Turabian StyleHoornweg, Tabitha E., Willem Schaftenaar, Victor P. M. G. Rutten, and Cornelis A. M. de Haan. 2024. "Low gH/gL (Sub)Species-Specific Antibody Levels Indicate Elephants at Risk of Fatal Elephant Endotheliotropic Herpesvirus Hemorrhagic Disease" Viruses 16, no. 2: 268. https://doi.org/10.3390/v16020268
APA StyleHoornweg, T. E., Schaftenaar, W., Rutten, V. P. M. G., & de Haan, C. A. M. (2024). Low gH/gL (Sub)Species-Specific Antibody Levels Indicate Elephants at Risk of Fatal Elephant Endotheliotropic Herpesvirus Hemorrhagic Disease. Viruses, 16(2), 268. https://doi.org/10.3390/v16020268