HPV and Cervical Cancer: Molecular and Immunological Aspects, Epidemiology and Effect of Vaccination in Latin American Women
Abstract
:1. Introduction
2. Role of the HPV Genes on the Viral Replication and Cervical Carcinogenesis
3. Immune Response and Immune Evasion in Cervical Cancer
4. Hormonal Influences on Cervical Cancer Risk
5. HPV and Cervical Cancer in Latin America
6. HPV Vaccines: Molecular Aspects of FDA Approved Vaccines
6.1. Peptide- and Protein-Based Vaccines
6.2. Live Vector Vaccines
6.3. Nucleic Acid-Based Vaccines
6.4. Whole Cell-Based Vaccines
7. Impact of HPV Vaccination in LA and Challenges in Its Implementation
7.1. Current Status of HPV Vaccination Programs in Latin American Countries
7.2. Effectiveness of Vaccination Campaigns and Cervical Cancer Incidence
7.3. Current Actions by LA Countries
8. Future Directions and Recommendations
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- GLOBOCAN Cancer Today. Available online: https://gco.iarc.fr/today/online-analysis-map?v=2020&mode=cancer&mode_population=continents&population=900&populations=900&key=total&sex=2&cancer=39&type=1&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=10&group_cancer=1&include_nmsc=0&include_nmsc_other=0&projection=natural-earth&color_palette=default&map_scale=quantile&map_nb_colors=5&continent=0&show_ranking=0&rotate=%255B10%252C0%255D (accessed on 14 November 2023).
- World Health Organization Cervical Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cervical-cancer (accessed on 1 December 2023).
- Petca, A.; Borislavschi, A.; Zvanca, M.; Petca, R.-C.; Sandru, F.; Dumitrascu, M. Non-Sexual HPV Transmission and Role of Vaccination for a Better Future (Review). Exp. Ther. Med. 2020, 20, 186. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Slama, J.; Gonzalez, P.; Goodman, M.T.; Xia, N.; Kreimer, A.R.; Wu, T.; Hessol, N.A.; Shvetsov, Y.; Ortiz, A.P.; et al. Cervical Determinants of Anal HPV Infection and High-Grade Anal Lesions in Women: A Collaborative Pooled Analysis. Lancet Infect. Dis. 2019, 19, 880–891. [Google Scholar] [CrossRef] [PubMed]
- Džundová, M.N.; Sehnal, B.; Zikán, M.; Kocián, R.; Dubová, O.; Hubka, P.; Dostálek, L.; Kabele, P.; Brtnický, T.; Slama, J. Risk Factors for the Anal and Oral Human Papillomavirus (HPV) Infections among Women with Severe Cervical Lesions: A Prospective Case—Control Study. Biomedicines 2023, 11, 3183. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.V. Keratinocyte Differentiation-Dependent Human Papillomavirus Gene Regulation. Viruses 2017, 9, 245. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Zheng, L.; He, Y.; Qi, X. Human Papillomavirus Associated Cervical Lesion: Pathogenesis and Therapeutic Interventions. MedComm 2023, 4, e368. [Google Scholar] [CrossRef] [PubMed]
- Torres-Poveda, K.; Bahena-Román, M.; Madrid-González, C.; Burguete-García, A.I.; Bermúdez-Morales, V.H.; Peralta-Zaragoza, O.; Madrid-Marina, V. Role of IL-10 and TGF-Β1 in Local Immunosuppression in HPV-Associated Cervical Neoplasia. World J. Clin. Oncol. 2014, 5, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kumar, P.; Das, B.C. HPV: Molecular Pathways and Targets. Curr. Probl. Cancer 2018, 42, 161–174. [Google Scholar] [CrossRef]
- Manzo-Merino, J.; Del-Toro-Arreola, S.; Rocha-Zavaleta, L.; Peralta-Zaragoza, Ó.; Jiménez-Lima, R.; Madrid-Marina, V. Immunology of Cervical Cancer. Rev. Investig. Clin. 2020, 72, 188–197. [Google Scholar] [CrossRef]
- Bhattacharjee, R.; Das, S.S.; Biswal, S.S.; Nath, A.; Das, D.; Basu, A.; Malik, S.; Kumar, L.; Kar, S.; Singh, S.K.; et al. Mechanistic Role of HPV-Associated Early Proteins in Cervical Cancer: Molecular Pathways and Targeted Therapeutic Strategies. Crit. Rev. Oncol. Hematol. 2022, 174, 103675. [Google Scholar] [CrossRef]
- De Oliveira, L.H.; Janusz, C.B.; Da Costa, M.T.; El Omeiri, N.; Bloem, P.; Lewis, M.; Luciani, S. HPV Vaccine Introduction in the Americas: A Decade of Progress and Lessons Learned. Expert Rev. Vaccines 2022, 21, 1569–1580. [Google Scholar] [CrossRef]
- Preti, M.; Rosso, S.; Micheletti, L.; Libero, C.; Sobrato, I.; Giordano, L.; Busso, P.; Gallio, N.; Cosma, S.; Bevilacqua, F.; et al. Risk of HPV-Related Extra-Cervical Cancers in Women Treated for Cervical Intraepithelial Neoplasia. BMC Cancer 2020, 20, 972. [Google Scholar] [CrossRef]
- Schwarz, T.F.; Huang, L.M.; Valencia, A.; Panzer, F.; Chiu, C.H.; Decreux, A.; Poncelet, S.; Karkada, N.; Folschweiller, N.; Lin, L.; et al. A Ten-Year Study of Immunogenicity and Safety of the AS04-HPV-16/18 Vaccine in Adolescent Girls Aged 10–14 Years. Hum. Vaccines Immunother. 2019, 15, 1970–1979. [Google Scholar] [CrossRef]
- Garland, S.M.; Steben, M.; Sings, H.L.; James, M.; Lu, S.; Railkar, R.; Barr, E.; Haupt, R.M.; Joura, E.A. Natural History of Genital Warts: Analysis of the Placebo Arm of 2 Randomized Phase III Trials of a Quadrivalent Human Papillomavirus (Types 6, 11, 16, and 18) Vaccine. J. Infect. Dis. 2009, 199, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Jeang, J.; Cheng, K.; Cheng, T.; Yang, B.; Wu, T.C.; Hung, C.F. Current State in the Development of Candidate Therapeutic HPV Vaccines. Expert Rev. Vaccines 2016, 15, 989–1007. [Google Scholar] [CrossRef]
- Liebermann, E.J.; VanDevanter, N.; Shirazian, T.; Frías Gúzman, N.; Niles, M.; Healton, C.; Ompad, D. Barriers to Cervical Cancer Screening and Treatment in the Dominican Republic: Perspectives of Focus Group Participants in the Santo Domingo Area. J. Transcult. Nurs. 2020, 31, 121–127. [Google Scholar] [CrossRef]
- Liebermann, E.; Devanter, N.V.; Frías Gúzman, N.; Ompad, D.; Shirazian, T.; Healton, C. Parent-Level Barriers and Facilitators to HPV Vaccine Implementation in Santo Domingo, Dominican Republic. J. Community Health 2020, 45, 1061–1066. [Google Scholar] [CrossRef]
- Nogueira-Rodrigues, A. HPV Vaccination in Latin America: Global Challenges and Feasible Solutions. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, e45–e52. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, K.; Maza, M.; Cremer, M.; Masch, R.; Soler, M. Removing Global Barriers to Cervical Cancer Prevention and Moving towards Elimination. Nat. Rev. Cancer 2021, 21, 607–608. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Majerciak, V.; Zheng, Z.M. HPV16 and HPV18 Genome Structure, Expression, and Post-Transcriptional Regulation. Int. J. Mol. Sci. 2022, 23, 4943. [Google Scholar] [CrossRef] [PubMed]
- Bouvard, V.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A Review of Human Carcinogens--Part B: Biological Agents. Lancet Oncol. 2009, 10, 321–322. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Biological Agents. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100, 1–441. [Google Scholar]
- Ozbun, M.A.; Campos, S.K. The Long and Winding Road: Human Papillomavirus Entry and Subcellular Trafficking. Curr. Opin. Virol. 2021, 50, 76–86. [Google Scholar] [CrossRef]
- O’connor, M.; Chan, S.-Y.; Bernard, H.-U. Transcription Factor Binding Sites in the Long Control Region of Genital HPVs. In Human Papillomaviruses Compendium; Myers, G., Bernard, H.U., Delius, H., Baker, C., Icenogle, J., Halpern, A., Wheeler, C., Eds.; Los Alamos National Laboratory: Los Alamos, NM, USA, 1995. [Google Scholar]
- Ren, S.; Gaykalova, D.A.; Guo, T.; Favorov, A.V.; Fertig, E.J.; Tamayo, P.; Callejas-Valera, J.L.; Allevato, M.; Gilardi, M.; Santos, J.; et al. HPV E2, E4, E5 Drive Alternative Carcinogenic Pathways in HPV Positive Cancers. Oncogene 2020, 39, 6327–6339. [Google Scholar] [CrossRef]
- Venuti, A.; Paolini, F.; Nasir, L.; Corteggio, A.; Roperto, S.; Campo, M.S.; Borzacchiello, G. Papillomavirus E5: The Smallest Oncoprotein with Many Functions. Mol. Cancer 2011, 10, 140. [Google Scholar] [CrossRef]
- Pal, A.; Kundu, R. Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Front. Microbiol. 2020, 10, 3116. [Google Scholar] [CrossRef]
- Scarth, J.A.; Patterson, M.R.; Morgan, E.L.; Macdonald, A. The Human Papillomavirus Oncoproteins: A Review of the Host Pathways Targeted on the Road to Transformation. J. Gen. Virol. 2021, 102, 001540. [Google Scholar] [CrossRef] [PubMed]
- Dreer, M.; van de Poel, S.; Stubenrauch, F. Control of Viral Replication and Transcription by the Papillomavirus E8^E2 Protein. Virus Res. 2017, 231, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Chesson, H.W.; Dunne, E.F.; Hariri, S.; Markowitz, L.E. The Estimated Lifetime Probability of Acquiring Human Papillomavirus in the United States. Sex. Transm. Dis. 2014, 41, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, G.H.; Haghshenas, M.; Marchetti, B.; Campo, M.S. E5 Protein of Human Papillomavirus 16 Downregulates HLA Class I and Interacts with the Heavy Chain via Its First Hydrophobic Domain. Int. J. Cancer 2006, 119, 2105–2112. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, G.H.; Haghshenas, M.R.; Marchetti, B.; O’Brien, P.M.; Campo, M.S. E5 Protein of Human Papillomavirus Type 16 Selectively Downregulates Surface HLA Class I. Int. J. Cancer 2005, 113, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.C.; Balko, J.M. Mechanisms of MHC-I Downregulation and Role in Immunotherapy Response. Front. Immunol. 2022, 13, 844866. [Google Scholar] [CrossRef] [PubMed]
- Rincon-Orozco, B.; Halec, G.; Rosenberger, S.; Muschik, D.; Nindl, I.; Bachmann, A.; Ritter, T.M.; Dondog, B.; Ly, R.; Bosch, F.X.; et al. Epigenetic Silencing of Interferon-κ in Human Papillomavirus Type 16-Positive Cells. Cancer Res. 2009, 69, 8718–8725. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.L.; Woodby, B.L.; Ulicny, J.; Raikhy, G.; Orr, A.W.; Songock, W.K.; Bodily, J.M. Human Papillomavirus 16 E5 Inhibits Interferon Signaling and Supports Episomal Viral Maintenance. J. Virol. 2020, 94, e01582-19. [Google Scholar] [CrossRef] [PubMed]
- Castro-Muñoz, L.J.; Manzo-Merino, J.; Muñoz-Bello, J.O.; Olmedo-Nieva, L.; Cedro-Tanda, A.; Alfaro-Ruiz, L.A.; Hidalgo-Miranda, A.; Madrid-Marina, V.; Lizano, M. The Human Papillomavirus (HPV) E1 Protein Regulates the Expression of Cellular Genes Involved in Immune Response. Sci. Rep. 2019, 9, 13620. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Bustamante, P.; Keşmir, C.; de Boer, R.J. The Evolution of Natural Killer Cell Receptors. Immunogenetics 2016, 68, 3–18. [Google Scholar] [CrossRef]
- Shklovskaya, E.; Rizos, H. Mhc Class i Deficiency in Solid Tumors and Therapeutic Strategies to Overcome It. Int. J. Mol. Sci. 2021, 22, 6741. [Google Scholar] [CrossRef] [PubMed]
- Guleria, C.; Suri, V.; Kapoor, R.; Minz, R.W.; Aggarwal, R. Human Papillomavirus 16 Infection Alters the Toll-like Receptors and Downstream Signaling Cascade: A Plausible Early Event in Cervical Squamous Cell Carcinoma Development. Gynecol. Oncol. 2019, 155, 151–160. [Google Scholar] [CrossRef]
- Lie Tobouti, P.; Bolt, R.; Radhakrishnan, R.; Cantanhede, S.; Machado De Sousa, O.; Hunter, K.D. Altered Toll-like Receptor Expression and Function in HPV-Associated Oropharyngeal Carcinoma. Oncotarget 2018, 9, 236–248. [Google Scholar] [CrossRef]
- Bahramabadi, R.; Dabiri, S.; Iranpour, M.; Kazemi Arababadi, M. TLR4: An Important Molecule Participating in Either Anti-Human Papillomavirus Immune Responses or Development of Its Related Cancers. Viral Immunol. 2019, 32, 417–423. [Google Scholar] [CrossRef]
- Ahn, J.; Barber, G.N. STING Signaling and Host Defense against Microbial Infection. Exp. Mol. Med. 2019, 51, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, M.F.; Oxenius, A. Interleukin 2: From Immunostimulation to Immunoregulation and Back Again. EMBO Rep. 2007, 8, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.S.; Wang, Y.L.; Chen, C.; Zhu, X.J.; Zhu, H.; Hu, Y. Effects of Th17 Cells and IL-17 in the Progression of Cervical Carcinogenesis with High-Risk Human Papillomavirus Infection. Cancer Med. 2018, 7, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Alves, J.J.P.; Fernandes, T.A.A.D.M.; De Araújo, J.M.G.; Cobucci, R.N.O.; Lanza, D.C.F.; Bezerra, F.L.; Andrade, V.S.; Fernandes, J.V. Th17 Response in Patients with Cervical Cancer. Oncol. Lett. 2018, 16, 6215–6227. [Google Scholar] [CrossRef] [PubMed]
- Moodley, M.; Moodley, J.; Chetty, R.; Herrington, C.S. The Role of Steroid Contraceptive Hormones in the Pathogenesis of Invasive Cervical Cancer: A Review. Int. J. Gynecol. Cancer 2003, 13, 103–110. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, G.; Gong, T.T.; Lv, J.L.; Gao, C.; Liu, F.H.; Zhao, Y.H.; Wu, Q.J. Non-Genetic Factors and Risk of Cervical Cancer: An Umbrella Review of Systematic Reviews and Meta-Analyses of Observational Studies. Int. J. Public Health 2023, 68, 1605198. [Google Scholar] [CrossRef] [PubMed]
- Bronowicka-Kłys, D.E.; Lianeri, M.; Jagodziński, P.P. The Role and Impact of Estrogens and Xenoestrogen on the Development of Cervical Cancer. Biomed. Pharmacother. 2016, 84, 1945–1953. [Google Scholar] [CrossRef] [PubMed]
- Williams, W.V.; Mitchell, L.A.; Carlson, S.K.; Raviele, K.M. Association of Combined Estrogen–Progestogen and Progestogen-Only Contraceptives with the Development of Cancer. Linacre Q. 2018, 85, 412–452. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Silva, C.D.; Villegas-Pineda, J.C.; Pereira-Suárez, A.L. Expression and Role of the G Protein-Coupled Estrogen Receptor (GPR30/GPER) in the Development and Immune Response in Female Reproductive Cancers. Front. Endocrinol. 2020, 11, 544. [Google Scholar] [CrossRef]
- Cooper, D.B.; Patel, P.; Mahdy, H. Oral Contraceptive Pills—StatPearls—NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK430882/ (accessed on 19 December 2023).
- Moreno, V.; Bosch, F.X.; Muñoz, N.; Meijer, C.J.; Shah, K.V.; Walboomers, J.M.; Herrero, R.; Franceschi, S. Effect of Oral Contraceptives on Risk of Cervical Cancer in Women with Human Papillomavirus Infection: The IARC Multicentric Case-Control Study. Lancet 2002, 359, 1085–1092. [Google Scholar] [CrossRef]
- Rinaldi, S.; Plummer, M.; Biessy, C.; Castellsagué, X.; Overvad, K.; Kjær, S.K.; Tjønneland, A.; Clavel-Chapelon, F.; Chabbert-Buffet, N.; Mesrine, S.; et al. Endogenous Sex Steroids and Risk of Cervical Carcinoma: Results from the EPIC Study. Cancer Epidemiol. Biomark. Prev. 2011, 20, 2532–2540. [Google Scholar] [CrossRef]
- Gadducci, A.; Cosio, S.; Fruzzetti, F. Estro-Progestin Contraceptives and Risk of Cervical Cancer: A Debated Issue. Anticancer Res. 2020, 40, 5995–6002. [Google Scholar] [CrossRef]
- Pimple, S.; Mishra, G. Cancer Cervix: Epidemiology and Disease Burden. Cytojournal 2022, 19, 21. [Google Scholar] [CrossRef]
- Brake, T.; Lambert, P.F. Estrogen Contributes to the Onset, Persistence, and Malignant Progression of Cervical Cancer in a Human Papillomavirus-Transgenic Mouse Model. Proc. Natl. Acad. Sci. USA 2005, 102, 2490–2495. [Google Scholar] [CrossRef]
- Chung, S.H.; Wiedmeyer, K.; Shai, A.; Korach, K.S.; Lambert, P.F. Requirement for Estrogen Receptor α in a Mouse Model for Human Papillomavirus-Associated Cervical Cancer. Cancer Res. 2008, 68, 9928–9934. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Park, J.W.; Lambert, P.F.; Chung, S.H. Requirement of Estrogen Receptor Alpha DNA-Binding Domain for HPV Oncogene-Induced Cervical Carcinogenesis in Mice. Carcinogenesis 2014, 35, 489–496. [Google Scholar] [CrossRef]
- Shai, A.; Brake, T.; Somoza, C.; Lambert, P.F. The Human Papillomavirus E6 Oncogene Dysregulates the Cell Cycle and Contributes to Cervical Carcinogenesis through Two Independent Activities. Cancer Res. 2007, 67, 1626–1635. [Google Scholar] [CrossRef] [PubMed]
- Shai, A.; Pitot, H.C.; Lambert, P.F. P53 Loss Synergizes with Estrogen and Papillomaviral Oncogenes to Induce Cervical and Breast Cancers. Cancer Res. 2008, 68, 2622–2631. [Google Scholar] [CrossRef] [PubMed]
- Maufort, J.P.; Shai, A.; Pitot, H.C.; Lambert, P.F. A Role for HPV16 E5 in Cervical Carcinogenesis. Cancer Res. 2010, 70, 2924–2931. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.H.; Shin, M.K.; Korach, K.S.; Lambert, P.F. Requirement for Stromal Estrogen Receptor Alpha in Cervical Neoplasia. Horm. Cancer 2013, 4, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.-H.; Lambert, P.F. Prevention and Treatment of Cervical Cancer in Mice Using Estrogen Receptor Antagonists. Proc. Natl. Acad. Sci. USA 2009, 106, 19467–19472. [Google Scholar] [CrossRef] [PubMed]
- Riera-Leal, A.; De Arellano, A.R.; Ramírez-López, I.G.; Lopez-Pulido, E.I.; Rodríguez, J.R.D.; Macías-Barragan, J.G.; Ortiz-Lazareno, P.C.; Jave-Suárez, L.F.; Artaza-Irigaray, C.; Arreola, S.D.T.; et al. Effects of 60 KDa Prolactin and Estradiol on Metabolism and Cell Survival in Cervical Cancer: Co-Expression of Their Hormonal Receptors during Cancer Progression. Oncol. Rep. 2018, 40, 3781–3793. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-López, I.G.; Ramírez De Arellano, A.; Jave-Suárez, L.F.; Hernández-Silva, C.D.; García-Chagollan, M.; Hernández-Bello, J.; Lopez-Pulido, E.I.; Macias-Barragan, J.; Montoya-Buelna, M.; Muñoz-Valle, J.F.; et al. Interaction between 17β-Estradiol, Prolactin and Human Papillomavirus Induce E6/E7 Transcript and Modulate the Expression and Localization of Hormonal Receptors. Cancer Cell Int. 2019, 19, 227. [Google Scholar] [CrossRef] [PubMed]
- Riera Leal, A.; Ortiz-Lazareno, P.C.; Jave-Suárez, L.F.; De Arellano, A.R.; Aguilar-Lemarroy, A.; Ortiz-García, Y.M.; Barrón-Gallardo, C.A.; Solís-Martínez, R.; De Anda, S.L.; Muñoz-Valle, J.F.; et al. 17β-Estradiol-Induced Mitochondrial Dysfunction and Warburg Effect in Cervical Cancer Cells Allow Cell Survival under Metabolic Stress. Int. J. Oncol. 2020, 56, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wu, Y.; Zhang, Y.; Ji, X.; Hao, Q. Activation of G-protein Coupled Estrogen Receptor Inhibits the Proliferation of Cervical Cancer Cells via Sustained Activation of ERK1/2. Cell Biochem. Funct. 2015, 33, 134–142. [Google Scholar] [CrossRef]
- Ruckriegl, S.; Loris, J.; Wert, K.; Bauerschmitz, G.; Gallwas, J.; Grundker, C. Knockdown of G Protein-Coupled Estrogen Receptor 1 (GPER1) Enhances Tumor-Supportive Properties in Cervical Carcinoma Cells. Cancer Genom. Proteom. 2023, 20, 281–297. [Google Scholar] [CrossRef]
- Ramírez-de-Arellano, A.; Villegas-Pineda, J.C.; Hernández-Silva, C.D.; Pereira-Suárez, A.L. The Relevant Participation of Prolactin in the Genesis and Progression of Gynecological Cancers. Front. Endocrinol. 2021, 12, 747810. [Google Scholar] [CrossRef] [PubMed]
- Macfee, M.S.; McQueen, J.; Strayer, D.E. Immunocytochemical Localization of Prolactin in Carcinoma of the Cervix. Gynecol. Oncol. 1987, 26, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, J.G.; Breistein, L.S. Prolactin and 3-Methylcholanthrene Induced Cervical Carcinoma. Effect of Bromocriptine. Acta Pathol. Microbiol. Scand. A 1979, 87A, 151–156. [Google Scholar] [CrossRef]
- Forsberg, J.-G.; Breistein, L.S. A Synergistic Effect of Oestradiol and Prolactin Influencing the Incidence of 3-Methylcholanthrene Induced Cerivical Carcinomas in Mice. Acta Pathol. Microbiol. Scand. A 1976, 84, 384–390. [Google Scholar] [CrossRef]
- Forsberg, J.G.; Stray-Breistein, L.; Lingaas, E. Prolactin-Stimulating Effect on 3H-Thymidine Incorporation in 3-Methylcholanthrene-Induced Cervical Carcinomas in Normal and Estrogenized Mice. J. Natl. Cancer Inst. 1974, 53, 1247–1252. [Google Scholar] [CrossRef]
- Chen, K.W.; Tsai, Y.L.; Chen, W.S.; Lien, Y.R.; Su, W.H.; Lee, C.Y.; Hsieh, C.Y. Binding and Growth-Stimulation of Cervical Cancer Cell Lines by Prolactin. J. Formos. Med. Assoc. 1992, 91, 804–807. [Google Scholar]
- Strukov, E.L.; Safronnikova, N.R.; Bobrov, I.F.; Gamaiunova, V.B.; Bokhman, I.V.; Dil’man, V.M. Hyperprolactinemia as a Marker of the Progression of Cervical Cancer. Vopr. Onkol. 1990, 36, 831–835. [Google Scholar] [PubMed]
- Hsu, C.-T.; Yu, M.-H.; Lee, C.-Y.G.; Jong, H.-L.; Yeh, M.-Y. Ectopic Production of Prolactin in Uterine Cervical Carcinoma. Gynecol. Oncol. 1992, 44, 166–171. [Google Scholar] [CrossRef]
- Lopez-Pulido, E.I.; Muñoz-Valle, J.F.; Del Toro-Arreola, S.; Jave-Suárez, L.F.; Bueno-Topete, M.R.; Estrada-Chávez, C.; Pereira-Suárez, A.L. High Expression of Prolactin Receptor Is Associated with Cell Survival in Cervical Cancer Cells. Cancer Cell Int. 2013, 13, 103. [Google Scholar] [CrossRef]
- Ascencio-Cedillo, R.; López-Pulido, E.I.; Muñoz-Valle, J.F.; Villegas-Sepúlveda, N.; Del Toro-Arreola, S.; Estrada-Chávez, C.; Daneri-Navarro, A.; Franco-Topete, R.; Pérez-Montiel, D.; García-Carrancá, A.; et al. Prolactin and Prolactin Receptor Expression in Cervical Intraepithelial Neoplasia and Cancer. Pathol. Oncol. Res. 2015, 21, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Ramírez De Arellano, A.; Lopez-Pulido, E.I.; Martínez-Neri, P.A.; Chávez, C.E.; Lucano, R.G.; Fafutis-Morris, M.; Aguilar-Lemarroy, A.; Muñoz-Valle, J.F.; Pereira-Suárez, A.L. STAT3 Activation Is Required for the Antiapoptotic Effects of Prolactin in Cervical Cancer Cells. Cancer Cell Int. 2015, 15, 83. [Google Scholar] [CrossRef] [PubMed]
- Ramírez De Arellano, A.; Leal, A.R.; Lopez-Pulido, E.I.; González-Lucano, L.R.; Barragan, J.M.; Del Toro Arreola, S.; García-Chagollan, M.; Palafox-Sánchez, C.A.; Muñoz-Valle, J.F.; Pereira-Suárez, A.L. A 60 KDa Prolactin Variant Secreted by Cervical Cancer Cells Modulates Apoptosis and Cytokine Production. Oncol. Rep. 2018, 39, 1253–1260. [Google Scholar] [CrossRef]
- Godoy-Pacheco, A.; García-Chagollán, M.; Ramírez-De-Arellano, A.; Hernández-Silva, C.D.; Villegas-Pineda, J.C.; Ramírez-LóPez, I.G.; Zepeda-Nuño, J.S.; Aguilar-Lemarroy, A.; Pereira-Suárez, A.L. Differential Modulation of Natural Killer Cell Cytotoxicity by 17β-estradiol and Prolactin through the NKG2D/NKG2DL Axis in Cervical Cancer Cells. Oncol. Lett. 2022, 24, 288. [Google Scholar] [CrossRef] [PubMed]
- GLOBOCAN Cancer Today: Absolute Numbers, Incidence, Females, in 2020. Available online: https://gco.iarc.fr/today/online-analysis-pie?v=2020&mode=cancer&mode_population=continents&population=900&populations=904&key=total&sex=2&cancer=39&type=2&statistic=3&prevalence=1&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=7&group_cancer=1&include_nmsc=1&include_nmsc_other=1&half_pie=0&donut=0#collapse-group-1-1-0 (accessed on 18 December 2023).
- Bobadilla, M.L.; Villagra, V.; Violeta, O.; Deluca, G.; De Paula, V.S. High Prevalence and Co-Infection of High-Risk Human Papillomavirus Genotypes among Unvaccinated Young Women from Paraguay. PLoS ONE 2023, 18, e0283542. [Google Scholar] [CrossRef]
- Wendland, E.M.; Villa, L.L.; Unger, E.R.; Domingues, C.M.; Benzaken, A.S.; Maranhão, A.G.K.; Kops, N.L.; Bessel, M.; Caierão, J.; Hohenberger, G.F.; et al. Prevalence of HPV Infection among Sexually Active Adolescents and Young Adults in Brazil: The POP-Brazil Study. Sci. Rep. 2020, 10, 4920. [Google Scholar] [CrossRef]
- Puerto, D.; Reyes, V.; Lozano, C.; Buitrago, L.; Garcia, D.; Murillo, R.H.; Muñoz, N.; Hernandez, G.A.; Sanchez, L.; Wiesner, C.; et al. Detection and Genotyping of HPV DNA in a Group of Unvaccinated Young Women from Colombia: Baseline Measures Prior to Future Monitoring Program. Cancer Prev. Res. 2018, 11, 581–591. [Google Scholar] [CrossRef]
- González, J.V.; Deluca, G.D.; Liotta, D.J.; Correa, R.M.; Basiletti, J.A.; Colucci, M.C.; Katz, N.; Vizzotti, C.; Picconi, M.A.; Giurgiovich, A.; et al. Baseline Prevalence and Type Distribution of Human Papillomavirus in Sexually Active Non-Vaccinated Adolescent Girls from Argentina. Rev. Argent. Microbiol. 2021, 53, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Correa, R.M.; Baena, A.; Valls, J.; Colucci, M.C.; Mendoza, L.; Rol, M.; Wiesner, C.; Ferrera, A.; Fellner, M.D.; González, J.V.; et al. Distribution of Human Papillomavirus Genotypes by Severity of Cervical Lesions in HPV Screened Positive Women from the ESTAMPA Study in Latin America. PLoS ONE 2022, 17, e0272205. [Google Scholar] [CrossRef] [PubMed]
- Guilarte-García, E.; Soto-Brito, Y.; Kourí-Cardellá, V.; Limia-León, C.M.; De Lourdes Sánchez-Alvarez, M.; Elisa Rodríguez-Díaz, A.; López-Fuentes, L.X.; Méndez-González, M.; Aróstica-Valdés, N.; Bello-Pérez, M.; et al. Circulation of Human Papillomavirus and Chlamydia Trachomatis in Cuban Women. MEDICC Rev. 2020, 22, 17–27. [Google Scholar] [CrossRef]
- Lou, H.; Gharzouzi, E.; Guerra, S.P.; Domgue, J.F.; Sawitzke, J.; Villagran, G.; Garland, L.; Boland, J.F.; Wagner, S.; Rosas, H.; et al. Low-Cost HPV Testing and the Prevalence of Cervical Infection in Asymptomatic Populations in Guatemala. BMC Cancer 2018, 18, 562. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, A.T.; Valls, J.; Baena, A.; Rojas, F.D.; Ramírez, K.; Álvarez, R.; Cristaldo, C.; Henríquez, O.; Moreno, A.; Reynaga, D.C.; et al. Performance of Cervical Cytology and HPV Testing for Primary Cervical Cancer Screening in Latin America: An Analysis within the ESTAMPA Study. Lancet Reg. Health Am. 2023, 26, 100593. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.R.; Mendes De Oliveira, C.; Rosa, L.R.; De Campos Centrone, C.; Rodrigues, C.L.R.; Villa, L.L.; Levi, J.E. HPV Genotype Distribution in Brazilian Women with and without Cervical Lesions: Correlation to Cytological Data. Virol. J. 2016, 13, 138. [Google Scholar] [CrossRef]
- Campos-Romero, A.; Anderson, K.S.; Longatto-Filho, A.; Luna-Ruiz Esparza, M.A.; Morán-Portela, D.J.; Castro-Menéndez, J.A.; Moreno-Camacho, J.L.; Calva-Espinosa, D.Y.; Acosta-Alfaro, M.A.; Meynard-Mejía, F.A.; et al. The Burden of 14 Hr-HPV Genotypes in Women Attending Routine Cervical Cancer Screening in 20 States of Mexico: A Cross-Sectional Study. Sci. Rep. 2019, 9, 10094. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, L.M.; Martins, L.F.L.; Pontes, V.B.; Corrêa, F.M.; Montenegro, R.C.; Pinto, L.C.; Soares, B.M.; Vidal, J.P.C.B.; Félix, S.P.; Bertoni, N.; et al. Human Papillomavirus Genotype Distribution among Cervical Cancer Patients Prior to Brazilian National HPV Immunization Program. J. Environ. Public Health 2017, 2017, 1645074. [Google Scholar] [CrossRef]
- Molina-Pineda, A.; López-Cardona, M.G.; Limón-Toledo, L.P.; Cantón-Romero, J.C.; Martínez-Silva, M.G.; Ramos-Sánchez, H.V.; Flores-Miramontes, M.G.; de la Mata-González, P.; Jave-Suárez, L.F.; Aguilar-Lemarroy, A. High Frequency of HPV Genotypes 59, 66, 52, 51, 39 and 56 in Women from Western Mexico. BMC Infect. Dis. 2020, 20, 889. [Google Scholar] [CrossRef]
- Vargas, H.; Betancourt, J.; Sierra, Y.; Gomez, S.; Diaz, L.; Sanchez, J.; Golijow, C. Type-Specific HPV Concordance in a Group of Stable Sexual Partners from Bogota, Colombia. Mol. Biol. 2016, 5, 170. [Google Scholar] [CrossRef]
- Muentes, G.D.G.; García, M.A.M.; Galárraga, R.I.B.; Ollague, K.; Wachter, C.V.; Cabezas, J.C.R. Frequency and Distribution of Hpv Genotypes in 800 Genital Samples of Ecuadorian Men and Women from the City of Guayaquil. Rev. Inst. Med. Trop. Sao Paulo 2019, 61, e41. [Google Scholar] [CrossRef] [PubMed]
- Montoya-Fuentes, H.; Rodriguez-Martin, A.; Pena-Iniguez, D.I.; Gonzalez-Bonilla, C.R.; Rosales-Gomez, R.C.; Gallegos-Arreola, M.P.; Santoscoy-Ascencio, G.; Gutierrez-Rubio, S.A. Molecular Detection and Typing of Human Papillomavirus in Men from Northwestern Mexico. Arch. Med. Res. 2020, 51, 675–682. [Google Scholar] [CrossRef]
- Zhou, J.; Yi Sun, X.; Stenzel, D.I.; Frazer’, I.H. Expression of Vaccinia Recombinant HPV 16 Ll and L2 ORF Proteins in epithelial cells Is Suffcient for Assembly of HPV Virion-like Particles. Virology 1991, 185, 251–257. [Google Scholar] [CrossRef]
- Schiller, J.; Chackerian, B. Why HIV Virions Have Low Numbers of Envelope Spikes: Implications for Vaccine Development. PLoS Pathog. 2014, 10, e1004254. [Google Scholar] [CrossRef]
- Amanna, I.J.; Slifka, M.K. Mechanisms That Determine Plasma Cell Lifespan and the Duration of Humoral Immunity. Immunol. Rev. 2010, 236, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Schiller, J.; Lowy, D. Explanations for the High Potency of HPV Prophylactic Vaccines. Vaccine 2018, 36, 4768–4773. [Google Scholar] [CrossRef]
- de Sanjose, S.; Quint, W.G.; Alemany, L.; Geraets, D.T.; Klaustermeier, J.E.; Lloveras, B.; Tous, S.; Felix, A.; Bravo, L.E.; Shin, H.-R.; et al. Human Papillomavirus Genotype Attribution in Invasive Cervical Cancer: A Retrospective Cross-Sectional Worldwide Study. Lancet Oncol. 2010, 11, 1048–1056. [Google Scholar] [CrossRef]
- Malagón, T.; Drolet, M.; Boily, M.C.; Franco, E.L.; Jit, M.; Brisson, J.; Brisson, M. Cross-Protective Efficacy of Two Human Papillomavirus Vaccines: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2012, 12, 781–789. [Google Scholar] [CrossRef]
- Herrero, R.; Quint, W.; Hildesheim, A.; Gonzalez, P.; Struijk, L.; Katki, H.A.; Porras, C.; Schiffman, M.; Rodriguez, A.C.; Solomon, D.; et al. Reduced Prevalence of Oral Human Papillomavirus (HPV) 4 Years after Bivalent HPV Vaccination in a Randomized Clinical Trial in Costa Rica. PLoS ONE 2013, 8, e68329. [Google Scholar] [CrossRef]
- Schlecht, N.F.; Masika, M.; Diaz, A.; Nucci-Sack, A.; Salandy, A.; Pickering, S.; Strickler, H.D.; Shankar, V.; Burk, R.D. Risk of Oral Human Papillomavirus Infection Among Sexually Active Female Adolescents Receiving the Quadrivalent Vaccine. JAMA Netw. Open 2019, 2, e1914031. [Google Scholar] [CrossRef] [PubMed]
- Olsson, S.E.; Kjaer, S.K.; Sigurdsson, K.; Iversen, O.E.; Hernandez-Avila, M.; Wheeler, C.M.; Perez, G.; Brown, D.R.; Koutsky, L.A.; Tay, E.H.; et al. Evaluation of Quadrivalent HPV 6/11/16/18 Vaccine Efficacy against Cervical and Anogenital Disease in Subjects with Serological Evidence of Prior Vaccine Type HPV Infection. Hum. Vaccines 2009, 5, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Wilkin, T.J.; Chen, H.; Cespedes, M.S.; Leon-Cruz, J.T.; Godfrey, C.; Chiao, E.Y.; Bastow, B.; Webster-Cyriaque, J.; Feng, Q.; Dragavon, J.; et al. A Randomized, Placebo-Controlled Trial of the Quadrivalent Human Papillomavirus Vaccine in Human Immunodeficiency Virus-Infected Adults Aged 27 Years or Older: AIDS Clinical Trials Group Protocol A5298. Clin. Infect. Dis. 2018, 67, 1339–1346. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.Y.; Bracken, K. Update on the New 9-Valent Vaccine for Human Papillomavirus Prevention. Can. Fam. Physician 2016, 62, 399–402. [Google Scholar]
- Barra, F.; Della Corte, L.; Noberasco, G.; Foreste, V.; Riemma, G.; Di Filippo, C.; Bifulco, G.; Orsi, A.; Icardi, G.; Ferrero, S. Advances in Therapeutic Vaccines for Treating Human Papillomavirus-related Cervical Intraepithelial Neoplasia. J. Obstet. Gynaecol. Res. 2020, 46, 989–1006. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Che, Y.; Zhao, Y.; Wang, X. Prevention and Treatment of Cervical Cancer by a Single Administration of Human Papillomavirus Peptide Vaccine with CpG Oligodeoxynucleotides as an Adjuvant in Vivo. Int. Immunopharmacol. 2019, 69, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Coleman, H.N.; Greenfield, W.W.; Stratton, S.L.; Vaughn, R.; Kieber, A.; Moerman-Herzog, A.M.; Spencer, H.J.; Hitt, W.C.; Quick, C.M.; Hutchins, L.F.; et al. Human Papillomavirus Type 16 Viral Load Is Decreased Following a Therapeutic Vaccination. Cancer Immunol. Immunother. 2016, 65, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Van Damme, P.; Bouillette-Marussig, M.; Hens, A.; De Coster, I.; Depuydt, C.; Goubier, A.; Van Tendeloo, V.; Cools, N.; Goossens, H.; Hercend, T.; et al. GTL001, a Therapeutic Vaccine for Women Infected with Human Papillomavirus 16 or 18 and Normal Cervical Cytology: Results of a Phase I Clinical Trial. Clin. Cancer Res. 2016, 22, 3238–3248. [Google Scholar] [CrossRef]
- Welters, M.J.; van der Sluis, T.C.; van Meir, H.; Loof, N.M.; van Ham, V.J.; van Duikeren, S.; Santegoets, S.J.; Arens, R.; de Kam, M.L.; Cohen, A.F.; et al. Vaccination during Myeloid Cell Depletion by Cancer Chemotherapy Fosters Robust T Cell Responses. Sci. Transl. Med. 2016, 8, 334ra52. [Google Scholar] [CrossRef]
- van Poelgeest, M.I.; Welters, M.J.; van Esch, E.M.; Stynenbosch, L.F.; Kerpershoek, G.; van Persijn van Meerten, E.L.; van den Hende, M.; Löwik, M.J.; Berends-van der Meer, D.M.; Fathers, L.M.; et al. HPV16 Synthetic Long Peptide (HPV16-SLP) Vaccination Therapy of Patients with Advanced or Recurrent HPV16-Induced Gynecological Carcinoma, a Phase II Trial. J. Transl. Med. 2013, 11, 88. [Google Scholar] [CrossRef]
- Maciag, P.C.; Radulovic, S.; Rothman, J. The First Clinical Use of a Live-Attenuated Listeria Monocytogenes Vaccine: A Phase I Safety Study of Lm-LLO-E7 in Patients with Advanced Carcinoma of the Cervix. Vaccine 2009, 27, 3975–3983. [Google Scholar] [CrossRef]
- Vici, P.; Pizzuti, L.; Mariani, L.; Zampa, G.; Santini, D.; Di Lauro, L.; Gamucci, T.; Natoli, C.; Marchetti, P.; Barba, M.; et al. Targeting Immune Response with Therapeutic Vaccines in Premalignant Lesions and Cervical Cancer: Hope or Reality from Clinical Studies. Expert Rev. Vaccines 2016, 15, 1327–1336. [Google Scholar] [CrossRef]
- Alvarez, R.D.; Huh, W.K.; Bae, S.; Lamb, L.S.; Conner, M.G.; Boyer, J.; Wang, C.; Hung, C.F.; Sauter, E.; Paradis, M.; et al. A Pilot Study of PNGVL4a-CRT/E7(Detox) for the Treatment of Patients with HPV16 + Cervical Intraepithelial Neoplasia 2/3 (CIN2/3). Gynecol. Oncol. 2016, 140, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Shah, S.; Evans, T.; Coleman, H.; Lieblong, B.J.; Spencer, H.J.; Quick, C.M.; Sasagawa, T.; Stephens, O.W.; Peterson, E.; et al. Expansion of Human Papillomavirus-Specific T Cells in Periphery and Cervix in a Therapeutic Vaccine Recipient Whose Cervical High-Grade Squamous Intraepithelial Lesion Regressed. Front. Immunol. 2021, 12, 645299. [Google Scholar] [CrossRef] [PubMed]
- Ayesha, N.; Aboulaghras, S.; Jahangeer, M.; Riasat, A.; Ramzan, R.; Fatima, R.; Akram, M.; Balahbib, A.; Bouyahya, A.; Sepiashvili, E.; et al. Physiopathology and Effectiveness of Therapeutic Vaccines against Human Papillomavirus. Environ. Sci. Pollut. Res. 2021, 28, 47752–47772. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.Y.; Chen, C.-H.; Ji, H.; Wang, T.-L.; Hung, K.; Lee, B.P.; Huang, A.Y.C.; Kurman, R.J.; Pardoll, D.M.; Wu, T.-C. Antigen-Specific Cancer Immunotherapy Using a GM-CSF Secreting Allogeneic Tumor Cell-Based Vaccine. Int. J. Cancer 2000, 86, 725–730. [Google Scholar] [CrossRef]
- Mikyskovå, R.; Indro, M.V.; Jandlovà, T.; Bieblovà, J.; Jinoch, P.; Vonka, V. Treatment of Minimal Residual Disease after Surgery or Chemotherapy in Mice Carrying HPV16-Associated Tumours: Cytokine and Gene Therapy with IL-2 and GM-CSF. Int. J. Oncol. 2004, 24, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, J.L.; Doan, A.H. Discrepancies in the Evaluation of the Safety of the Human Papillomavirus Vaccine. Mem. Inst. Oswaldo Cruz 2018, 113, e180063. [Google Scholar] [CrossRef] [PubMed]
- Vamos, C.A.; McDermott, R.J.; Daley, E.M. The HPV Vaccine: Framing the Arguments FOR and AGAINST Mandatory Vaccination of All Middle School Girls. J. Sch. Health 2008, 78, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Frio, G.S.; França, M.T.A. Human Papillomavirus Vaccine and Risky Sexual Behavior: Regression Discontinuity Design Evidence from Brazil. Econ. Hum. Biol. 2021, 40, 100946. [Google Scholar] [CrossRef]
- Luciani, S.; Bruni, L.; Agurto, I.; Ruiz-Matus, C. HPV Vaccine Implementation and Monitoring in Latin America. Salud Publica Mex. 2018, 60, 683–692. [Google Scholar] [CrossRef]
- Sealy, D.-A.; Modeste, N.; Dyett, P. Barriers and Facilitators to the HPV Vaccine among Mothers of Adolescent Girls: A Qualitative Study Conducted in Trinidad and Tobago. Women Health 2021, 61, 235–243. [Google Scholar] [CrossRef]
- Arams, R.; Weinstock, R.E.; Satterthwaite Muresianu, E.; O’Callaghan, S.; Tubridy, E.; Torres Maita, Y.; Dolan, S.M. In the Name of Prevention: Maternal Perspectives on School-Based HPV Vaccination in Rural Southern Chile. Adolesc. Health Med. Ther. 2021, 12, 27–36. [Google Scholar] [CrossRef]
- Eala, M.A.B.; Tantengco, O.A.G. Global Online Interest in Cervical Cancer Care in the Time of COVID-19: An Infodemiology Study. Gynecol. Oncol. Rep. 2022, 41, 100998. [Google Scholar] [CrossRef]
- Pan American Health Organization. Immunization—PAHO/WHO. Available online: https://www.paho.org/en/immunization (accessed on 18 December 2023).
- Lin, L.; MacIas Parra, M.; Sierra, V.Y.; Salas Cespedes, A.; Granados, M.A.; Luque, A.; Karkada, N.; Castrejon Alba, M.M.; Romano-Mazzotti, L.; Borys, D.; et al. Long-Term Immunogenicity and Safety of the AS04-Adjuvanted Human Papillomavirus-16/18 Vaccine in Four-to Six-Year-Old Girls: Three-Year Follow-up of a Randomized Phase III Trial. Pediatr. Infect. Dis. J. 2019, 38, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Saldarriaga, E.M.; Cárcamo, C.P.; Babigumira, J.B.; García, P.J. The Annual Costs of Treating Genital Warts in the Public Healthcare Sector in Peru. BMC Health Serv. Res. 2021, 21, 1092. [Google Scholar] [CrossRef] [PubMed]
- Sichero, L.; Picconi, M.A.; Villa, L.L. The Contribution of Latin American Research to Hpv Epidemiology and Natural History Knowledge. Braz. J. Med. Biol. Res. 2020, 53, e9560. [Google Scholar] [CrossRef] [PubMed]
- Chan, I.L.; Mowson, R.; Alonso, J.P.; Roberti, J.; Contreras, M.; Velandia-González, M. Promoting Immunization Equity in Latin America and the Caribbean: Case Studies, Lessons Learned, and Their Implication for COVID-19 Vaccine Equity. Vaccine 2022, 40, 1977–1986. [Google Scholar] [CrossRef] [PubMed]
- Preti, M.; Selk, A.; Stockdale, C.; Bevilacqua, F.; Vieira-Baptista, P.; Borella, F.; Gallio, N.; Cosma, S.; Melo, C.; Micheletti, L.; et al. Knowledge of Vulvar Anatomy and Self-Examination in a Sample of Italian Women. J. Low. Genit. Tract Dis. 2021, 25, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Ronconi, L.; Espiñeira, B.; Guzmán, S. Comprehensive Sexuality Education in Latin America and the Caribbean: Where We Are and Where We Should Go. Lat. Am. Leg. Stud. 2023, 11, 246–296. [Google Scholar] [CrossRef]
- Sechi, I.; Muresu, N.; Puci, M.V.; Saderi, L.; Del Rio, A.; Cossu, A.; Muroni, M.R.; Castriciano, S.; Martinelli, M.; Cocuzza, C.E.; et al. Preliminary Results of Feasibility and Acceptability of Self-Collection for Cervical Screening in Italian Women. Pathogens 2023, 12, 1169. [Google Scholar] [CrossRef] [PubMed]
Country and Population | Study Characteristics | HPV Prevalence | HPV Genotypes More Frequents in Positive Samples | Single Infection (SI) or Multiple Infection (MI) Data | Observations | Ref. | |
---|---|---|---|---|---|---|---|
Section A: Studies carried out in women with a diagnosis of some degree of cervical lesion or CC | |||||||
20 states of Mexico Mexico | Women from 18–90 years screened for CC. HPV genotyping Sampling: Liquid-based cytology Disease stage: Cytology. HPV detection by qPCR BD Onclarity HPV Assay N = 60,135 | 24.78% | Prevalence in all states: HPV 16: 4.13% HPV 31: 4.12% HPV 51: 3.39% HPV52: 3.29% HPV18: 1.70% | NILM HPV16: 3.2% HPV31: 3.4% HPV51: 2.6% HPV52: 7.77% | N.D. | HPV prevalence and genotypes frequency varied across the different states analyzed. ↑ prevalence (47.79%) in W under 25 years ↑ HR-HPV prevalence in W without social security | [93] |
HSIL HPV16: 48.8% HPV31: 13.3% HPV51: 5.5% HPV52: 2.75% | |||||||
Aguascalientes, Colima, Guanajuato, Jalisco, Michoacan and Nayarit. (Western of Mexico) Mexico | Women aged 18–82 years Groups:
Disease stage: Histology. HPV detection by LA or COBAS 4800 test. | OP: 12.1% CIN1: 53.3% CC: 77.1% | CIN 1: HPV16: 23.7% HPV66: 23.7% HPV6:21.1%, HPV53: 18.4% HPV59: 15.8% HPV89: 15.8% HPV51:13.2% HPV56:13.2% HPV18:10.5% HPV39: 10.5% | CC: HPV16: 50% HPV18: 18.9% HPV59: 14.9% HPV11: 10.8% HPV45: 9.5% HPV58: 9.5% | SI in OP positive samples: 32.7% MI in OP: 67.3% MI in CIN1: 77.5% MI in CC: 75.7% | HPV genotypes varied across the different geographical regions that belong to the western Mexico. | [95] |
OP: HPV16: 22.0% HPV59: 18.0% HPV66: 16.3% HPV52: 15.3% HPV51: 15.0% HPV31: 14.3% | |||||||
Sao Paulo Brazil | Women aged 14–95 years. HPV genotyping Sampling: Liquid-based cytology Disease stage: Cytology HPV detection by HC2 or Cobas and PapilloCheck test N = 665 | 48.6% | HR-HPV HPV16: 23.2% HPV56: 21.0% HPV52: 8.7% HPV31: 7.7% HPV53: 7.7% HPV51: 7.4% | LR-HPV HPV42: 12.1% HPV6: 6.2% HPV44: 4.3% HPV43: 4% HPV40: 2.8% HPV11: 1.5% | SI: 65% MI. 2HPV: 18% 3HPV: 11% 4HPV: 4% ≥5HPV: 2% | No association between LR-HPV and HR-HPV types with age group was observed. | [92] |
The most frequent types in: NILM: HPV56: 19.1% HPV16: 17.7% HSIL: HPV16: 37.2% ICC: HPV16: 66.7% | |||||||
Argentina, Colombia, Costa Rica, Honduras, Paraguay, and Uruguay ESTAMPA Study. | Women aged 30–64 years HPV genotyping Sampling: Liquid-based cytology Disease stage: Histology. HPV detection by BSGP and RLB N HPV detection = 27,558 N HPV genotyping = 1252 | 13% | ≤CIN1 HPV16: 14.5% HPV52: 11.1% HPV31: 10.3% HPV56: 9.5% HPV59: 8.2% HPV58: 7.3% HPV66: 7% | CIN2 HPV16: 19.8% HPV52: 15.7% HPV18: 11.6% HPV31: 11.6% HPV58: 9.1% HPV35: 8.3% HPV51: 8.3% | SI in:≤CIN1: 57.1% CIN2: 57% CIN3: 72.2% CC: 91.6% MI by 2 HPV: ≤CIN1: 16.2% CIN2: 19.8% CIN3: 18.6% CC: 4.8% MI by ≥3 HPV: ≤CIN1: 4.7% CIN2: 5% CIN3: 4.6% CC: 1.2% | The risk of HPV16 infection in CIN3 cases increased with age. HPV16 was the most prevalent genotype in all histological groups and show a significant increase with histological grade | [88] |
CIN3 HPV16: 51.5% HPV31: 12.9% HPV52:11.3% HPV58: 8.8% HPV33: 8.2% HPV18: 7.2% | CC HPV16: 65.1% HPV45: 8.4% HPV18: 7.2% HPV52: 4.2% HPV58: 4.2% | ||||||
Rio de Janeiro city (RJ) and Belem city Para State (PA) Brazil | Patients diagnosed with CC HPV genotyping Sampling: Biopsy Disease stage: Histology. HPV detection by DNA sequencing and High + Low Papillo-mastrip N = 1183 | N.D. | RJ: N = 590 HPV16: 61.8% HPV18: 14% HPV45: 6% HPV35: 2.2% HPV31: 2.1% HPV33: 2.1% HPV58: 1.9% | PA: N = 593 HPV16: 62.1% HPV18: 10.9% HPV33: 4.1% HPV45: 4.1% HPV31: 3% HPV52: 2.7% HPV35: 2.5% | SI in RJ samples: 96.6% SI in PA samples: 95.4% | HPV 16 is present in most cases of MI HPV16 (+) in 40/41 tumors HPV18 (+) in 25/41 tumors | [94] |
Section B: Studies carried out prior to vaccination | |||||||
Asuncion Paraguay | Unvaccinated women aged 18–25 years HPV genotyping Sampling: Liquid-based cytology HPV detection by CLART HPV2 test N = 208 | 54.8% | HPV58: 14.9% HPV16: 12.3% HPV51: 12.3% HPV66: 12.3% HPV52: 11.4% HPV53: 11.4% | SI: 57% MI. 2HPV: 30.1% 3HPV: 7% ≥4HPV: 5.3% | 42.3% of W HR-HPV (+). Prevalence of HPV preventable with vaccines: -Bivalent: 8.2% -Quadrivalent: 13.0% -Nonavalent: 38.0% | [84] | |
Berazategui, Posadas, La Banda, and Buenos Aires Argentina. | Unvaccinated sexually active women aged 15–17 years HPV genotyping Sampling: Liquid-based cytology HPV detection by BSGP and RLB N = 957 | 56.3% | HPV16: 11.1% HPV52: 10.8% HPV56: 8.3% HPV51: 7.4% HPV58: 7.3% HPV31: 7.1% | SI *: 20.0% MI *: 2HPV: 14.3% 3HPV:10.1% 4HPV: 5.1% ≥5HPV: 6.8% | 42.2% of W HR-HPV (+). Prevalence of HPV preventable with vaccines: -Bivalent: 15.2% -Quadrivalent: 22.5% -Nonavalent: 38.5% | [87] | |
Soacha, Girardot, and Manizales. Colombia | Unvaccinated sexually active women aged 18–25 years HPV genotyping Sampling: Liquid-based cytology HPV detection by LA N = 1782 | 60.3% | HR-HPV HPV16: 11.28% HPV52: 7.91% HPV51: 7.86% HPV58: 7.07% HPV59: 7.01% HPV39: 5.72% HPV31: 4.55% | LR-HPV HPV53: 7.0% HPV89: 6.3% HPV61: 6.1% HPV66: 6.0% HPV62: 5.9% HPV84: 5.9% HPV73: 4.8% | SI in positive samples: 38.5% MI in positive samples: 61.5% | 42.2% of W HR-HPV (+) 44.4% of W LR-HPV (+) Prevalence of HPV preventable with vaccines, was: -Bivalent: 14.4% -Nonavalent: 30.75% | [86] |
26 state capitals and the Federal District of Brazil. Brazil | Unvaccinated women (W) and men (M) aged 16–25 years HPV genotyping Sampling: Liquid-based cytology HPV detection by LA. N = 6388 | Total (W + M): 53.6% Women: 54.6% Men: 51.8% | Total (W + M): HPV52: 7.8% HPV16: 7.5% HPV62: 6.8% HPV89: 6.3% HPV61: 6.0% | Women *: HPV16: 8.9% HPV 52: 8.8% | SI: 42.2% MI. 2 HPV: 26.7% 3HPV: 12.2% >4HPV: 18.8% | 38.6% of W HR-HPV (+) 29.2% of M HR-HPV (+) Prevalence of HPV preventable with vaccines, was: -Quadrivalent: 14.8% -Nonavalent: 27.7% | [85] |
Men *: HPV59: 6.5% HPV52: 6.0% | |||||||
Guatemala City and Puerto Barrios Guatemala | Asymptomatic sexually active women HPV genotyping Sampling: Liquid-based cytology HPV detection by H13 test N = 1717 | 13% | HPV16: 22% HPV39: 11% HPV18: 11% HPV58: 10% HPV52: 8% | HPV45: 8% HPV59: 7% HPV68: 5% HPV35: 4% HPV56: 4% | MI: 22% | ↑ prevalence (21%) in women <30-years age | [90] |
Section C: Other miscellaneous studies | |||||||
Havana (Ha) Villa Clara (VC), and Holguín (Ho) Cuba | Women aged 16–67 HPV genotyping Sampling: Liquid-based cytology HPV detection by CLART HPV 2 kit N = 500 | Total: 4.8% Ha: 18% Ho: 15% VC: 13% | HPV16: 23% HPV31: 10.8% HPV33: 8.1% HPV53: 8.1% HPV61: 8.1% HPV66: 8.1% | MI in positive samples: 23% | 79.7% of W HR-HPV (+). 27% of W LR-HPV (+) ↑ MI in W under 25 years. HPV genotypes varied across the different regions | [89] | |
Bogotá Colombia | Women with cervical intraepithelial lesions and their sexual stable partners. HPV genotyping Sampling: Liquid-based cytology HPV detection by LA N = 25 partners (25W and 25M) | Women: 80% Men: 56% | Women HPV16: 25% HPV45: 15% HPV54: 15% HPV62: 15% | Men HPV83: 28.5% HPV16: 21.4% HPV62: 21.4% HPV68: 21.4% | MI in Women: 30% MI in Men: 64% | Men with MI show a history of more than five sexual partners in their lifetime. 28.0% of partners shown concordance in at least one HPV 60% of the studied couples showed discordant results | [96] |
Guayaquil Ecuador | Men and women 18–70 years HPV genotyping Sampling: Liquid-based cytology HPV detection by GA N = 800 (400 M and 400 W) | Total (W + M): 51.38% W: 39.5% M: 63.5% | Women: HPV39: 17.09% HPV16: 13.92% HPV6: 13.29% HPV58: 10.76% | Men HPV6: 35.18% HPV16: 7.39% HPV18: 10.67% HPV11: 10.28% | SI in women: 54.4% SI in men: 62% | Positive men samples show infection by HPV genotypes covered by vaccines | [97] |
Northwestern region of Mexico. Mexico | Asymptomatic males with a female sexual Partner diagnosed with LGSIL. HPV genotyping Sampling: Liquid-based cytology HPV detection by LCD-Array N = 1769 | 41.9% | HR-HPV HPV66: 13.2% HPV16: 11.1% HPV59: 9.2% HPV51: 7.9% HPV39: 6.9% HPV56: 6.5% | LR-HPV HPV6: 21.1 HPV91: 11.5% HPV42: 9.5% HPV62: 9.1% HPV90: 8.5% HPV11: 8.3% | SI * 21.4% MI *: 2 HPV: 10.4% 3 HPV: 5% 4HPV: 2% ≥5HPV: ≈2.6% | Prevalence of HPV preventable with vaccines: -Bivalent: 12.77% -Quadrivalent: 38.58% -Nonavalent: 48.39% | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Silva, C.D.; Ramírez de Arellano, A.; Pereira-Suárez, A.L.; Ramírez-López, I.G. HPV and Cervical Cancer: Molecular and Immunological Aspects, Epidemiology and Effect of Vaccination in Latin American Women. Viruses 2024, 16, 327. https://doi.org/10.3390/v16030327
Hernández-Silva CD, Ramírez de Arellano A, Pereira-Suárez AL, Ramírez-López IG. HPV and Cervical Cancer: Molecular and Immunological Aspects, Epidemiology and Effect of Vaccination in Latin American Women. Viruses. 2024; 16(3):327. https://doi.org/10.3390/v16030327
Chicago/Turabian StyleHernández-Silva, Christian David, Adrián Ramírez de Arellano, Ana Laura Pereira-Suárez, and Inocencia Guadalupe Ramírez-López. 2024. "HPV and Cervical Cancer: Molecular and Immunological Aspects, Epidemiology and Effect of Vaccination in Latin American Women" Viruses 16, no. 3: 327. https://doi.org/10.3390/v16030327
APA StyleHernández-Silva, C. D., Ramírez de Arellano, A., Pereira-Suárez, A. L., & Ramírez-López, I. G. (2024). HPV and Cervical Cancer: Molecular and Immunological Aspects, Epidemiology and Effect of Vaccination in Latin American Women. Viruses, 16(3), 327. https://doi.org/10.3390/v16030327