Hereditary Connective Tissue Diseases and Risk of Post-Acute SARS-CoV-2
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patients with hCTD Are at Higher Risk of/Predisposed to Hospitalization and Severe COVID-19 but Not Death
3.2. Patients with hCTD Do Not Have a Higher Risk of PASC Based on Variant or Vaccination
3.3. Patients with hCTD Are at Higher Risk of/Predisposed to PASC
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, E.; Ratcliff, J.; Goyea, T.D.; Katz, A.; Lau, R.; Ng, T.K.; Garcia, B.; Bolt, E.; Prata, S.; Zhang, D.; et al. The Johns Hopkins University Center for Systems Science and Engineering COVID-19 Dashboard: Data collection process, challenges faced, and lessons learned. Lancet Infect. Dis. 2022, 22, e370–e376. [Google Scholar] [CrossRef]
- Proal, A.D.; VanElzakker, M.B. Long COVID or Post-acute Sequelae of COVID-19 [PASC]: An Overview of Biological Factors That May Contribute to Persistent Symptoms. Front. Microbiol. 2021, 12, 698169. [Google Scholar] [CrossRef]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef]
- Su, Y.; Yuan, D.; Chen, D.G.; Ng, R.H.; Wang, K.; Choi, J.; Li, S.; Hong, S.; Zhang, R.; Xie, J.; et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 2022, 185, 881–895.e20. [Google Scholar] [CrossRef] [PubMed]
- Ortona, E.; Malorni, W. Long COVID: To investigate immunological mechanisms and sex/gender related aspects as fundamental steps for tailored therapy. Eur. Respir. J. 2022, 59, 2102245. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.T.; Sesay, F.R.; Massaquoi, T.A.; Idriss, B.R.; Sahr, F.; Semple, M.G. Post-Ebola Syndrome, Sierra Leone. Emerg. Infect. Dis. 2016, 22, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Lidbury, B.A. Ross River Virus Immune Evasion Strategies and the Relevance to Post-viral Fatigue, and Myalgic Encephalomyelitis Onset. Front. Med. 2021, 8, 662513. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.N.; Hause, A.M.; Walker, C.M.; Orange, J.S.; Hasbun, R.; Murray, K.O. Evaluation of prolonged fatigue post-West Nile virus infection and association of fatigue with elevated antiviral and proinflammatory cytokines. Viral Immunol. 2014, 27, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Briggs, N.C.; Levine, P.H. A comparative review of systemic and neurological symptomatology in 12 outbreaks collectively described as chronic fatigue syndrome, epidemic neuromyasthenia, and myalgic encephalomyelitis. Clin. Infect. Dis. 1994, 18 (Suppl. S1), S32–S42. [Google Scholar] [CrossRef]
- Kumar, B.; Lenert, P. Joint Hypermobility Syndrome: Recognizing a Commonly Overlooked Cause of Chronic Pain. Am. J. Med. 2017, 130, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Johns Hopkins in Health. PMAP: The Johns Hopkins Precision Medicine Analytics Platform. Available online: https://pm.jh.edu/ (accessed on 17 May 2020).
- Garibaldi, B.T.; Fiksel, J.; Muschelli, J.; Robinson, M.L.; Rouhizadeh, M.; Perin, J.; Schumock, G.; Nagy, P.; Gray, J.H.; Malapati, H. Patient trajectories among persons hospitalized for COVID-19: A cohort study. Ann. Intern. Med. 2021, 174, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.L.; Oviedo, S.A.; Ali, M.K.; Ofotokun, I.; Gander, J.C.; Patel, S.A.; Magliano, D.J.; Patzer, R.E. The Bidirectional Association Between Diabetes and Long-COVID-19—A Systematic Review. Diabetes Res. Clin. Pract. 2022, 195, 110202. [Google Scholar] [CrossRef] [PubMed]
- Tenforde, M.W.; Billig Rose, E.; Lindsell, C.J.; Shapiro, N.I.; Files, D.C.; Gibbs, K.W.; Prekker, M.E.; Steingrub, J.S.; Smithline, H.A.; Gong, M.N.; et al. Characteristics of Adult Outpatients and Inpatients with COVID-19—11 Academic Medical Centers, United States, March–May 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zang, C.; Xu, Z.; Zhang, Y.; Xu, J.; Bian, J.; Morozyuk, D.; Khullar, D.; Zhang, Y.; Nordvig, A.S.; et al. Data-driven identification of post-acute SARS-CoV-2 infection subphenotypes. Nat. Med. 2023, 29, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Talarico, R.; Aguilera, S.; Alexander, T.; Amoura, Z.; Antunes, A.M.; Arnaud, L.; Avcin, T.; Beretta, L.; Bombardieri, S.; Burmester, G.R.; et al. The impact of COVID-19 on rare complex connective tissue diseases: The experience of ERN ReCONNET. Nat. Rev. Rheumatol. 2021, 17, 177–184. [Google Scholar] [CrossRef]
- Jamal, S.M.; Landers, D.B.; Hollenberg, S.M.; Turi, Z.G.; Glotzer, T.V.; Tancredi, J.; Parrillo, J.E. Prospective Evaluation of Autonomic Dysfunction in Post-Acute Sequela of COVID-19. J. Am. Coll. Cardiol. 2022, 79, 2325–2330. [Google Scholar] [CrossRef]
- Mouna, S.; Faten, F.; Zouhir, B. Peripheral Neuropathy in Connective Tissue Diseases. In Demystifying Polyneuropathy; Patricia Bozzetto, A., Ed.; IntechOpen: Rijeka, Croatia, 2018; p. 3. [Google Scholar] [CrossRef]
- Hickie, I.; Davenport, T.; Wakefield, D.; Vollmer-Conna, U.; Cameron, B.; Vernon, S.D.; Reeves, W.C.; Lloyd, A. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: Prospective cohort study. BMJ 2006, 333, 575. [Google Scholar] [CrossRef]
- Vasek, M.J.; Garber, C.; Dorsey, D.; Durrant, D.M.; Bollman, B.; Soung, A.; Yu, J.; Perez-Torres, C.; Frouin, A.; Wilton, D.K.; et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature 2016, 534, 538–543. [Google Scholar] [CrossRef]
- Sow, M.S.; Etard, J.F.; Baize, S.; Magassouba, N.; Faye, O.; Msellati, P.; Touré, A., 2nd; Savane, I.; Barry, M.; Delaporte, E. New Evidence of Long-lasting Persistence of Ebola Virus Genetic Material in Semen of Survivors. J. Infect. Dis. 2016, 214, 1475–1476. [Google Scholar] [CrossRef]
- Pott, F.; Postmus, D.; Brown, R.J.P.; Wyler, E.; Neumann, E.; Landthaler, M.; Goffinet, C. Single-cell analysis of arthritogenic alphavirus-infected human synovial fibroblasts links low abundance of viral RNA to induction of innate immunity and arthralgia-associated gene expression. Emerg. Microbes Infect. 2021, 10, 2151–2168. [Google Scholar] [CrossRef] [PubMed]
- Cain, M.D.; Salimi, H.; Gong, Y.; Yang, L.; Hamilton, S.L.; Heffernan, J.R.; Hou, J.; Miller, M.J.; Klein, R.S. Virus entry and replication in the brain precedes blood-brain barrier disruption during intranasal alphavirus infection. J. Neuroimmunol. 2017, 308, 118–130. [Google Scholar] [CrossRef] [PubMed]
Comparison | Odds Ratio | 95% CI | Z | Significance |
---|---|---|---|---|
HT vs. hCTD death | 2.76 | 1.15 to 6.61 | 2.27 | p = 0.023 |
HT vs. DB death | 1.74 | 1.13 to 2.69 | 2.50 | p = 0.013 |
DB vs. hCTD death | 1.58 | 0.63 to 3.96 | 0.98 | ns |
CTD vs. CROWN death | 1.50 | 0.63 to 3.54 | 0.92 | ns |
Comparison | Odds Ratio | 95% CI | Z | Significance |
---|---|---|---|---|
hCTD PASC vs. total PASC | 4.15 | 1.78 to 9.67 | 3.30 | p = 0.0010 |
HT PASC vs. total PASC | 1.23 | 1.05 to 1.43 | 2.62 | p = 0.0089 |
DB PASC vs. total PASC | 1.35 | 1.12 to 1.62 | 3.14 | p = 0.0017 |
hCTD PASC vs. HT PASC | 3.30 | 1.41 to 7.71 | 2.75 | p = 0.0059 |
hCTD PASC vs. DB PASC | 3.01 | 1.28 to 7.07 | 2.52 | p = 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartlett, M.L.; Sova, D.; Jain, M. Hereditary Connective Tissue Diseases and Risk of Post-Acute SARS-CoV-2. Viruses 2024, 16, 461. https://doi.org/10.3390/v16030461
Bartlett ML, Sova D, Jain M. Hereditary Connective Tissue Diseases and Risk of Post-Acute SARS-CoV-2. Viruses. 2024; 16(3):461. https://doi.org/10.3390/v16030461
Chicago/Turabian StyleBartlett, Maggie L., Daniel Sova, and Mahim Jain. 2024. "Hereditary Connective Tissue Diseases and Risk of Post-Acute SARS-CoV-2" Viruses 16, no. 3: 461. https://doi.org/10.3390/v16030461
APA StyleBartlett, M. L., Sova, D., & Jain, M. (2024). Hereditary Connective Tissue Diseases and Risk of Post-Acute SARS-CoV-2. Viruses, 16(3), 461. https://doi.org/10.3390/v16030461