Novel Anti-Viral Properties of the Herbal Extract of Davallia mariesii against Influenza A Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Cultures and Viruses
2.2. Preparation of Davallia Mariesii Butanolic Extract
2.3. Cytotoxicity Assay
2.4. Half-Maximal Effective Concentration (EC50) Assay
2.5. Observation of Cytopathic Effect
2.6. Western Immunoblotting
2.7. Time-of-Addition Assay
2.8. Attachment and Penetration Assays
2.9. Hemagglutination Inhibition Assay
2.10. Neuraminidase Inhibition Assay
2.11. RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction
2.12. Plaque Reduction Assay
2.13. Cell–Cell Fusion Assay
2.14. Data Analysis
3. Results
3.1. DMBE Exhibits a Wide-Ranging Inhibitory Effect against Different Viral Strains
3.2. DMBE Effectively Inhibits the Initial Stage of Influenza A Virus Infection
3.3. DMBE Suppresses the Synthesis of Viral RNA and Proteins
3.4. DMBE Effectively Hampers the Attachment and Penetration of IAV
3.5. DMBE Inhibits Neuraminidase Activity and Prevents the Release of Progeny Viruses
3.6. The Efficacy of DMBE against the Influenza Virus Is Linked to the Downregulation of the PI3K/AKT Signaling Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, Y. Pathogenicity and virulence of influenza. Virulence 2023, 14, 2223057. [Google Scholar] [CrossRef] [PubMed]
- Palese, P.; Shaw, M. Orthomyxoviridae: The viruses and their replication. In Fields Virology, 5th ed.; Knipe, D.M., Howley, P.M., Eds.; Linpicott Williams & Wilkins: Philadelphia, PA, USA, 2007; pp. 1647–1689. [Google Scholar]
- Tong, S.; Zhu, X.; Li, Y.; Shi, M.; Zhang, J.; Bourgeois, M.; Yang, H.; Chen, X.; Recuenco, S.; Gomez, J.; et al. New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013, 9, e1003657. [Google Scholar] [CrossRef] [PubMed]
- Burke, D.F.; Mantell, R.G.; Pitt, C.E.; Wales, D.J. Energy landscape for the membrane fusion pathway in influenza A hemagglutinin grom discrete path sampling. Front. Chem. 2020, 8, 575195. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Cui, Q.; Chen, Z.; Zhao, X.; Lin, X.; Rong, L. Revisiting influenza A virus life cycle from a perspective of genome balance. Virol. Sin. 2023, 38, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Miyake, Y.; Keusch, J.J.; Decamps, L.; Ho-Xuan, H.; Iketani, S.; Gut, H.; Kutay, U.; Helenius, A.; Yamauchi, Y. Influenza virus uses transportin 1 for vRNP debundling during cell entry. Nat. Microbiol. 2019, 4, 578–586. [Google Scholar] [CrossRef]
- Abbadi, N.; Mousa, J.J. Broadly protective neuraminidase-based influenza vaccines and monoclonal antibodies: Target epitopes and mechanisms of action. Viruses 2023, 15, 200. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Cui, Q.; Rong, L. Competitive cooperation of hemagglutinin and neuraminidase during influenza A virus entry. Viruses 2019, 11, 458. [Google Scholar] [CrossRef]
- Su, B.; Wurtzer, S.; Rameix-Welti, M.A.; Dwyer, D.; van der Werf, S.; Naffakh, N.; Clavel, F.; Labrosse, B. Enhancement of the influenza A hemagglutinin (HA)-mediated cell-cell fusion and virus entry by the viral neuraminidase (NA). PLoS ONE 2009, 4, e8495. [Google Scholar] [CrossRef] [PubMed]
- Gaur, P.; Ranjan, P.; Sharma, S.; Patel, J.R.; Bowzard, J.B.; Rahman, S.K.; Kumari, R.; Gangappa, S.; Katz, J.M.; Cox, N.J.; et al. Influenza A virus neuraminidase protein enhances cell survival through interaction with carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) protein. J. Biol. Chem. 2012, 287, 15109–15117. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Abundo, M.E.C.; Lee, C.W. Herbal medicines with antiviral activity against the influenza virus, a systematic review. Am. J. Chin. Med. 2018, 46, 1663–1700. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, Y.; Wang, S.; Liu, W.; Hao, C.; Wang, W. Inhibition effects of patchouli alcohol against influenza a virus through targeting cellular PI3K/Akt and ERK/MAPK signaling pathways. Virol. J. 2019, 16, 163. [Google Scholar] [CrossRef]
- Mtambo, S.E.; Amoako, D.G.; Somboro, A.M.; Agoni, C.; Lawal, M.M.; Gumede, N.S.; Khan, R.B.; Kumalo, H.M. Influenza viruses: Harnessing the crucial role of the M2 ion-channel and neuraminidase toward inhibitor design. Molecules 2021, 26, 880. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, H.; Tian, Y. The current strategies of optimization of oseltamivir against mutant neuraminidases of influenza A: A review. Eur. J. Med. Chem. 2022, 243, 114711. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Rohloff, J.C.; Kent, K.M.; Postich, M.J.; Becker, M.W.; Chapman, H.H.; Kelly, D.E.; Lew, W.; Louie, M.S.; McGee, L.R.; Prisbe, E.J.; et al. Practical total synthesis of the anti-influenza drug GS-4104. J. Org. Chem. 1998, 63, 4545–4550. [Google Scholar] [CrossRef]
- Song, J.H.; Choi, H.J. Silymarin efficacy against influenza A virus replication. Phytomedicine 2011, 18, 832–835. [Google Scholar] [CrossRef] [PubMed]
- Zhi, H.J.; Zhu, H.Y.; Zhang, Y.Y.; Lu, Y.; Li, H.; Chen, D.F. In vivo effect of quantified flavonoids-enriched extract of Scutellaria baicalensis root on acute lung injury induced by influenza A virus. Phytomedicine 2019, 57, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.C.; Gupta, S.K.; Tsay, H.S. Studies on Folk Medicinal Fern: An Example of “Gu-Sui-Bu”. In Working with Ferns; Kumar, A., Fernández, H., Revilla, M.A., Eds.; Springer: New York, NY, USA, 2010; pp. 285–304. [Google Scholar]
- Do, H.J.; Oh, T.W.; Yang, J.H.; Park, K.I.; Ma, J.Y. Davallia mariesii Moore improves FcεRI-mediated allergic responses in the rat basophilic leukemia mast cell line RBL-2H3 and passive cutaneous anaphylaxis in mice. Mediators Inflamm. 2017, 2017, 8701650. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.H.; Zhou, G.E.; Lin, N. Total flavonoids from Rhizoma drynariae (Gusuibu) alleviates diabetic osteoporosis by activating BMP2/Smad signaling pathway. Comb. Chem. High Throughput Screen. 2023, 26, 2401–2409. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhao, N.; Zheng, P.; Xu, X.; Liu, M.; Luo, D.; Xu, H.; Ju, D. Prevention and treatment of osteoporosis using chinese medicinal plants: Special emphasis on mechanisms of immune modulation. J. Immunol. Res. 2018, 2018, 6345857. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.R.; Chang, H.C.; Cheng, Y.D.; Lan, W.C.; Yang, S.E.; Ching, H. Aqueous extract of davallia mariesii attenuates 6-hydroxydopamine-induced oxidative damage and apoptosis in B35 cells through inhibition of caspase cascade and activation of PI3K/AKT/GSK-3β pathway. Nutrients 2018, 10, 1449. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.B.; Tezuka, Y.; Kikuchi, T.; Nakano, H.; Tamaoki, T.; Park, J.H. Constituents of a fern, Davallia mariesii Moore. I. Isolation and structures of davallialactone and a new flavanone glucuronide. Chem. Pharm. Bull. 1990, 38, 3218–3225. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.B.; Tezuka, Y.; Kikuchi, T.; Nakano, H.; Tamaoki, T.; Park, J.H. Constituents of a fern, Davallia mariesii moore. Ii. Identification and 1h- and 13c-nuclear magnetic resonance spectra of procyanidin b-5, epicatechin-(4b→8)-epicatechin-(4b→6)-epicatechin, and epicatechin-(4b→6)-epicatechin-(4b→8)-epicatechin-(4b→6)-epicatechin. Chem. Pharm. Bull. 1992, 40, 889–898. [Google Scholar]
- Hsiao, H.B.; Wu, J.B.; Lin, W.C. Anti-arthritic and anti-inflammatory effects of (-)-Epicatechin-3-O-β-d-allopyranoside, a constituent of Davallia formosana. Phytomedicine 2019, 52, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhen, L.; Zhang, G.; Wong, M.S.; Qin, L.; Yao, X. Osteogenic effects of flavonoid aglycones from an osteoprotective fraction of Drynaria fortunei-an in vitro efficacy study. Phytomedicine 2011, 18, 868–872. [Google Scholar] [CrossRef] [PubMed]
- Jheng, J.R.; Hsieh, C.F.; Chang, Y.H.; Ho, J.Y.; Tang, W.F.; Chen, Z.Y.; Liu, C.J.; Lin, T.J.; Huang, L.Y.; Chern, J.H.; et al. Rosmarinic acid interferes with influenza virus A entry and replication by decreasing GSK3β and phosphorylated AKT expression levels. J. Microbiol. Immunol. Infect. 2022, 55, 598–610. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.F.; Chen, Y.L.; Lin, C.F.; Ho, J.Y.; Huang, C.H.; Chiu, C.H.; Hsieh, P.W.; Horng, J.T. An extract from Taxodium distichum targets hemagglutinin- and neuraminidase-related activities of influenza virus in vitro. Sci. Rep. 2016, 6, 36015. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.F.; Chen, Y.L.; Lin, G.H.; Chan, Y.F.; Hsieh, P.W.; Horng, J.T. 3,4-Dicaffeoylquinic acid from the medicinal plant Ilex kaushue disrupts the interaction between the five-fold axis of enterovirus A-71 and the heparan sulfate receptor. J. Virol. 2022, 96, e0054221. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.J.; Lin, C.F.; Chiu, C.H.; Lee, M.C.; Horng, J.T. Inhibition of endosomal fusion activity of influenza virus by Rheum tanguticum (da-huang). Sci. Rep. 2016, 6, 27768. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Hwang, T.L.; Yu, H.P.; Fang, J.Y.; Chong, K.Y.; Chang, Y.W.; Chen, C.Y.; Yang, H.W.; Chang, W.Y.; Hsieh, P.W. Ilex kaushue and its bioactive component 3,5-dicaffeoylquinic acid protected mice from lipopolysaccharide-induced acute lung injury. Sci. Rep. 2016, 6, 34243. [Google Scholar] [CrossRef]
- Wu, M.S.; Yen, H.R.; Chang, C.W.; Peng, T.Y.; Hsieh, C.F.; Chen, C.J.; Lin, T.Y.; Horng, J.T. Mechanism of action of the suppression of influenza virus replication by Ko-Ken Tang through inhibition of the phosphatidylinositol 3-kinase/Akt signaling pathway and viral RNP nuclear export. J. Ethnopharmacol. 2011, 134, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.F.; Lo, C.W.; Liu, C.H.; Lin, S.; Yen, H.R.; Lin, T.Y.; Horng, J.T. Mechanism by which ma-xing-shi-gan-tang inhibits the entry of influenza virus. J. Ethnopharmacol. 2012, 143, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.F.; Yen, H.R.; Liu, C.H.; Lin, S.; Horng, J.T. Ching-fang-pai-tu-san inhibits the release of influenza virus. J. Ethnopharmacol. 2012, 144, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.W.Y.; Tao, K.P.; Ye, J.; Lui, K.K.Y.; Yang, X.; Ma, C.; Chan, P.K.S. Inhibition of Influenza Virus Replication by Oseltamivir Derivatives. Pathogens 2022, 11, 237. [Google Scholar] [CrossRef] [PubMed]
- Furuta, Y.; Takahashi, K.; Kuno-Maekawa, M.; Sangawa, H.; Uehara, S.; Kozaki, K.; Nomura, N.; Egawa, H.; Shiraki, K. Mechanism of action of T-705 against influenza virus. Antimicrob. Agents Chemother. 2005, 49, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Meineke, R.; Rimmelzwaan, G.F.; Elbahesh, H. Influenza virus infections and cellular kinases. Viruses 2019, 11, 171. [Google Scholar] [CrossRef] [PubMed]
- Ehrhardt, C.; Marjuki, H.; Wolff, T.; Nürnberg, B.; Planz, O.; Pleschka, S.; Ludwig, S. Bivalent role of the phosphatidylinositol-3-kinase (PI3K) during influenza virus infection and host cell defence. Cell Microbiol. 2006, 8, 1336–1348. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Y.; Yue, Y.; Liang, L.; Peng, M.; Zhao, M.; Chen, Y.; Cao, X.; Li, W.; Li, C.; et al. Traditional Chinese medicines as effective agents against influenza virus-induced pneumonia. Biomed. Pharmacother. 2022, 153, 113523. [Google Scholar] [CrossRef]
- Denisova, O.V.; Söderholm, S.; Virtanen, S.; Von Schantz, C.; Bychkov, D.; Vashchinkina, E.; Desloovere, J.; Tynell, J.; Ikonen, N.; Theisen, L.L.; et al. Akt inhibitor MK2206 prevents influenza pH1N1 virus infection in vitro. Antimicrob. Agents Chemother. 2014, 58, 3689–3696. [Google Scholar] [CrossRef]
- Chen, D.; Zheng, R.; Su, J.; Lai, J.; Chen, H.; Ning, Z.; Liu, X.; Zhu, B.; Li, Y. Inhibition of H1N1 influenza virus-induced apoptosis by ebselen through ROS-mediated ATM/ATR signaling pathways. Biol. Trace Elem. Res. 2023, 201, 2811–2822. [Google Scholar] [CrossRef]
- Chen, F.; Chen, L.; Liang, J.; Chen, Z.; Zhang, C.; Zhang, Z.; Yang, J. Potential role of superoxide dismutase 3 (SOD3) in resistance to influenza A virus infection. Antioxidants 2023, 12, 2811–2822. [Google Scholar] [CrossRef] [PubMed]
- Russell, R.J.; Kerry, P.S.; Stevens, D.J.; Steinhauer, D.A.; Martin, S.R.; Gamblin, S.J.; Skehel, J.J. Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion. PNAS 2008, 105, 17736–17741. [Google Scholar] [CrossRef] [PubMed]
- Motohashi, Y.; Igarashi, M.; Okamatsu, M.; Noshi, T.; Sakoda, Y.; Yamamoto, N.; Ito, K.; Yoshida, R.; Kida, H. Antiviral activity of stachyflin on influenza A viruses of different hemagglutinin subtypes. Virol. J. 2013, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ohtsuki, T.; Shindo, S.; Sato, M.; Koyano, T.; Preeprame, S.; Kowithayakorn, T.; Ishibashi, M. Mangiferin identified in a screening study guided by neuraminidase inhibitory activity. Planta Med. 2007, 73, 1195–1196. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Z.; Liao, J.; Chen, Q.; Lu, X.; Fan, X. Network pharmacology approaches for research of Traditional Chinese Medicines. Chin. J. Nat. Med. 2023, 21, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.; Wang, T.; Wei, B.; Shi, X.; Yang, A.; Chen, D.; Hu, J.; Zhu, H. Integrated network pharmacology and intestinal flora analysis to determine the protective effect of Xuanbai-Chengqi decoction on lung and gut injuries in influenza virus-infected mice. J. Ethnopharmacol. 2022, 298, 115649. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.B.; Tanner, L.; Wenk, M.R. Implications for lipids during replication of enveloped viruses. Chem. Phys. Lipids 2010, 163, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Narayan, R.; Sharma, M.; Yadav, R.; Biji, A.; Khatun, O.; Kaur, S.; Kanojia, A.; Joy, C.M.; Rajmani, R.; Sharma, P.R.; et al. Picolinic acid is a broad-spectrum inhibitor of enveloped virus entry that restricts SARS-CoV-2 and influenza A virus in vivo. Cell Rep. Med. 2023, 4, 101127. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.R.; Guha, S.; Wu, E.; Ghimire, J.; Wang, Y.; He, J.; Garry, R.F.; Wimley, W.C. Broad-Spectrum Antiviral Entry Inhibition by Interfacially Active Peptides. J. Virol. 2020, 94, e01682-20. [Google Scholar] [CrossRef] [PubMed]
Cell Lines/Virus Strains | CC50 a (µg/mL) | EC50 (µg/mL) | Selectivity Index |
---|---|---|---|
Cytotoxic effects | |||
MDCK cells | 147.18 ± 33.47 | - | - |
A549 cells | 83.56 ± 9.51 | - | - |
RD cells | 173.38 ± 9.19 | - | - |
BHK-21 cells | 59.35 ± 22.19 | - | - |
Huh7 cells | >125 | - | - |
Influenza viruses | |||
A/WSN/33 (H1N1) c | - | 24.32 ± 6.19 | 6.05 |
B/TW/70233/05 c | - | 28.49 ± 13.84 | 5.17 |
B/TW/50344/19 b | - | 33.00 ± 3.93 | 4.46 |
Enteroviruses | |||
EVD68/TW/2795/14 c | - | 71.63 ± 3.38 | 2.42 |
HSV-1 b | - | 43.94 ± 3.25 | 1.90 |
Dengue virus type 2 c | - | 10.70 ± 1.38 | 5.55 |
Japanese encephalitis virus c | - | 15.76 ± 4.77 | 3.77 |
Human coronavirus 229E c | - | 44.00 ± 7.00 | >2.84 |
Adenovirus b | - | >200 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-L.; Chao, P.-Y.; Hsieh, C.-F.; Hsieh, P.-W.; Horng, J.-T. Novel Anti-Viral Properties of the Herbal Extract of Davallia mariesii against Influenza A Virus. Viruses 2024, 16, 523. https://doi.org/10.3390/v16040523
Chen Y-L, Chao P-Y, Hsieh C-F, Hsieh P-W, Horng J-T. Novel Anti-Viral Properties of the Herbal Extract of Davallia mariesii against Influenza A Virus. Viruses. 2024; 16(4):523. https://doi.org/10.3390/v16040523
Chicago/Turabian StyleChen, Yu-Li, Pei-Yu Chao, Chung-Fan Hsieh, Pei-Wen Hsieh, and Jim-Tong Horng. 2024. "Novel Anti-Viral Properties of the Herbal Extract of Davallia mariesii against Influenza A Virus" Viruses 16, no. 4: 523. https://doi.org/10.3390/v16040523
APA StyleChen, Y.-L., Chao, P.-Y., Hsieh, C.-F., Hsieh, P.-W., & Horng, J.-T. (2024). Novel Anti-Viral Properties of the Herbal Extract of Davallia mariesii against Influenza A Virus. Viruses, 16(4), 523. https://doi.org/10.3390/v16040523