Development of Attenuated Viruses for Effective Protection against Pepper Veinal Mottle Virus in Tomato Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Source
2.2. Nitrite Treatment
2.3. Screening of Attenuated Mutants
2.4. Cross-Protection Evaluation
2.5. Indirect ELISA
2.6. Viral Whole-Genome Sequencing
2.7. Sequence Analysis
3. Results
3.1. Screening of Non-HR PVMV Mutants after Nitrite Treatment
3.2. Assessment of the Protective Effect of the Attenuated Mutants on N. benthamiana Plants
3.3. Mild Strains of PVMV also Protect Tomato Plants
3.4. Time Required for m4-8 to Provide Protection in Tomato Plants
3.5. Clarification of the Genome Sequences of Taiwanese PVMV Isolates Tn and Xs-1
3.6. Comparison of Genome Sequences between PVMV-Tn and m4-8
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bohs, L.; Olmstead, R.G. Phylogenetic relationships in Solanum (Solanaceae) based on ndhF sequences. Syst. Bot. 1997, 22, 5–17. [Google Scholar] [CrossRef]
- Shah, V.V.; Shah, N.D.; Patrekar, P.V. Medicinal plants from Solanaceae family. Res. J. Pharm. Technol. 2013, 6, 143–151. [Google Scholar]
- Lee, S.T. Studies on some naturally occurring strains of Potato virus Y in Taiwan. Plant Prot. Bull. 1970, 12, 41–50. [Google Scholar]
- Tsai, W.S.; Jan, F.J.; Huang, Y.C.; Green, S.K. Molecular characterization of five strains of chilli veinal mottle virus (ChiVMV) in Taiwan. Plant Prot. Bull. 2005, 47, 429–430. [Google Scholar]
- Cheng, Y.H.; Wang, R.Y.; Chen, C.C.; Chang, C.A.; Jan, F.J. First report of Pepper veinal mottle virus in tomato and pepper in Taiwan. Plant Dis. 2009, 93, 107. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Wang, R.Y.; Chen, C.C.; Chang, C.A.; Jan, F.J. First report of pepper mottle virus in bell pepper in Taiwan. Plant Dis. 2011, 95, 617. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.Y.; Huang, C.R.; Yeh, S.D.; Chiang, J.K.; Hung, L.M.; Hu, H.Y. Nucleotide sequence of the coat protein coding region of the potyvirus tobacco vein-banding mosaic virus. Arch. Virol. 1994, 138, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Inoue-Nagata, A.; Jordan, R.; Kreuze, J.; Li, F.; López-Moya, J.J.; Mäkinen, K.; Ohshima, K.; Wylie, S.J.; ICTV Report Consortium. ICTV Virus Taxonomy Profile: Potyviridae 2022. J. Gen. Virol. 2022, 103, 001738. [Google Scholar] [CrossRef] [PubMed]
- Verchot, J.; Carrington, J.C. Evidence that the potyvirus P1 proteinase functions in trans as an accessory factor for genome amplification. J. Virol. 1995, 69, 3668–3674. [Google Scholar] [CrossRef]
- Anandalakshmi, R.; Pruss, G.J.; Ge, X.; Marathe, R.; Mallory, A.C.; Smith, T.H.; Vance, V.B. A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA 1998, 95, 13079–13084. [Google Scholar] [CrossRef]
- Syller, J. The roles and mechanisms of helper component proteins encoded by potyviruses and caulimoviruses. Physiol. Mol. Plant Pathol. 2005, 67, 119–130. [Google Scholar] [CrossRef]
- Chung, B.Y.; Miller, W.A.; Atkins, J.F.; Firth, A.E. An overlapping essential gene in the Potyviridae. Proc. Natl. Acad. Sci. USA 2008, 105, 5897–5902. [Google Scholar] [CrossRef] [PubMed]
- Olspert, A.; Chung, B.; Atkins, J.; Carr, J.; Firth, A. Transcriptional slippage in the positive-sense RNA virus family Potyviridae. EMBO Rep. 2015, 16, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Chai, M.; Wu, X.; Liu, J.; Fang, Y.; Luan, Y.; Cui, X.; Zhou, X.; Wang, A.; Cheng, X. P3N-PIPO interacts with P3 via the shared N-terminal domain to recruit viral replication vesicles for cell-to-cell movement. J. Virol. 2020, 94, e01898-19. [Google Scholar] [CrossRef] [PubMed]
- Gadhave, K.R.; Gautam, S.; Rasmussen, D.A.; Srinivasan, R. Aphid transmission of Potyvirus: The largest plant-infecting RNA virus genus. Viruses 2020, 12, 773. [Google Scholar] [CrossRef] [PubMed]
- Bau, H.J.; Cheng, Y.H.; Yu, T.A.; Yang, J.S.; Liou, P.C.; Hsiao, C.H.; Yeh, S.D. Field evaluation of transgenic papaya lines carrying the coat protein gene of Papaya ringspot virus in Taiwan. Plant Dis. 2004, 88, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Klas, F.; Fuchs, M.; Gonsalves, D. Comparative spatial spread overtime of zucchini yellow mosaic virus (ZYMV) and watermelon mosaic virus (WMV) in fields of transgenic squash expressing the coat protein genes of ZYMV and WMV, and in fields of nontransgenic squash. Transgenic Res. 2006, 15, 527–541. [Google Scholar] [CrossRef] [PubMed]
- Ratcliff, F.G.; MacFarlane, S.A.; Baulcombe, D.C. Gene silencing without DNA: RNA-mediated cross-protection between viruses. Plant Cell 1999, 11, 1207–1215. [Google Scholar] [CrossRef] [PubMed]
- Tenllado, F.; Díaz-Ruíz, J.R. Double-stranded RNA-mediated interference with plant virus infection. J. Virol. 2001, 75, 12288–12297. [Google Scholar] [CrossRef]
- Kaldis, A.; Berbati, M.; Melita, O.; Reppa, C.; Holeva, M.; Otten, P.; Voloudakis, A. Exogenously applied dsRNA molecules deriving from the zucchini yellow mosaic virus (ZYMV) genome move systemically and protect cucurbits against ZYMV. Mol. Plant Pathol. 2017, 19, 883–895. [Google Scholar] [CrossRef]
- Rego-Machado, C.; Nakasu, E.; Silva, J.; Lucinda, N.; Nagata, T.; Inoue-Nagata, A. siRNA biogenesis and advances in topically applied dsRNA for controlling virus infections in tomato plants. Sci. Rep. 2020, 10, 22277. [Google Scholar] [CrossRef] [PubMed]
- McKinney, H.H. Mosaic diseases in the Canary Islands, West Africa and Gibraltar. J. Agric. Res. 1929, 39, 557–578. [Google Scholar]
- Gal-On, A.; Shiboleth, Y.M. Cross Protection. In Natural Resistance Mechanisms of Plants to Viruses; Loebenstein, G., Carr, J.P., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 261–288. [Google Scholar]
- Wang, H.L.; Gonsalves, D.; Provvidenti, R.; Lecoq, H.L. Effectiveness of cross protection by a mild strain of zucchini yellow mosaic virus in cucumber, melon, and squash. Plant Dis. 1991, 75, 203–207. [Google Scholar] [CrossRef]
- Yeh, S.D.; Gonsalves, D. Evaluation of induced mutants of papaya ringspot virus for control by cross protection. Phytopathology 1984, 74, 1086–1091. [Google Scholar] [CrossRef]
- You, B.J.; Chiang, C.H.; Chen, L.F.; Su, W.C.; Yeh, S.D. Engineered mild strains of Papaya ringspot virus for broader cross protection in cucurbits. Phytopathology 2005, 95, 533–540. [Google Scholar] [CrossRef]
- Nishiguchi, M.; Kobayashi, K. Attenuated plant viruses: Preventing virus diseases and understanding the molecular mechanism. J. Gen. Plant Pathol. 2011, 77, 221–229. [Google Scholar] [CrossRef]
- Kung, Y.J.; Lin, P.C.; Yeh, S.D.; Hong, S.F.; Chua, N.H.; Liu, L.Y.; Lin, C.P.; Huang, Y.H.; Wu, H.W.; Chen, C.C.; et al. Genetic analyses of the FRNK motif function of Turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection. Mol. Plant Microbe Interact. 2014, 27, 944–955. [Google Scholar] [CrossRef] [PubMed]
- Ziebell, H.; Carr, J.P. Cross-protection: A century of mystery. Adv. Virus Res. 2010, 76, 211–264. [Google Scholar]
- Pechinger, K.; Chooi, K.M.; MacDiarmid, R.M.; Harper, S.J.; Ziebell, H. A new era for mild strain cross-protection. Viruses 2019, 11, 670. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.S.; Wu, H.W.; Jan, F.J.; Hou, R.F.; Yeh, S.D. Modifications of the helper component-protease of Zucchini yellow mosaic virus for generation of attenuated mutants for cross protection against severe infection. Phytopathology 2007, 97, 287–296. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Chen, C.C.; Liao, J.Y.; Deng, T.C.; Lin, F.C.; Jan, F.J. Proceedings of Symposium on the Occurrence of Important Diseases in Taiwan in Recent Year and Development of Disease Diagnosis, Monitoring and Control; Agricultural Experimental Institute, Council of Agriculture: Taichung, Taiwan, 2010; Volume 149, pp. 227–239.
- Goh, R.P.; Xie, X.Y.; Lin, Y.C.; Cheng, H.W.; Raja, J.A.J.; Yeh, S.D. Rapid selection of potyviral cross-protection effective mutants from the local lesion host after nitrous acid mutagenesis. Mol. Plant Pathol. 2023, 24, 973–988. [Google Scholar] [CrossRef] [PubMed]
- Pratama, A.A. Production of Antisera for Detection of the Important Solanaceae-Infecting Potyviruses in Taiwan. Master’s Thesis, Asia University, Taichung, Taiwan, 2013. [Google Scholar]
- Chiang, K.; Liu, H.; Tsai, J.; Tsai, J.; Bock, C. A discussion on disease severity index values. Part II: Using the disease severity index for null hypothesis testing. Ann. Appl. Biol. 2017, 171, 490–505. [Google Scholar] [CrossRef]
- Orenstein, W.A.; Bernier, R.H.; Dondero, T.J.; Hinman, A.R.; Marks, J.S.; Bart, K.J.; Sirotkin, B. Field evaluation of vaccine efficacy. Bull. World Health Organ. 1985, 63, 1055–1068. [Google Scholar] [PubMed]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Lang, G.; Murray, A. Estimating the per-base-pair mutation rate in the yeast (Saccharomyces cerevisiae). Genetics 2008, 178, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Sayama, H.; Sato, T.; Kominato, M.; Natsuaki, T.; Kaper, J.M. Field testing of a satellite-containing attenuated strain of cucumber mosaic virus for tomato protection in Japan. Phytopathology 1993, 83, 405–410. [Google Scholar] [CrossRef]
- Oshima, N. Control of tomato mosaic disease by attenuated virus. Jpn. Agric. Res. Q. 1981, 14, 222–228. [Google Scholar]
- Agüero, J.; Gómez-Aix, C.; Sempere, R.N.; García-Villalba, J.; García-Núñez, J.; Hernando, Y.; Aranda, M.A. Stable and broad spectrum cross-protection against Pepino mosaic virus attained by mixed infection. Front. Plant Sci. 2018, 9, 1810. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance pepino mosaic virus strain CH2 isolate 1906. EFSA J. 2015, 13, 3977. [Google Scholar] [CrossRef]
- European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance Mild Pepino mosaic virus isolate VX1. EFSA J. 2017, 15, 4650. [Google Scholar]
- Sanjuán, R.; Nebot, M.R.; Chirico, N.; Mansky, L.M.; Belshaw, R. Viral mutation rates. J. Virol. 2010, 84, 9733–9748. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.C.; Lin, S.S.; Yeh, S.D.; Li, S.L.; Peng, Y.C.; Fan, Y.H.; Chen, T.C. Characterization of the genome of a phylogenetically distinct tospovirus and its interactions with the local lesion-induced host Chenopodium quinoa by whole-transcriptome analyses. PLoS ONE 2017, 12, e0182425. [Google Scholar] [CrossRef] [PubMed]
- Shirasu, K.; Schulze-Lefert, P. Regulators of cell death in disease resistance. Plant Mol. Biol. 2000, 44, 371–385. [Google Scholar] [CrossRef] [PubMed]
- Raja, J.A.J.; Huang, C.H.; Chen, C.C.; Hu, W.C.; Cheng, H.W.; Goh, R.P.; Chao, C.H.; Tan, Y.R.; Yeh, S.D. Modification of the N-terminal FWKG-αH1 element of potyviral HC-Pro affects its multiple functions and generates effective attenuated mutants for cross-protection. Mol. Plant Pathol. 2022, 23, 947–965. [Google Scholar] [CrossRef]
- Tran, T.T.Y.; Lin, T.T.; Chang, C.P.; Chen, C.H.; Nguyen, V.H.; Yeh, S.D. Generation of mild recombinants of papaya ringspot virus to minimize the problem of strain-specific cross-protection. Phytopathology 2022, 112, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Do, D.H.; Nguyen, T.B.N.; Ha, V.C.; Raja, J.A.J.; Yeh, S.D. Generation of attenuated Passiflora mottle virus through modification of the helper component-protease for cross protection. Phytopathology 2023, 113, 1605–1614. [Google Scholar] [CrossRef] [PubMed]
- Chaerle, L.; Lenk, S.; Hagenbeek, D.; Buschmann, C.; Van Der Straeten, D. Multicolor fluorescence imaging for early detection of the hypersensitive reaction to tobacco mosaic virus. J. Plant Physiol. 2007, 164, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Chong, Y.H.; Do, D.H.; Cheng, H.W.; Raja, J.A.J.; Ngo, X.T.; Hwang, S.G.; Yeh, S.D. Generation of attenuated mutants of East Asian Passiflora virus for disease management by cross protection. Mol. Plant Microbe Interact. 2023, 36, 345–358. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.N.B.; Cheng, H.W.; Xie, X.Y.; Raja, J.A.J.; Yeh, S.D. Concurrent control of two aphid-borne potyviruses in cucurbits by two-in-one vaccine. Phytopathology 2023, 113, 1583–1594. [Google Scholar] [CrossRef]
- Tuo, D.; Zhou, P.; Zhao, G.; Yan, P.; Tan, D.; Li, X.; Shen, W. A double mutation in the conserved motifs of the helper component protease of Papaya leaf distortion mosaic virus for the generation of a cross-protective attenuated strain. Phytopathology 2020, 110, 187–193. [Google Scholar] [CrossRef]
- Xu, X.J.; Zhu, Q.; Jiang, S.Y.; Yan, Z.Y.; Geng, C.; Tian, Y.P.; Li, X.D. Development and evaluation of stable sugarcane mosaic virus mild mutants for cross-protection against infection by severe strain. Front. Plant Sci. 2021, 12, 788963. [Google Scholar] [CrossRef] [PubMed]
- Cronin, S.; Verchot, J.; Haldeman-Cahill, R.; Schaad, M.C.; Carrington, J.C. Long-distance movement factor: A transport function of the potyvirus helper component proteinase. Plant Cell 1995, 7, 549–559. [Google Scholar] [PubMed]
- Kasschau, K.D.; Cronin, S.; Carrington, J.C. Genome amplification and long-distance movement functions associated with the central domain of tobacco etch potyvirus helper component-proteinase. Virology 1997, 228, 251–262. [Google Scholar] [CrossRef]
- Oh, C.S.; Carrington, J.C. Identification of essential residues in potyvirus proteinase HC-Pro by site-directed mutagenesis. Virology 1989, 173, 692–699. [Google Scholar] [CrossRef]
- Blanc, S.; Lopez-Moya, J.J.; Wang, R.Y.; Garcia-Lampasona, S.; Thornbury, D.W.; Pirone, T.P. A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology 1997, 231, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.H.; Kadoury, D.; Gal-On, A.; Huet, H.; Wang, Y.; Raccah, B. Mutations in the HC-Pro gene of zucchini yellow mosaic potyvirus: Effects on aphid transmission and binding to purified virions. J. Gen. Virol. 1998, 79, 897–904. [Google Scholar] [CrossRef]
- Desbiez, C.; Girard, M.; Lecoq, H.A. Novel natural mutation in HC-Pro responsible for mild symptomatology of Zucchini yellow mosaic virus (ZYMV, Potyvirus) in cucurbits. Arch. Virol. 2010, 155, 397–401. [Google Scholar] [CrossRef]
- Nakazono-Nagaoka, E.; Takahashi, T.; Shimizu, T.; Kosaka, Y.; Natsuaki, T.; Omura, T.; Sasaya, T. Cross-protection against bean yellow mosaic virus (BYMV) and clover yellow vein virus by attenuated BYMV isolate M11. Phytopathology 2009, 99, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.W.; Lin, T.T.; Huang, C.H.; Raja, J.A.J.; Yeh, S.D. Modification of papaya ringspot virus HC-Pro to generate effective attenuated mutants for overcoming the problem of strain-specific cross protection. Plant Dis. 2023, 107, 1757–1768. [Google Scholar] [CrossRef]
- Yeh, S.D.; Gonsalves, D.; Wang, H.L.; Namba, R.; Chiu, R.J. Control of Papaya ringspot virus by cross protection. Plant Dis. 1988, 72, 375–380. [Google Scholar] [CrossRef]
- Rezende, J.A.M.; Pacheco, D.A. Control of papaya ringspot virus-type W in zucchini squash by cross-protection in Brazil. Plant Dis. 1998, 82, 171–175. [Google Scholar] [CrossRef] [PubMed]
Experiment | Number of Local Lesions Induced by PVMV without Nitrite Treatment a | Number of Local Lesions Induced by Nitrite-Treated PVMV b | SR (%) c | MR (%) d | |||
---|---|---|---|---|---|---|---|
Type I | Type II | Type III | Total No. | ||||
1 | 463 | 9 | 3 | 0 | 12 | 2.6 | 0.6 |
2 | 685 | 147 | 13 | 0 | 160 | 23.4 | 1.9 |
3 | 436 | 196 | 0 | 0 | 196 | 45.0 | 0.0 |
4 | 634 | 165 | 34 | 1 | 200 | 31.5 | 5.5 |
5 | 856 | 28 | 0 | 0 | 28 | 3.3 | 0.0 |
6 | 657 | 53 | 10 | 0 | 63 | 9.3 | 1.5 |
7 | 804 | 602 | 27 | 0 | 629 | 78.2 | 3.4 |
8 | 763 | 122 | 8 | 0 | 130 | 17.0 | 1.0 |
9 | 965 | 20 | 289 | 0 | 309 | 32.0 | 29.9 |
10 | 778 | 0 | 31 | 11 | 42 | 5.4 | 5.4 |
Sum | 7041 | 1342 | 415 | 12 | 1769 | 25.1 | 6.1 |
Treatment (Protector/Challenger) | Total Number of Test Plants | Number of Test Plants Infected with Tn or Xs-1 a | Infection Rate of Tn or Xs-1 (IR, %) b | Protective Efficacy (PE, %) c |
---|---|---|---|---|
N. benthamiana | ||||
m4-8/Tn | 15 | 0 | 0.0 | 100.0 |
m10-1/Tn | 15 | 8 | 53.3 | 46.7 |
m10-11/Tn | 15 | 8 | 53.3 | 46.7 |
Mock/Tn | 15 | 15 | 100.0 | – |
m4-8/Xs-1 | 10 | 0 | 0 | 100 |
Mock/Xs-1 | 10 | 10 | 100 | – |
S. lycopersicum | ||||
m4-8/Tn | 49 | 1 | 2.0 | 97.9 |
m10-1/Tn | 23 | 4 | 17.4 | 81.8 |
m10-11/Tn | 22 | 4 | 18.2 | 81.0 |
Mock/Tn | 46 | 44 | 95.7 | – |
Treatment | Protection Days | Total Number of Test Plants | Number of Tn-Infected Plants a | Infection Rate of Tn (IR, %) b | Protective Efficacy (PE, %) c |
---|---|---|---|---|---|
m4-8/Tn | 3 | 8 | 6 | 75 | 25 |
5 | 8 | 4 | 50 | 50 | |
7 | 8 | 3 | 37.5 | 62.5 | |
9 | 8 | 0 | 0 | 100 | |
11 | 8 | 0 | 0 | 100 | |
Mock/Tn | – | 8 | 8 | 100 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.-D.; Lin, C.-C.; Chen, T.-C. Development of Attenuated Viruses for Effective Protection against Pepper Veinal Mottle Virus in Tomato Crops. Viruses 2024, 16, 687. https://doi.org/10.3390/v16050687
Wang G-D, Lin C-C, Chen T-C. Development of Attenuated Viruses for Effective Protection against Pepper Veinal Mottle Virus in Tomato Crops. Viruses. 2024; 16(5):687. https://doi.org/10.3390/v16050687
Chicago/Turabian StyleWang, Guan-Da, Chian-Chi Lin, and Tsung-Chi Chen. 2024. "Development of Attenuated Viruses for Effective Protection against Pepper Veinal Mottle Virus in Tomato Crops" Viruses 16, no. 5: 687. https://doi.org/10.3390/v16050687
APA StyleWang, G. -D., Lin, C. -C., & Chen, T. -C. (2024). Development of Attenuated Viruses for Effective Protection against Pepper Veinal Mottle Virus in Tomato Crops. Viruses, 16(5), 687. https://doi.org/10.3390/v16050687