The Adaptive Immune Response in Hepatitis B Virus-Associated Hepatocellular Carcinoma Is Characterized by Dysfunctional and Exhausted HBV-Specific T Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
- Age of study population ≥ 18 years;
- Studies in English language;
- Only studies including humans;
- Studies including patients with HBV-associated HCC;
- Pediatric patients < 18 years of age;
- Studies only performed on animals;
- Reviews or meta-analyses;
- Studies on individuals with HBV infection without a group of individuals with HBV-related HCC;
- Studies including CHB patients coinfected with other hepatitis viruses and/or human immunodeficiency virus (HIV).
2.3. Comparison Groups
3. Results
3.1. Patient Characteristics
3.1.1. HBV-Specific CD8+ T Cells
3.1.2. Phenotypes of Circulating CD8+ T Cells in Patients with HBV-Related HCC
3.1.3. Prognostic Value of PD-1 Expression on Circulating CD8+ T Cells
3.1.4. Tumor-Infiltrating HBV-Specific CD8+ T-Cell Phenotypes in HBV-Associated HCC
3.1.5. Impaired Effector CD8+ T Cell Function in HBV-Associated HCC
3.2. HBV-Specific CD4+ T Cells
3.2.1. Circulating CD4+ T Cells in HBV-HCC
3.2.2. Tumor-Infiltrating CD4+ T Cells
3.2.3. Circulating Regulatory T Cells in HBV-Associated HCC
3.2.4. Tumor-Infiltrating Regulatory T Cells in HBV-Associated HCC
3.2.5. Role of Regulatory T Cells HBV-Associated HCC
3.2.6. Role of T Helper 17 Cells
3.2.7. Role of Follicular Helper T Cells
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brown, Z.J.; Tsilimigras, D.I.; Ruff, S.M.; Mohseni, A.; Kamel, I.R.; Cloyd, J.M.; Pawlik, T.M. Management of Hepatocellular Carcinoma: A Review. JAMA Surg. 2023, 158, 410–420. [Google Scholar] [CrossRef]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73 (Suppl. S1), 4–13. [Google Scholar] [CrossRef]
- Graber-Stiehl, I. The silent epidemic killing more people than HIV, malaria or TB. Nature 2018, 564, 24–26. [Google Scholar] [CrossRef]
- World Health Statistics. 2021. Available online: http://www.who.int/data/gho/publications/world-health-statistics (accessed on 1 December 2023).
- Chen, Y.; Tian, Z. HBV-Induced Immune Imbalance in the Development of HCC. Front. Immunol. 2019, 10, 2048. [Google Scholar] [CrossRef]
- Buschow, S.I.; Jansen, D.T.S.L. CD4+ T Cells in Chronic Hepatitis B and T Cell-Directed Immunotherapy. Cells 2021, 10, 1114. [Google Scholar] [CrossRef]
- Jung, M.K.; Shin, E.C. Regulatory T Cells in Hepatitis B and C Virus Infections. Immune Netw. 2016, 16, 330–336. [Google Scholar] [CrossRef]
- Li, C.; Jiang, P.; Wei, S.; Xu, X.; Wang, J. Regulatory T cells in tumor microenvironment: New mechanisms, potential therapeutic strategies and future prospects. Mol. Cancer 2020, 19, 116. [Google Scholar] [CrossRef]
- Cho, H.J.; Cheong, J.Y. Role of Immune Cells in Patients with Hepatitis B Virus-Related Hepatocellular Carcinoma. Int. J. Mol. Sci. 2021, 22, 8011. [Google Scholar] [CrossRef]
- Phillips, S.; Chokshi, S.; Riva, A.; Evans, A.; Williams, R.; Naoumov, N.V. CD8(+) T cell control of hepatitis B virus replication: Direct comparison between cytolytic and noncytolytic functions. J. Immunol. 2010, 184, 287–295. [Google Scholar] [CrossRef]
- Xie, Y.; Hepatitis, B. Virus-Associated Hepatocellular Carcinoma. Adv. Exp. Med. Biol. 2017, 1018, 11–21. [Google Scholar]
- Ringehan, M.; McKeating, J.A.; Protzer, U. Viral hepatitis and liver cancer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160274. [Google Scholar] [CrossRef]
- Nakamoto, Y.; Guidotti, L.G.; Kuhlen, C.V.; Fowler, P.; Chisari, F.V. Immune pathogenesis of hepatocellular carcinoma. J. Exp. Med. 1998, 188, 341–350. [Google Scholar] [CrossRef]
- Hao, X.; Chen, Y.; Bai, L.; Wei, H.; Sun, R.; Tian, Z. HBsAg-specific CD8+ T cells as an indispensable trigger to induce murine hepatocellular carcinoma. Cell Mol. Immunol. 2021, 18, 128–137. [Google Scholar] [CrossRef]
- Khanam, A.; Chua, J.V.; Kottilil, S. Immunopathology of Chronic Hepatitis B Infection: Role of Innate and Adaptive Immune Response in Disease Progression. Int. J. Mol. Sci. 2021, 22, 5497. [Google Scholar] [CrossRef]
- Iannacone, M.; Guidotti, L.G. Immunobiology and pathogenesis of hepatitis B virus infection. Nat. Rev. Immunol. 2022, 22, 19–32. [Google Scholar] [CrossRef]
- Anderson, A.C.; Joller, N.; Kuchroo, V.K. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity 2016, 44, 989–1004. [Google Scholar] [CrossRef]
- Apol, Á.D.; Winckelmann, A.A.; Duus, R.B.; Bukh, J.; Weis, N. The Role of CTLA-4 in T Cell Exhaustion in Chronic Hepatitis B Virus Infection. Viruses 2023, 15, 1141. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.B.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- You, M.; Gao, Y.; Fu, J.; Xie, R.; Zhu, Z.; Hong, Z.; Meng, L.; Du, S.; Liu, J.; Wang, F.-S.; et al. Epigenetic regulation of HBV-specific tumor-infiltrating T cells in HBV-related HCC. Hepatology 2023, 78, 943–958. [Google Scholar] [CrossRef]
- Sun, R.; Li, J.; Lin, X.; Yang, Y.; Liu, B.; Lan, T.; Xiao, S.; Deng, A.; Yin, Z.; Xu, Y.; et al. Peripheral immune characteristics of hepatitis B virus-related hepatocellular carcinoma. Front. Immunol. 2023, 14, 1079495. [Google Scholar] [CrossRef]
- Liu, L.; Liu, J.; Li, P.; Luo, J.; Qin, R.; Peng, Q.; Li, B.; Wei, X.; Wang, T.; Shi, H.; et al. Single-cell analysis reveals HBV-specific PD-1+CD8+ TRM cells in tumor borders are associated with HBV-related hepatic damage and fibrosis in HCC patients. J. Exp. Clin. Cancer Res. 2023, 42, 152. [Google Scholar] [CrossRef]
- Chang, Y.-S.; Tu, S.-J.; Chen, H.-D.; Hsu, M.-H.; Chen, Y.-C.; Chao, D.-S.; Chung, C.-C.; Chou, Y.-P.; Chang, C.-M.; Lee, Y.-T.; et al. Integrated genomic analyses of hepatocellular carcinoma. Hepatol. Int. 2023, 17, 97–111. [Google Scholar] [CrossRef]
- Li, M.; Wang, L.; Cong, L.; Wong, C.C.; Zhang, X.; Chen, H.; Zeng, T.; Li, B.; Jia, X.; Huo, J.; et al. Spatial proteomics of immune microenvironment in nonalcoholic steatohepatitis-associated hepatocellular carcinoma. Hepatology 2023, 79, 560–574. [Google Scholar] [CrossRef]
- Gao, Y.; You, M.; Fu, J.; Tian, M.; Zhong, X.; Du, C.; Zhu, Z.; Liu, J.; Markowitz, G.J.; Wang, F.-S.; et al. Intratumoral stem-like CCR4+ regulatory T cells orchestrate the immunosuppressive microenvironment in HCC associated with hepatitis B. J. Hepatol. 2022, 76, 148–159. [Google Scholar] [CrossRef]
- Lu, L.-C.; Deantonio, C.; Palu, C.C.; Lee, Y.-H.; Mitchell, L.S.; Cowan, M.; Corser, M.; Sherry, L.; Cheng, A.-L.; Quaratino, S.; et al. ICOS-Positive Regulatory T Cells in Hepatocellular Carcinoma: The Perspective from Digital Pathology Analysis. Oncology 2022, 100, 419–428. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.-F.; Zhang, J.; Zhan, G.-H.; Li, Y.-K.; Huang, J.-T.; Huang, X.; Xiang, B.-D. Inflammation and Fibrosis in Patients with Non-Cirrhotic Hepatitis B Virus-Associated Hepatocellular Carcinoma: Impact on Prognosis after Hepatectomy and Mechanisms Involved. Curr. Oncol. 2022, 30, 196–218. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, H.; Gao, H. Interleukin-24 Limits Tumor-Infiltrating T Helper 17 Cell Response in Patients with Hepatitis B Virus-Related Hepatocellular Carcinoma. Viral Immunol. 2022, 35, 212–222. [Google Scholar] [CrossRef]
- Ho, D.W.-H.; Tsui, Y.-M.; Chan, L.-K.; Sze, K.M.-F.; Zhang, X.; Cheu, J.W.-S.; Chiu, Y.-T.; Lee, J.M.-F.; Chan, A.C.-Y.; Cheung, E.T.-Y.; et al. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat. Commun. 2021, 12, 3684. [Google Scholar] [CrossRef]
- Cheng, Y.; Gunasegaran, B.; Singh, H.D.; Dutertre, C.-A.; Loh, C.Y.; Lim, J.Q.; Crawford, J.C.; Lee, H.K.; Zhang, X.; Lee, B.; et al. Non-terminally exhausted tumor-resident memory HBV-specific T cell responses correlate with relapse-free survival in hepatocellular carcinoma. Immunity 2021, 54, 1825–1840.e7. [Google Scholar] [CrossRef]
- Xin, H.; Liang, D.; Zhang, M.; Ren, D.; Chen, H.; Zhang, H.; Li, S.; Ding, G.; Zhang, C.; Ding, Z.; et al. The CD68+ macrophages to CD8+ T-cell ratio is associated with clinical outcomes in hepatitis B virus (HBV)-related hepatocellular carcinoma. HPB 2021, 23, 1061–1071. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, L.; Liu, S.; Zhang, M.; Jin, Z. Interleukin-35 Suppresses Interleukin-9-Secreting CD4+ T Cell Activity in Patients With Hepatitis B-Related Hepatocellular Carcinoma. Front. Immunol. 2021, 12, 645835. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, X.; Wang, J.; He, Q.; Li, J.; Zhang, Z.; Liu, H. MicroRNA-138 Regulates T-Cell Function by Targeting PD-1 in Patients with Hepatitis B Virus-Related Liver Diseases. Lab. Med. 2021, 52, 439–451. [Google Scholar] [CrossRef]
- Zhao, L.; Jin, Y.; Yang, C.; Li, C. HBV-specific CD8 T cells present higher TNF-α expression but lower cytotoxicity in hepatocellular carcinoma. Clin. Exp. Immunol. 2020, 201, 289–296. [Google Scholar] [CrossRef]
- Li, Z.Q.; Wang, H.Y.; Zeng, Q.L.; Yan, J.Y.; Hu, Y.S.; Li, H.; Yu, Z.J. p65/miR-23a/CCL22 axis regulated regulatory T cells recruitment in hepatitis B virus positive hepatocellular carcinoma. Cancer Med. 2020, 9, 711–723. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, X.; Yang, C.; Zhan, Q.; Fu, Y.; Luo, H.; Luo, H. Intrahepatic T helper 17 cells recruited by hepatitis B virus X antigen-activated hepatic stellate cells exacerbate the progression of chronic hepatitis B virus infection. J. Viral Hepat. 2020, 27, 1138–1149. [Google Scholar] [CrossRef]
- Lim, C.J.; Lee, Y.H.; Pan, L.; Lai, L.; Chua, C.; Wasser, M.; Lim, T.K.H.; Yeong, J.; Toh, H.C.; Lee, S.Y.; et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut 2019, 68, 916–927. [Google Scholar] [CrossRef]
- Liu, X.; Li, M.; Wang, X.; Dang, Z.; Jiang, Y.; Wang, X.; Kong, Y.; Yang, Z. PD-1+ TIGIT+ CD8+ T cells are associated with pathogenesis and progression of patients with hepatitis B virus-related hepatocellular carcinoma. Cancer Immunol. Immunother. 2019, 68, 2041–2054. [Google Scholar] [CrossRef]
- Wang, Y.-G.; Zheng, D.-H.; Shi, M.; Xu, X.-M. T cell dysfunction in chronic hepatitis B infection and liver cancer: Evidence from transcriptome analysis. J. Med. Genet. 2019, 56, 22–28. [Google Scholar] [CrossRef]
- Hsiao, Y.-W.; Chiu, L.-T.; Chen, C.-H.; Shih, W.-L.; Lu, T.-P. Tumor-Infiltrating Leukocyte Composition and Prognostic Power in Hepatitis B- and Hepatitis C-Related Hepatocellular Carcinomas. Genes 2019, 10, 630. [Google Scholar] [CrossRef]
- Shen, X.H.; Xu, P.; Yu, X.; Song, H.F.; Chen, H.; Zhang, X.G.; Wu, M.; Wang, X. Discrepant Clinical Significance of CD28+CD8- and CD4+CD25high Regulatory T Cells During the Progression of Hepatitis B Virus Infection. Viral Immunol. 2018, 31, 548–558. [Google Scholar] [CrossRef]
- Liu, F.; Zeng, G.; Zhou, S.; He, X.; Sun, N.; Zhu, X.; Hu, A. Blocking Tim-3 or/and PD-1 reverses dysfunction of tumor-infiltrating lymphocytes in HBV-related hepatocellular carcinoma. Bull. Cancer 2018, 105, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Guan, J.; Chen, J.; Ying, J.; Liu, X.; Tian, P.; Liu, J.; Nie, L.; Zhao, Y.; Yu, G. LAP+CD4+ T cells are elevated among the peripheral blood mononuclear cells and tumor tissue of patients with hepatocellular carcinoma. Exp. Ther. Med. 2018, 16, 788–796. [Google Scholar] [CrossRef]
- Wu, X.; Su, Z.; Cai, B.; Yan, L.; Li, Y.; Feng, W.; Wang, L. Increased Circulating Follicular Regulatory T-Like Cells May Play a Critical Role in Chronic Hepatitis B Virus Infection and Disease Progression. Viral Immunol. 2018, 31, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, G.; Cai, Z.; Dong, X.; Qiu, L.; Xu, H.; Zeng, Y.; Liu, X.; Liu, J. Genomic and transcriptional Profiling of tumor infiltrated CD8+ T cells revealed functional heterogeneity of antitumor immunity in hepatocellular carcinoma. Oncoimmunology 2018, 8, e1538436. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Zhen, S.; Song, B. HBV-specific CD4+ cytotoxic T cells in hepatocellular carcinoma are less cytolytic toward tumor cells and suppress CD8+ T cell-mediated antitumor immunity. APMIS 2017, 25, 743–751. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Wang, Y.; Luo, G.-Y.; Han, F.; Li, Y.-Q.; Zhou, Z.-G.; Xu, G.-L. Relationship Between PD-L1 Expression and CD8+ T-cell Immune Responses in Hepatocellular Carcinoma. J. Immunother. 2017, 40, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.-T.; Fan, X.-P.; Fan, Y.-C.; Zhao, J.; Wang, K. Change in the Treg/Th17 cell imbalance in hepatocellular carcinoma patients and its clinical value. Medicine 2017, 96, e7704. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Li, L.; Hang, J.; Sun, Z.; Rong, Y.; Jin, Y. CXCR5+ CD8+ T Cells Indirectly Offer B Cell Help and Are Inversely Correlated with Viral Load in Chronic Hepatitis B Infection. DNA Cell Biol. 2017, 36, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; He, L.; Han, J.; Wang, L.; Li, M.; Jiang, Y.; Wang, X.; Yang, Z. Association of neutrophil-lymphocyte ratio and T lymphocytes with the pathogenesis and progression of HBV-associated primary liver cancer. PLoS ONE 2017, 12, e0170605. [Google Scholar] [CrossRef]
- Li, X.; Su, Y.; Hua, X.; Xie, C.; Liu, J.; Huang, Y.; Zhou, L.; Zhang, M.; Li, X.; Gao, Z. Levels of hepatic Th17 cells and regulatory T cells upregulated by hepatic stellate cells in advanced HBV-related liver fibrosis. J. Transl. Med. 2017, 15, 75. [Google Scholar] [CrossRef]
- Li, K.; Liu, H.; Guo, T. Th17/Treg imbalance is an indicator of liver cirrhosis process and a risk factor for HCC occurrence in HBV patients. Clin. Res. Hepatol. Gastroenterol. 2017, 41, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Lin, F.; Tan, H.; Zhu, Z.-Q.; Zhang, Z.-Y.; Zhao, L. Overrepresentation of IL-10-Expressing B Cells Suppresses Cytotoxic CD4+ T Cell Activity in HBV-Induced Hepatocellular Carcinoma. PLoS ONE 2016, 11, e0154815. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-Z.; Deng, W.; Li, J.-L.; Tang, Y.-M.; Zhang, L.-T.; Cui, Y.; Liang, X.-Q. Peripheral blood lymphocyte subset levels differ in patients with hepatocellular carcinoma. Oncotarget 2016, 7, 77558–77564. [Google Scholar] [CrossRef] [PubMed]
- Follicular Helper T Cell Exhaustion Induced by PD-L1 Expression in Hepatocellular Carcinoma Results in Impaired Cytokine Expression and B Cell Help, and Is Associated with Advanced Tumor Stages—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/27508013/ (accessed on 12 February 2024).
- Jia, Y.; Zeng, Z.; Li, Y.; Li, Z.; Jin, L.; Zhang, Z.; Wang, L.; Wang, F.-S. Impaired function of CD4+ T follicular helper (Tfh) cells associated with hepatocellular carcinoma progression. PLoS ONE 2015, 10, e0117458. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Gao, J.; Zhang, L.; Liang, H.; Huang, X.; Xu, Q.; Zhang, Y.; Shen, T.; Lu, F. Phenotype and function of CXCR5+CD45RA-CD4+ T cells were altered in HBV-related hepatocellular carcinoma and elevated serum CXCL13 predicted better prognosis. Oncotarget 2015, 6, 44239–44253. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.R.; Li, W.M. Treg-specific demethylated region activity in isolated regulatory t lymphocytes is a surrogate for disease severity in hepatocellular carcinoma. IUBMB Life 2015, 67, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Dinney, C.M.; Zhao, L.-D.; Conrad, C.D.; Duker, J.M.; Karas, R.O.; Hu, Z.; Hamilton, M.A.; Gillis, T.R.; Parker, T.M.; Fan, B.; et al. Regulation of HBV-specific CD8(+) T cell-mediated inflammation is diversified in different clinical presentations of HBV infection. J. Microbiol. 2015, 53, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Khosla, R.; David, P.; Rastogi, A.; Vyas, A.; Singh, D.; Bhardwaj, A.; Sahney, A.; Maiwall, R.; Sarin, S.K.; et al. CD4+CD25+CD127(low) Regulatory T Cells Play Predominant Anti-Tumor Suppressive Role in Hepatitis B Virus-Associated Hepatocellular Carcinoma. Front. Immunol. 2015, 6, 49. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Chen, Y.-J.; Chen, H.; Zhu, X.-Y.; Song, H.-F.; Cao, L.-J.; Wang, X.-F. The expression of programmed death-1 in circulating CD4+ and CD8+ T cells during hepatitis B virus infection progression and its correlation with clinical baseline characteristics. Gut Liver 2014, 8, 186–195. [Google Scholar] [CrossRef]
- Chen, J.; Wang, L.; Fu, Y.; Li, Y.; Bai, Y.; Luo, L.; Liao, Y. The co-inhibitory pathway and cellular immune imbalance in the progress of HBV infection. Hepatol. Int. 2014, 8, 55–63. [Google Scholar] [CrossRef]
- Li, F.-J.; Zhang, Y.; Jin, G.-X.; Yao, L.; Wu, D.-Q. Expression of LAG-3 is coincident with the impaired effector function of HBV-specific CD8(+) T cell in HCC patients. Immunol. Lett. 2013, 150, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, K.; Tao, K.; Chen, L.; Zheng, Q.; Lu, X.; Liu, J.; Shi, L.; Liu, C.; Wang, G.; et al. Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology 2012, 56, 1342–1351. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Shi, M.; Zeng, Z.; Qi, R.Z.; Liu, Z.W.; Zhang, J.Y.; Yang, Y.; Tien, P.; Wang, F. PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int. J. Cancer 2011, 128, 887–896. [Google Scholar] [CrossRef]
- Zhang, H.H.; Mei, M.H.; Fei, R.; Liu, F.; Wang, J.H.; Liao, W.J.; Qin, L.L.; Wei, L.; Chen, H.S. Regulatory T cells in chronic hepatitis B patients affect the immunopathogenesis of hepatocellular carcinoma by suppressing the anti-tumour immune responses. J. Viral Hepat. 2010, 17 (Suppl. S1), 34–43. [Google Scholar] [CrossRef]
- Gehring, A.J.; Ho, Z.Z.; Tan, A.T.; Aung, M.O.; Lee, K.H.; Tan, K.C.; Lim, S.G.; Bertoletti, A. Profile of tumor antigen-specific CD8 T cells in patients with hepatitis B virus-related hepatocellular carcinoma. Gastroenterology 2009, 137, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.W.; Chen, Y.X.; Wang, Z.M.; Jin, J.; Li, X.Y.; Du Zhou, L.; Huo, Z.; Zhou, J.H.; Chen, W. Increased expression of cyclooxygenase-2 and increased infiltration of regulatory T cells in tumors of patients with hepatocellular carcinoma. Digestion 2009, 79, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Xu, D.; Liu, Z.; Shi, M.; Zhao, P.; Fu, B.; Zhang, Z.; Yang, H.; Zhang, H.; Zhou, C.; et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 2007, 132, 2328–2339. [Google Scholar] [CrossRef] [PubMed]
- Ormandy, L.A.; Hillemann, T.; Wedemeyer, H.; Manns, M.P.; Greten, T.F.; Korangy, F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 2005, 65, 2457–2464. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yang, A.; Quan, C.; Pan, Y.; Zhang, H.; Li, Y.; Gao, C.; Lu, H.; Wang, X.; Cao, P.; et al. A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat. Commun. 2022, 13, 4594. [Google Scholar] [CrossRef]
- Kim, C.H. FOXP3 and its role in the immune system. Adv. Exp. Med. Biol. 2009, 665, 17–29. [Google Scholar]
- Aliabadi, E.; Urbanek-Quaing, M.; Maasoumy, B.; Bremer, B.; Grasshoff, M.; Li, Y.; Niehaus, C.E.; Wedemeyer, H.; Kraft, A.R.M.; Cornberg, M. Impact of HBsAg and HBcrAg levels on phenotype and function of HBV-specific T cells in patients with chronic hepatitis B virus infection. Gut 2022, 71, 2300–2312. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.-H.; Li, C.-L.; Lin, Y.-Y.; Ho, M.-C.; Wang, Y.-C.; Tseng, S.-T.; Chen, P.-J. Hepatitis B Virus DNA Integration Drives Carcinogenesis and Provides a New Biomarker for HBV-related HCC. Cell Mol. Gastroenterol. Hepatol. 2023, 15, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.-Y.; Choo, S.-P.; Trojan, J.; Welling, T.H., 3rd; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Park, J.-W.; Finn, R.S.; Cheng, A.-L.; Mathurin, P.; Edeline, J.; Kudo, M.; Harding, J.J.; Merle, P.; Rosmorduc, O.; et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): A randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022, 23, 77–90. [Google Scholar] [CrossRef]
- D’Alessio, A.; Rimassa, L.; Cortellini, A.; Pinato, D.J. PD-1 Blockade for Hepatocellular Carcinoma: Current Research and Future Prospects. J. Hepatocell. Carcinoma 2021, 8, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Elinav, E.; Nowarski, R.; Thaiss, C.A.; Hu, B.; Jin, C.; Flavell, R.A. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 2013, 13, 759–771. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef]
Author | Publication Year | Patients, Total (n) | HBV HCC | CHB | Non-HBV HCC | HC | Tissue Samples | Blood Samples |
---|---|---|---|---|---|---|---|---|
You et al. [20] | 2023 | 58 | 43 | 0 | 11 | 4 | Yes | Yes |
Sun et al. [21] | 2023 | 106 | 26 | 31 | 0 | 49 | No | Yes |
Liu et al. [22] | 2023 | 25 | 16 | 0 | 9 | 0 | Yes | No |
Chang et al. [23] | 2023 | 147 | 147 | 0 | 0 | 0 | No | Yes |
Li et al. [24] | 2023 | 34 | 6 | 0 | 22 | 6 | Yes | No |
Gao et al. [25] | 2022 | 14 | 7 | 0 | 7 | 0 | Yes | No |
Lu et al. [26] | 2022 | 142 | 87 | 0 | 55 | 0 | Yes | No |
Li et al. [27] | 2022 | 293 | 293 | 0 | 0 | 0 | Yes | Yes |
Zhang et al. [28] | 2022 | 86 | 42 | 27 | 0 | 17 | Yes | Yes |
Ho et al. [29] | 2021 | 8 | 29 | 22 | 0 | 0 | Yes | No |
Cheng et al. [30] | 2021 | 46 | 30 | 0 | 16 | 0 | Yes | Yes |
Xin et al. [31] | 2021 | 220 | 220 | 0 | 0 | 0 | Yes | No |
Zhang et al. [32] | 2021 | 60 | 22 | 27 | 0 | 11 | Yes | Yes |
Liu et al. [33] | 2021 | 152 | 31 | 78 | 0 | 43 | No | Yes |
Zhao et al. [34] | 2020 | 38 | 19 | 0 | 0 | 19 | Yes | Yes |
Li et al. [35] | 2020 | 60 | 30 | 0 | 30 | 0 | Yes | No |
Zhang et al. [36] | 2020 | 92 | 49 | 21 | 0 | 22 | Yes | No |
Lim et al. [37] | 2019 | 241 | 135 | 0 | 106 | 0 | Yes | Yes |
Liu et al. [38] | 2019 | 204 | 122 | 47 | 0 | 35 | No | Yes |
Wang et al. [39] | 2019 | 9 | 3 | 3 | 0 | 3 | Yes | Yes |
Hsiao et al. [40] | 2019 | 1328 | 313 | 0 | 1015 | 0 | Yes | No |
Shen et al. [41] | 2018 | 79 | 24 | 34 | 0 | 21 | No | Yes |
Liu et al. [42] | 2018 | 90 | 90 | 0 | 0 | 0 | Yes | Yes |
Ou et al. [43] | 2018 | 88 | 30 | 58 | 0 | 0 | Yes | Yes |
Wu et al. [44] | 2018 | 85 | 18 | 47 | 0 | 20 | Yes | Yes |
Li et al. [45] | 2018 | 8 | 7 | 0 | 1 | 0 | Yes | No |
Meng er al. [46] | 2017 | 11 | 11 | 0 | 0 | 0 | Yes | Yes |
Huang et al. [47] | 2017 | 411 | 362 | 0 | 49 | 0 | Yes | No |
Lan et al. [48] | 2017 | 93 | 51 | 0 | 0 | 42 | No | Yes |
Jiang et al. [49] | 2017 | 42 | 14 | 14 | 0 | 14 | No | Yes |
Liu et al. [50] | 2017 | 160 | 73 | 87 | 0 | 0 | No | Yes |
Li et al. [51] | 2017 | 32 | 32 | 0 | 0 | 0 | Yes | Yes |
Li et al. [52] | 2017 | 296 * | 0 | 0 | 0 | 0 | No | Yes |
Xue et al. [53] | 2016 | 28 | 15 | 0 | 0 | 13 | Yes | Yes |
Liu et al. [54] | 2016 | 815 | 574 | 0 | 141 | 100 | No | Yes |
Zhou et al. [55] | 2016 | 44 | 20 | 12 | 0 | 12 | Yes | Yes |
Jia et al. [56] | 2015 | 85 | 85 | 0 | 0 | 0 | Yes | Yes |
Duan et al. [57] | 2015 | 33 | 21 | 0 | 0 | 11 | No | Yes |
Liu et al. [58] | 2015 | 60 | 15 | 0 | 15 | 30 | Yes | Yes |
Dinney et al. [59] | 2015 | 45 | 15 | 30 | 0 | 0 | No | Yes |
Sharma et al. [60] | 2015 | 49 | 17 | 10 | 22 | 0 | Yes | Yes |
Xu et al. [61] | 2014 | 88 | 16 | 52 | 0 | 20 | No | Yes |
Chen et al. [62] | 2014 | 94 | 30 | 64 | 0 | 0 | No | Yes |
Li et al. [63] | 2013 | 89 | 60 | 0 | 0 | 29 | Yes | Yes |
Li et al. [64] | 2012 | 150 | 99 | 0 | 51 | 0 | Yes | No |
Shi et al. [65] | 2011 | 102 | 56 | 20 | 0 | 26 | Yes | Yes |
Zhang et al. [66] | 2010 | 89 | 49 | 1,5 | 0 | 25 | Yes | Yes |
Gehring et al. [67] | 2009 | 30 | 10 | 20 | 0 | 0 | No | Yes |
Gao et al. [68] | 2009 | 50 | 40 | 0 | 0 | 10 | Yes | No |
Fu et al. [69] | 2007 | 191 | 123 | 21 | 0 | 47 | Yes | Yes |
Ormandy et al. [70] | 2005 | 105 | 17 | 0 | 67 | 21 | No | Yes |
Total (n) | 6931 | 3660 | 740 | 1627 | 650 | 36 | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broholm, M.; Mathiasen, A.-S.; Apol, Á.D.; Weis, N. The Adaptive Immune Response in Hepatitis B Virus-Associated Hepatocellular Carcinoma Is Characterized by Dysfunctional and Exhausted HBV-Specific T Cells. Viruses 2024, 16, 707. https://doi.org/10.3390/v16050707
Broholm M, Mathiasen A-S, Apol ÁD, Weis N. The Adaptive Immune Response in Hepatitis B Virus-Associated Hepatocellular Carcinoma Is Characterized by Dysfunctional and Exhausted HBV-Specific T Cells. Viruses. 2024; 16(5):707. https://doi.org/10.3390/v16050707
Chicago/Turabian StyleBroholm, Malene, Anne-Sofie Mathiasen, Ása Didriksen Apol, and Nina Weis. 2024. "The Adaptive Immune Response in Hepatitis B Virus-Associated Hepatocellular Carcinoma Is Characterized by Dysfunctional and Exhausted HBV-Specific T Cells" Viruses 16, no. 5: 707. https://doi.org/10.3390/v16050707