Regional Variation of the CD4 and CD8 T Cell Epitopes Conserved in Circulating Dengue Viruses and Shared with Potential Vaccine Candidates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compilation of Experimentally Characterized Dengue-Specific CD8 and CD4 T Cell Epitopes
2.2. Retrieval of Published Full-Length Dengue Virus Sequences
2.3. Retrieval of the Sequences of Dengue Vaccine Constructs
2.4. Alignment of the Dengue-Specific CD4 and CD8 T Cell Epitopes with Sequences of the Dengue Viruses and/or Vaccine Constructs
2.5. Statistical Analysis
2.6. Code Availability
3. Results
3.1. Cataloging CD4/CD8 T Cell Epitopes among the Circulating Dengue Viruses from India
3.2. Identification of the CD4 and CD8 T Cell Epitopes within Various Dengue Vaccine Candidates
3.3. CD4 and CD8 T Cell Epitopes Conserved among the Circulating Dengue Viruses and Shared by the Vaccine Candidates
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.J. Is new dengue vaccine efficacy data a relief or cause for concern? npj Vaccines 2023, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Pintado Silva, J.; Fernandez-Sesma, A. Challenges on the development of a dengue vaccine: A comprehensive review of the state of the art. J. Gen. Virol. 2023, 104, 001831. [Google Scholar] [CrossRef] [PubMed]
- Chandele, A.; Sewatanon, J.; Gunisetty, S.; Singla, M.; Onlamoon, N.; Akondy, R.S.; Kissick, H.T.; Nayak, K.; Reddy, E.S.; Kalam, H. Characterization of human CD8 T cell responses in dengue virus-infected patients from India. J. Virol. 2016, 90, 11259–11278. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Bajpai, P.; Maheshwari, D.; Chawla, Y.M.; Saini, K.; Reddy, E.S.; Gottimukkala, K.; Nayak, K.; Gunisetty, S.; Aggarwal, C. Functional and transcriptional heterogeneity within the massively expanding HLADR+ CD38+ CD8 T cell population in acute febrile dengue patients. J. Virol. 2023, 97, e00746-23. [Google Scholar] [CrossRef] [PubMed]
- Friberg, H.; Gargulak, M.; Kong, A.; Lin, L.; Martinez, L.J.; Schmidt, A.C.; Paris, R.M.; Jarman, R.G.; Diaz, C.; Thomas, S.J. Characterization of B-cell and T-cell responses to a tetravalent dengue purified inactivated vaccine in healthy adults. npj Vaccines 2022, 7, 132. [Google Scholar] [CrossRef] [PubMed]
- Lenharo, M. Dengue is spreading. Can new vaccines and antivirals halt its rise? Nature 2023, 623, 470. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Grifoni, A.; Sette, A.; Weiskopf, D. Human T cell response to dengue virus infection. Front. Immunol. 2019, 10, 2125. [Google Scholar] [CrossRef] [PubMed]
- Rivino, L.; Lim, M.Q. CD 4+ and CD 8+ T-cell immunity to Dengue–lessons for the study of Zika virus. Immunology 2017, 150, 146–154. [Google Scholar] [CrossRef]
- Bashyam, H.S.; Green, S.; Rothman, A.L. Dengue virus-reactive CD8+ T cells display quantitative and qualitative differences in their response to variant epitopes of heterologous viral serotypes. J. Immunol. 2006, 176, 2817–2824. [Google Scholar] [CrossRef]
- Angelo, M.A.; Grifoni, A.; O‘Rourke, P.H.; Sidney, J.; Paul, S.; Peters, B.; de Silva, A.D.; Phillips, E.; Mallal, S.; Diehl, S.A. Human CD4+ T cell responses to an attenuated tetravalent dengue vaccine parallel those induced by natural infection in magnitude, HLA restriction, and antigen specificity. J. Virol. 2017, 91, e02147-16. [Google Scholar] [CrossRef] [PubMed]
- Gwinn, W.; Sun, W.; Innis, B.L.; Caudill, J.; King, A.D. Serotype-specific TH1 responses in recipients of two doses of candidate live-attenuated dengue virus vaccines. Am. J. Trop. Med. Hyg. 2003, 69, 39–47. [Google Scholar] [CrossRef]
- Weiskopf, D.; Cerpas, C.; Angelo, M.A.; Bangs, D.J.; Sidney, J.; Paul, S.; Peters, B.; Sanches, F.P.; Silvera, C.G.; Costa, P.R. Human CD8+ T-cell responses against the 4 dengue virus serotypes are associated with distinct patterns of protein targets. J. Infect. Dis. 2015, 212, 1743–1751. [Google Scholar] [CrossRef]
- Chu, H.; George, S.L.; Stinchcomb, D.T.; Osorio, J.E.; Partidos, C.D. CD8+ T-cell responses in flavivirus-naive individuals following immunization with a live-attenuated tetravalent dengue vaccine candidate. J. Infect. Dis. 2015, 212, 1618–1628. [Google Scholar] [CrossRef]
- Kurane, I.; Zeng, L.; Brinton, M.A.; Ennis, F.A. Definition of an epitope on NS3 recognized by human CD4+ cytotoxic T lymphocyte clones cross-reactive for dengue virus types 2, 3, and 4. Virology 1998, 240, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Waickman, A.T.; Friberg, H.; Kong, A.; Polhemus, M.; Endy, T.; Thomas, S.J.; Jarman, R.G.; Currier, J.R. Assessing the diversity and stability of cellular immunity generated in response to the candidate live-attenuated dengue virus vaccine TAK-003. Front. Immunol. 2019, 10, 452280. [Google Scholar] [CrossRef]
- Waickman, A.T.; Victor, K.; Li, T.; Hatch, K.; Rutvisuttinunt, W.; Medin, C.; Gabriel, B.; Jarman, R.G.; Friberg, H.; Currier, J.R. Dissecting the heterogeneity of DENV vaccine-elicited cellular immunity using single-cell RNA sequencing and metabolic profiling. Nat. Commun. 2019, 10, 3666. [Google Scholar] [CrossRef] [PubMed]
- Lindow, J.C.; Borochoff-Porte, N.; Durbin, A.P.; Whitehead, S.S.; Fimlaid, K.A.; Bunn, J.Y.; Kirkpatrick, B.D. Primary vaccination with low dose live dengue 1 virus generates a proinflammatory, multifunctional T cell response in humans. PLoS Negl. Trop. Dis. 2012, 6, e1742. [Google Scholar] [CrossRef]
- Fauci, A.; Erbelding, E.; Whitehead, S.; Cassetti, M.C.; Handley, F.G.; Gupta, R. Dengue vaccine clinical trials in India—An opportunity to inform the global response to a re-emerging disease challenge. Int. J. Infect. Dis. 2019, 84, S4–S6. [Google Scholar] [CrossRef]
- India, N. When it comes to a dengue vaccine, we might have to accept imperfection. Nature India 2023. Available online: https://doi.org/10.1038/d44151-023-00085-1 (accessed on 12 July 2023). [CrossRef]
- Medigeshi, G.R.; Islam, F.; Lodha, R. Quadrivalent dengue-virus vaccines: Challenges and opportunities for India. Lancet Infect. Dis. 2024. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, S.; Khanna, N. Dengue vaccine development: Global and Indian scenarios. Int. J. Infect. Dis. 2019, 84, S80–S86. [Google Scholar] [CrossRef] [PubMed]
- ICMR. ICMR Invites EoI for Collaboration for Conducting Phase-III Clinical Trial of Vaccine Candidates Developed against Dengue Virus Disease. EOI No. ICMR/EOI/Dengue/Vaccine Trial/2022, 3 March 2022. Available online: https://www.icmr.gov.in/pdf/tender/archive/ICMR_EOI_Dengue_Vaccine_Trial_v1.pdf (accessed on 12 July 2023).
- Mohanty, L.; Prabhu, M.; Mishra, A.K.; Purty, A.J.; Kanungo, R.; Ghosh, G.; Kumar, R.P.; Raj, A.N.; Bhushan, S.; Jangir, M.K. Safety and immunogenicity of a single dose, live-attenuated ‘tetravalent dengue vaccine’ in healthy Indian adults; a randomized, double-blind, placebo controlled phase I/II trial. Vaccine X 2022, 10, 100142. [Google Scholar] [CrossRef]
- Shet, A.; Kang, G. Dengue in India: Towards a better understanding of priorities and progress. Int. J. Infect. Dis. 2019, 84, S1–S3. [Google Scholar] [CrossRef]
- Appanna, R.; Huat, T.L.; See, L.L.C.; Tan, P.L.; Vadivelu, J.; Devi, S. Cross-reactive T-cell responses to the nonstructural regions of dengue viruses among dengue fever and dengue hemorrhagic fever patients in Malaysia. Clin. Vaccine Immunol. 2007, 14, 969–977. [Google Scholar] [CrossRef]
- Guy, B.; Nougarede, N.; Begue, S.; Sanchez, V.; Souag, N.; Carre, M.; Chambonneau, L.; Morrisson, D.N.; Shaw, D.; Qiao, M. Cell-mediated immunity induced by chimeric tetravalent dengue vaccine in naive or flavivirus-primed subjects. Vaccine 2008, 26, 5712–5721. [Google Scholar] [CrossRef] [PubMed]
- Malavige, G.; McGowan, S.; Atukorale, V.; Salimi, M.; Peelawatta, M.; Fernando, N.; Jayaratne, S.; Ogg, G. Identification of serotype-specific T cell responses to highly conserved regions of the dengue viruses. Clin. Exp. Immunol. 2012, 168, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Mongkolsapaya, J.; Dejnirattisai, W.; Xu, X.-n.; Vasanawathana, S.; Tangthawornchaikul, N.; Chairunsri, A.; Sawasdivorn, S.; Duangchinda, T.; Dong, T.; Rowland-Jones, S. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat. Med. 2003, 9, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Rivino, L.; Kumaran, E.A.; Jovanovic, V.; Nadua, K.; Teo, E.W.; Pang, S.W.; Teo, G.H.; Gan, V.C.H.; Lye, D.C.; Leo, Y.S. Differential targeting of viral components by CD4+ versus CD8+ T lymphocytes in dengue virus infection. J. Virol. 2013, 87, 2693–2706. [Google Scholar] [CrossRef]
- Simmons, C.P.; Dong, T.; Chau, N.V.; Dung, N.T.P.; Chau, T.N.B.; Thao, L.T.T.; Dung, N.T.; Hien, T.T.; Rowland-Jones, S.; Farrar, J. Early T-cell responses to dengue virus epitopes in Vietnamese adults with secondary dengue virus infections. J. Virol. 2005, 79, 5665–5675. [Google Scholar] [CrossRef]
- Chang, C.X.; Tan, A.T.; Or, M.Y.; Toh, K.Y.; Lim, P.Y.; Chia, A.S.; Froesig, T.M.; Nadua, K.D.; Oh, H.L.J.; Leong, H.N. Conditional ligands for A sian HLA variants facilitate the definition of CD8+ T-cell responses in acute and chronic viral diseases. Eur. J. Immunol. 2013, 43, 1109–1120. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhu, Y.O.; Becht, E.; Aw, P.; Chen, J.; Poidinger, M.; de Sessions, P.F.; Hibberd, M.L.; Bertoletti, A.; Lim, S.G. Multifactorial heterogeneity of virus-specific T cells and association with the progression of human chronic hepatitis B infection. Sci. Immunol. 2019, 4, eaau6905. [Google Scholar] [CrossRef] [PubMed]
- Chotiyarnwong, P.; Stewart-Jones, G.B.; Tarry, M.J.; Dejnirattisai, W.; Siebold, C.; Koch, M.; Stuart, D.I.; Harlos, K.; Malasit, P.; Screaton, G. Humidity control as a strategy for lattice optimization applied to crystals of HLA-A* 1101 complexed with variant peptides from dengue virus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2007, 63, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Culshaw, A.; Ladell, K.; Gras, S.; McLaren, J.E.; Miners, K.L.; Farenc, C.; Van Den Heuvel, H.; Gostick, E.; Dejnirattisai, W.; Wangteeraprasert, A. Germline bias dictates cross-serotype reactivity in a common dengue-virus-specific CD8+ T cell response. Nat. Immunol. 2017, 18, 1228–1237. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Guo, J.; Huang, X.; Liu, H.; Chen, X.; Jiang, M.; Wen, J. Identification of cytotoxic T lymphocyte epitopes in dengue virus serotype 1. J. Med. Virol. 2015, 87, 1077–1089. [Google Scholar] [CrossRef] [PubMed]
- Friberg, H.; Bashyam, H.; Toyosaki-Maeda, T.; Potts, J.A.; Greenough, T.; Kalayanarooj, S.; Gibbons, R.V.; Nisalak, A.; Srikiatkhachorn, A.; Green, S. Cross-reactivity and expansion of dengue-specific T cells during acute primary and secondary infections in humans. Sci. Rep. 2011, 1, 51. [Google Scholar] [CrossRef] [PubMed]
- Rivino, L.; Kumaran, E.A.; Thein, T.-L.; Too, C.T.; Hao Gan, V.C.; Hanson, B.J.; Wilder-Smith, A.; Bertoletti, A.; Gascoigne, N.R.J.; Lye, D.C. Virus-specific T lymphocytes home to the skin during natural dengue infection. Sci. Transl. Med. 2015, 7, 278ra35. [Google Scholar] [CrossRef] [PubMed]
- Rivino, L.; Tan, A.T.; Chia, A.; Kumaran, E.A.; Grotenbreg, G.M.; MacAry, P.A.; Bertoletti, A. Defining CD8+ T cell determinants during human viral infection in populations of Asian ethnicity. J. Immunol. 2013, 191, 4010–4019. [Google Scholar] [CrossRef]
- Sanchez, V.; Gimenez, S.; Tomlinson, B.; Chan, P.K.; Thomas, G.N.; Forrat, R.; Chambonneau, L.; Deauvieau, F.; Lang, J.; Guy, B. Innate and adaptive cellular immunity in flavivirus-naive human recipients of a live-attenuated dengue serotype 3 vaccine produced in Vero cells (VDV3). Vaccine 2006, 24, 4914–4926. [Google Scholar] [CrossRef]
- Testa, J.S.; Shetty, V.; Sinnathamby, G.; Nickens, Z.; Hafner, J.; Kamal, S.; Zhang, X.; Jett, M.; Philip, R. Conserved MHC class I–presented dengue virus epitopes identified by immunoproteomics analysis are targets for cross-serotype reactive T-Cell response. J. Infect. Dis. 2012, 205, 647–655. [Google Scholar] [CrossRef]
- Townsley, E.; O‘connor, G.; Cosgrove, C.; Woda, M.; Co, M.; Thomas, S.J.; Kalayanarooj, S.; Yoon, I.-K.; Nisalak, A.; Srikiatkhachorn, A. Interaction of a dengue virus NS1-derived peptide with the inhibitory receptor KIR3DL1 on natural killer cells. Clin. Exp. Immunol. 2016, 183, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Weiskopf, D.; Angelo, M.A.; de Azeredo, E.L.; Sidney, J.; Greenbaum, J.A.; Fernando, A.N.; Broadwater, A.; Kolla, R.V.; De Silva, A.D.; de Silva, A.M. Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Proc. Natl. Acad. Sci. USA 2013, 110, E2046–E2053. [Google Scholar] [CrossRef] [PubMed]
- Imrie, A.; Meeks, J.; Gurary, A.; Sukhbataar, M.; Kitsutani, P.; Effler, P.; Zhao, Z. Differential functional avidity of dengue virus-specific T-cell clones for variant peptides representing heterologous and previously encountered serotypes. J. Virol. 2007, 81, 10081–10091. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, S.; Pazoles, P.; Woda, M.; Shultz, L.D.; Greiner, D.L.; Brehm, M.A.; Mathew, A. Enhanced humoral and HLA-A2-restricted dengue virus-specific T-cell responses in humanized BLT NSG mice. Immunology 2012, 136, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Livingston, P.G.; Kurane, I.; Dai, L.-C.; Okamoto, Y.; Lai, C.-J.; Men, R.; Karaki, S.; Takiguchi, M.; Ennis, F.A. Dengue virus-specific, HLA-B35-restricted, human CD8+ cytotoxic T lymphocyte (CTL) clones. Recognition of NS3 amino acids 500 to 508 by CTL clones of two different serotype specificities. J. Immunol. 1995, 154, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Loke, H.; Bethell, D.B.; Phuong, C.; Dung, M.; Schneider, J.; White, N.J.; Day, N.P.; Farrar, J.; Hill, A.V. Strong HLA class I–restricted T cell responses in dengue hemorrhagic fever: A double-edged sword? J. Infect. Dis. 2001, 184, 1369–1373. [Google Scholar]
- Mathew, A.; Kurane, I.; Green, S.; Stephens, H.A.; Vaughn, D.W.; Kalayanarooj, S.; Suntayakorn, S.; Chandanayingyong, D.; Ennis, F.A.; Rothman, A.L. Predominance of HLA-restricted cytotoxic T-lymphocyte responses to serotype-cross-reactive epitopes on nonstructural proteins following natural secondary dengue virus infection. J. Virol. 1998, 72, 3999–4004. [Google Scholar] [CrossRef]
- Mongkolsapaya, J.; Duangchinda, T.; Dejnirattisai, W.; Vasanawathana, S.; Avirutnan, P.; Jairungsri, A.; Khemnu, N.; Tangthawornchaikul, N.; Chotiyarnwong, P.; Sae-Jang, K. T cell responses in dengue hemorrhagic fever: Are cross-reactive T cells suboptimal? J. Immunol. 2006, 176, 3821–3829. [Google Scholar]
- Nascimento, E.J.; Mailliard, R.B.; Khan, A.M.; Sidney, J.; Sette, A.; Guzman, N.; Paulaitis, M.; Melo, A.B.d.; Cordeiro, M.T.; Gil, L.V. Identification of conserved and HLA promiscuous DENV3 T-cell epitopes. PLoS Negl. Trop. Dis. 2013, 7, e2497. [Google Scholar] [CrossRef]
- Piazza, P.; Campbell, D.; Marques, E.; Hildebrand, W.H.; Buchli, R.; Mailliard, R.; Rinaldo, C.R. Dengue virus-infected human dendritic cells reveal hierarchies of naturally expressed novel NS3 CD8 T cell epitopes. Clin. Exp. Immunol. 2014, 177, 696–702. [Google Scholar] [CrossRef]
- Friberg, H.; Burns, L.; Woda, M.; Kalayanarooj, S.; Endy, T.P.; Stephens, H.A.; Green, S.; Rothman, A.L.; Mathew, A. Memory CD8+ T cells from naturally acquired primary dengue virus infection are highly cross-reactive. Immunol. Cell Biol. 2011, 89, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Grifoni, A.; Angelo, M.; Sidney, J.; Paul, S.; Peters, B.; de Silva, A.D.; Phillips, E.; Mallal, S.; Diehl, S.A.; Botten, J. Patterns of cellular immunity associated with experimental infection with rDEN2Δ30 (Tonga/74) support its suitability as a human dengue virus challenge strain. J. Virol. 2017, 91, e02133-16. [Google Scholar] [CrossRef] [PubMed]
- Grifoni, A.; Voic, H.; Dhanda, S.K.; Kidd, C.K.; Brien, J.D.; Buus, S.; Stryhn, A.; Durbin, A.P.; Whitehead, S.; Diehl, S.A. T cell responses induced by attenuated flavivirus vaccination are specific and show limited cross-reactivity with other flavivirus species. J. Virol. 2020, 94, e00089-20. [Google Scholar] [CrossRef] [PubMed]
- Zivna, I.; Green, S.; Vaughn, D.W.; Kalayanarooj, S.; Stephens, H.A.; Chandanayingyong, D.; Nisalak, A.; Ennis, F.A.; Rothman, A.L. T cell responses to an HLA-B* 07-restricted epitope on the dengue NS3 protein correlate with disease severity. J. Immunol. 2002, 168, 5959–5965. [Google Scholar] [CrossRef] [PubMed]
- Zivny, J.; DeFronzo, M.; Jarry, W.; Jameson, J.; Cruz, J.; Ennis, F.A.; Rothman, A.L. Partial agonist effect influences the CTL response to a heterologous dengue virus serotype. J. Immunol. 1999, 163, 2754–2760. [Google Scholar] [CrossRef]
- Zivny, J.; Kurane, I.; Leporati, A.M.; Ibe, M.; Takiguchi, M.; Zeng, L.L.; Brinton, M.A.; Ennis, F.A. A single nine-amino acid peptide induces virus-specific, CD8+ human cytotoxic T lymphocyte clones of heterogeneous serotype specificities. J. Exp. Med. 1995, 182, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Townsley, E.; Woda, M.; Thomas, S.J.; Kalayanarooj, S.; Gibbons, R.V.; Nisalak, A.; Srikiatkhachorn, A.; Green, S.; Stephens, H.A.; Rothman, A.L. Distinct activation phenotype of a highly conserved novel HLA-B57-restricted epitope during dengue virus infection. Immunology 2014, 141, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Turtle, L.; Bali, T.; Buxton, G.; Chib, S.; Chan, S.; Soni, M.; Hussain, M.; Isenman, H.; Fadnis, P.; Venkataswamy, M.M. Human T cell responses to Japanese encephalitis virus in health and disease. J. Exp. Med. 2016, 213, 1331–1352. [Google Scholar] [CrossRef] [PubMed]
- Turtle, L.; Tatullo, F.; Bali, T.; Ravi, V.; Soni, M.; Chan, S.; Chib, S.; Venkataswamy, M.M.; Fadnis, P.; Yaïch, M. Cellular immune responses to live attenuated Japanese encephalitis (JE) vaccine SA14-14-2 in adults in a JE/dengue co-endemic area. PLoS Negl. Trop. Dis. 2017, 11, e0005263. [Google Scholar] [CrossRef]
- Weiskopf, D.; Yauch, L.E.; Angelo, M.A.; John, D.V.; Greenbaum, J.A.; Sidney, J.; Kolla, R.V.; De Silva, A.D.; de Silva, A.M.; Grey, H. Insights into HLA-restricted T cell responses in a novel mouse model of dengue virus infection point toward new implications for vaccine design. J. Immunol. 2011, 187, 4268–4279. [Google Scholar] [CrossRef]
- Wen, J.; Duan, Z.; Jiang, L. Identification of a dengue virus-specific HLA-A* 0201-restricted CD8+ T cell epitope. J. Med. Virol. 2010, 82, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Kurane, I.; Okamoto, Y.; Ennis, F.A.; Brinton, M.A. Identification of amino acids involved in recognition by dengue virus NS3-specific, HLA-DR15-restricted cytotoxic CD4+ T-cell clones. J. Virol. 1996, 70, 3108–3117. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, S.J.; Zeng, W.; Kurane, I.; Ennis, F.A. Identification of two epitopes on the dengue 4 virus capsid protein recognized by a serotype-specific and a panel of serotype-cross-reactive human CD4+ cytotoxic T-lymphocyte clones. J. Virol. 1996, 70, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Grifoni, A.; Pham, J.; Sidney, J.; O‘Rourke, P.H.; Paul, S.; Peters, B.; Martini, S.R.; de Silva, A.D.; Ricciardi, M.J.; Magnani, D.M. Prior Dengue virus exposure shapes T cell immunity to Zika virus in humans. J. Virol. 2017, 91, e01469-17. [Google Scholar] [CrossRef]
- Kurane, I.; Dai, L.C.; Livingston, P.G.; Reed, E.; Ennis, F.A. Definition of an HLA-DPw2-restricted epitope on NS3, recognized by a dengue virus serotype-cross-reactive human CD4+ CD8-cytotoxic T-cell clone. J. Virol. 1993, 67, 6285–6288. [Google Scholar] [CrossRef] [PubMed]
- Kurane, I.; Okamoto, Y.; Dai, L.C.; Zeng, L.L.; Brinton, M.A.; Ennis, F.A. Flavivirus-cross-reactive, HLA-DR15-restricted epitope on NS3 recognized by human CD4+ CD8− cytotoxic T lymphocyte clones. J. Gen. Virol. 1995, 76, 2243–2249. [Google Scholar] [CrossRef] [PubMed]
- Mangada, M.M.; Rothman, A.L. Altered cytokine responses of dengue-specific CD4+ T cells to heterologous serotypes. J. Immunol. 2005, 175, 2676–2683. [Google Scholar] [CrossRef] [PubMed]
- Moran, E.; Simmons, C.; Vinh Chau, N.; Luhn, K.; Wills, B.; Dung, N.P.; Thao, L.T.T.; Hien, T.T.; Farrar, J.; Rowland-Jones, S. Preservation of a critical epitope core region is associated with the high degree of flaviviral cross-reactivity exhibited by a dengue-specific CD4+ T cell clone. Eur. J. Immunol. 2008, 38, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Kurane, I.; Leporati, A.M.; Ennis, F.A. Definition of the region on NS3 which contains multiple epitopes recognized by dengue virus serotype-cross-reactive and flavivirus-cross-reactive, HLA-DPw2-restricted CD4+ T cell clones. J. Gen. Virol. 1998, 79, 697–704. [Google Scholar] [CrossRef]
- Wen, J.-S.; Jiang, L.-F.; Zhou, J.-M.; Yan, H.-J.; Fang, D.-Y. Computational prediction and identification of dengue virus-specific CD4+ T-cell epitopes. Virus Res. 2008, 132, 42–48. [Google Scholar] [CrossRef]
- Grifoni, A.; Angelo, M.A.; Lopez, B.; O’Rourke, P.H.; Sidney, J.; Cerpas, C.; Balmaseda, A.; Silveira, C.G.; Maestri, A.; Costa, P.R. Global assessment of dengue virus-specific CD4+ T cell responses in dengue-endemic areas. Front. Immunol. 2017, 8, 1309. [Google Scholar] [CrossRef] [PubMed]
- Weiskopf, D.; Bangs, D.J.; Sidney, J.; Kolla, R.V.; De Silva, A.D.; de Silva, A.M.; Crotty, S.; Peters, B.; Sette, A. Dengue virus infection elicits highly polarized CX3CR1+ cytotoxic CD4+ T cells associated with protective immunity. Proc. Natl. Acad. Sci. USA 2015, 112, E4256–E4263. [Google Scholar] [CrossRef] [PubMed]
- Bowerman, N.A.; Falta, M.T.; Mack, D.G.; Kappler, J.W.; Fontenot, A.P. Mutagenesis of beryllium-specific TCRs suggests an unusual binding topology for antigen recognition. J. Immunol. 2011, 187, 3694–3703. [Google Scholar] [CrossRef] [PubMed]
- Falta, M.T.; Pinilla, C.; Mack, D.G.; Tinega, A.N.; Crawford, F.; Giulianotti, M.; Santos, R.; Clayton, G.M.; Wang, Y.; Zhang, X. Identification of beryllium-dependent peptides recognized by CD4+ T cells in chronic beryllium disease. J. Exp. Med. 2013, 210, 1403–1418. [Google Scholar] [CrossRef] [PubMed]
- Grifoni, A.; Moore, E.; Voic, H.; Sidney, J.; Phillips, E.; Jadi, R.; Mallal, S.; De Silva, A.D.; De Silva, A.M.; Peters, B. Characterization of magnitude and antigen specificity of HLA-DP, DQ, and DRB3/4/5 restricted DENV-specific CD4+ T cell responses. Front. Immunol. 2019, 10, 1568. [Google Scholar] [CrossRef] [PubMed]
- Schouest, B.; Grifoni, A.; Pham, J.; Mateus, J.; Sydney, J.; Brien, J.D.; De Silva, A.D.; Balmaseda, A.; Harris, E.; Sette, A. Pre-existing T cell memory against Zika virus. J. Virol. 2021, 95, e00132-21. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, S.S.; Durbin, A.P.; Pierce, K.K.; Elwood, D.; McElvany, B.D.; Fraser, E.A.; Carmolli, M.P.; Tibery, C.M.; Hynes, N.A.; Jo, M. In a randomized trial, the live attenuated tetravalent dengue vaccine TV003 is well-tolerated and highly immunogenic in subjects with flavivirus exposure prior to vaccination. PLoS Negl. Trop. Dis. 2017, 11, e0005584. [Google Scholar] [CrossRef] [PubMed]
- Bauer, K.; Esquilin, I.O.; Cornier, A.S.; Thomas, S.J.; Del Rio, A.I.Q.; Bertran-Pasarell, J.; Ramirez, J.O.M.; Diaz, C.; Carlo, S.; Eckels, K.H. A phase II, randomized, safety and immunogenicity trial of a re-derived, live-attenuated dengue virus vaccine in healthy children and adults living in Puerto Rico. Am. J. Trop. Med. Hyg. 2015, 93, 441. [Google Scholar] [CrossRef]
- Schmidt, A.C.; Lin, L.; Martinez, L.J.; Ruck, R.C.; Eckels, K.H.; Collard, A.; De La Barrera, R.; Paolino, K.M.; Toussaint, J.-F.; Lepine, E. Phase 1 randomized study of a tetravalent dengue purified inactivated vaccine in healthy adults in the United States. Am. J. Trop. Med. Hyg. 2017, 96, 1325. [Google Scholar] [CrossRef]
- Dorigatti, I.; Aguas, R.; Donnelly, C.A.; Guy, B.; Coudeville, L.; Jackson, N.; Saville, M.; Ferguson, N.M. Modelling the immunological response to a tetravalent dengue vaccine from multiple phase-2 trials in Latin America and South East Asia. Vaccine 2015, 33, 3746–3751. [Google Scholar] [CrossRef]
- Sáez-Llorens, X.; Tricou, V.; Yu, D.; Rivera, L.; Tuboi, S.; Garbes, P.; Borkowski, A.; Wallace, D. Safety and immunogenicity of one versus two doses of Takeda’s tetravalent dengue vaccine in children in Asia and Latin America: Interim results from a phase 2, randomised, placebo-controlled study. Lancet Infect. Dis. 2017, 17, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Danko, J.R.; Kochel, T.; Teneza-Mora, N.; Luke, T.C.; Raviprakash, K.; Sun, P.; Simmons, M.; Moon, J.E.; De La Barrera, R.; Martinez, L.J. Safety and immunogenicity of a tetravalent dengue DNA vaccine administered with a cationic lipid-based adjuvant in a phase 1 clinical trial. Am. J. Trop. Med. Hyg. 2018, 98, 849. [Google Scholar] [CrossRef] [PubMed]
- Chng, M.H.Y.; Lim, M.Q.; Rouers, A.; Becht, E.; Lee, B.; MacAry, P.A.; Lye, D.C.; Leo, Y.S.; Chen, J.; Fink, K. Large-scale HLA tetramer tracking of T cells during dengue infection reveals broad acute activation and differentiation into two memory cell fates. Immunity 2019, 51, 1119–1135.e5. [Google Scholar] [CrossRef] [PubMed]
- de Alwis, R.; Bangs, D.J.; Angelo, M.A.; Cerpas, C.; Fernando, A.; Sidney, J.; Peters, B.; Gresh, L.; Balmaseda, A.; de Silva, A.D. Immunodominant dengue virus-specific CD8+ T cell responses are associated with a memory PD-1+ phenotype. J. Virol. 2016, 90, 4771–4779. [Google Scholar] [CrossRef] [PubMed]
- Alagarasu, K.; Patil, J.; Kakade, M.; More, A.; Yogesh, B.; Newase, P.; Jadhav, S.; Parashar, D.; Kaur, H.; Gupta, N. Serotype and genotype diversity of dengue viruses circulating in India: A multi-centre retrospective study involving the Virus Research Diagnostic Laboratory Network in 2018. Int. J. Infect. Dis. 2021, 111, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, S.; Pattabiraman, C.; Sankaradoss, A.; Krishna, S.; Roy, R. Evolutionary dynamics of dengue virus in India. PLoS Pathog. 2023, 19, e1010862. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, S.F.; Rosario, V.; Britto, C.; Dias, M.; Nayak, K.; Chandele, A.; Kaja, M.-K.; Shet, A. Emergence of new genotypes and lineages of dengue viruses during the 2012–15 epidemics in southern India. Int. J. Infect. Dis. 2019, 84, S34–S43. [Google Scholar]
- Mishra, G.; Jain, A.; Prakash, O.; Prakash, S.; Kumar, R.; Garg, R.K.; Pandey, N.; Singh, M. Molecular characterization of dengue viruses circulating during 2009–2012 in Uttar Pradesh, India. J. Med. Virol. 2015, 87, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, S.; Tiraki, D.; Diwan, A.; Lalwani, S.K.; Modak, M.; Mishra, A.C.; Arankalle, V.A. Co-circulation of all the four dengue virus serotypes and detection of a novel clade of DENV-4 (genotype I) virus in Pune, India during 2016 season. PLoS ONE 2018, 13, e0192672. [Google Scholar] [CrossRef]
- Dash, P.K.; Parida, M.M.; Saxena, P.; Kumar, M.; Rai, A.; Pasha, S.T.; Jana, A.M. Emergence and continued circulation of dengue-2 (genotype IV) virus strains in northern India. J. Med. Virol. 2004, 74, 314–322. [Google Scholar] [CrossRef]
- Anoop, M.; Issac, A.; Mathew, T.; Philip, S.; Kareem, N.A.; Unnikrishnan, R.; Sreekumar, E. Genetic characterization of dengue virus serotypes causing concurrent infection in an outbreak in Ernakulam, Kerala, South India. Indian J. Exp. Biol. 2010, 48, 849. [Google Scholar]
- Puri, B.; Nelson, W.; Porter, K.R.; Henchal, E.A.; Hayes, C.G. Complete nucleotide sequence analysis of a Western Pacific dengue-1 virus strain. Virus Genes 1998, 17, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Irie, K.; Mohan, P.; Sasaguri, Y.; Putnak, R.; Padmanabhan, R. Sequence analysis of cloned dengue virus type 2 genome (New Guinea-C strain). Gene 1989, 75, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Gruenberg, A.; Woo, W.; Biedrzycka, A.; Wright, P.J. Partial nucleotide sequence and deduced amino acid sequence of the structural proteins of dengue virus type 2, New Guinea C and PUO-218 strains. J. Gen. Virol. 1988, 69, 1391–1398. [Google Scholar] [CrossRef] [PubMed]
- Blok, J.; McWilliam, S.; Butler, H.; Gibbs, A.; Weiller, G.; Herring, B.; Hemsley, A.; Aaskov, J.; Yoksan, S.; Bhamarapravati, N. Comparison of a dengue-2 virus and its candidate vaccine derivative: Sequence relationships with the flaviviruses and other viruses. Virology 1992, 187, 573–590. [Google Scholar] [CrossRef] [PubMed]
- Yenamandra, S.P.; Koo, C.; Chiang, S.; Lim, H.S.J.; Yeo, Z.Y.; Ng, L.C.; Hapuarachchi, H.C. Evolution, heterogeneity and global dispersal of cosmopolitan genotype of Dengue virus type 2. Sci. Rep. 2021, 11, 13496. [Google Scholar] [CrossRef] [PubMed]
- Rico-Hesse, R. Microevolution and virulence of dengue viruses. Adv. Virus Res. 2003, 59, 315. [Google Scholar]
- Rabaa, M.A.; Girerd-Chambaz, Y.; Duong Thi Hue, K.; Vu Tuan, T.; Wills, B.; Bonaparte, M.; Van Der Vliet, D.; Langevin, E.; Cortes, M.; Zambrano, B. Genetic epidemiology of dengue viruses in phase III trials of the CYD tetravalent dengue vaccine and implications for efficacy. Elife 2017, 6, e24196. [Google Scholar] [CrossRef]
DENV-1 | DENV-2 | DENV-3 | DENV-4 | |
---|---|---|---|---|
Capsid | 53 | 68 | 46 | 35 |
PreM | 10 | 22 | 11 | 10 |
Env | 34 | 41 | 31 | 25 |
NS1 | 20 | 25 | 17 | 5 |
NS2a | 63 | 53 | 52 | 49 |
NS2b | 13 | 10 | 9 | 8 |
NS3 | 61 | 50 | 44 | 35 |
NS4a | 18 | 17 | 11 | 22 |
NS4b | 21 | 32 | 16 | 27 |
NS5 | 61 | 77 | 57 | 46 |
All proteins | 354 | 395 | 294 | 262 |
All proteins and all serotypes | 1305 |
DENV-1 | DENV-2 | DENV-3 | DENV-4 | |
---|---|---|---|---|
Capsid | 13 | 9 | 8 | 1 |
PreM | 2 | 9 | 4 | 4 |
Env | 13 | 39 | 16 | 3 |
NS1 | 4 | 10 | 9 | 3 |
NS2a | 10 | 17 | 6 | 6 |
NS2b | 3 | 13 | 0 | 4 |
NS3 | 52 | 78 | 12 | 28 |
NS4a | 11 | 11 | 2 | 8 |
NS4b | 11 | 26 | 5 | 13 |
NS5 | 37 | 52 | 12 | 20 |
All proteins | 156 | 264 | 74 | 90 |
All proteins and all serotypes | 584 |
Vaccine | Developer | Clinical Stage | Dengue Serotype | Strain | Accession | Backbone | References |
---|---|---|---|---|---|---|---|
Whole virus as antigen | |||||||
TV003 | NIH/NIAID | Phase 3 | DENV-1 | Nauru/West Pac/1974 | NP_059433.1 | [71] | |
(Live attenuated tetravalent DENV with Delta-30 mutation) | DENV-2 (non-structural regions of DENV-4) | New Guinea C | QBK46951.1 | ||||
DENV-3 | Sleman 78 | AAT69740.1 | |||||
DENV-4 | 814669 | AAK01233.1 | |||||
TDEN | WRAIR/GSK | Phase 2 | DENV-1 | Nauru/West Pac/1974 | NP_059433.1 | [72] | |
(Live attenuated tetravalent DENV with serial passage in PDK cells) | DENV-2 | S16803 | ADA00411.1 | ||||
DENV-3 | CH53489 | AAB69126.2 | |||||
DENV-4 | 341750 | ADA00410.1 | |||||
DPIV | WRAIR/GSK/FIOCRUZ | Phase 1 | DENV-1 | Nauru/West Pac/1974 | NP_059433.1 | [73] | |
Purified inactivated tetravalent DENV) | DENV-2 | New Guinea C | QBK46951.1 | ||||
DENV-3 | Sleman 78 | AAT69740.1 | |||||
DENV-4 | 814669 | AAK01233.1 | |||||
Pre-membrane and Envelope as antigen | |||||||
Dengvaxia/CYD-TDV | Sanofi Pasteur | Licensed | DENV-1 | PUO359 | AAP80422.1 | Yellow fever virus (YFV) | [74] |
(Live attenuated chimeric tetravalent DENV) | DENV-2 | NewGuineaC_PUO-218hybrid | AAC59274.1 | ||||
DENV-3 | PaH881_88 | AAA68512.1 | |||||
DENV-4 | 1228 | AER00190.1 | |||||
DENVax/TAK-003 | CDC/Takeda/Inviragen | Phase 3 | DENV-1 | 16007 | AAF59976.1 | DENV-2 PDK53 | [75] |
(Live attenuated chimeric tetravalent DENV) | DENV-2 | 16681 | AAA73185.1 | ||||
DENV-3 | 16562 | AAA68508.1 | |||||
DENV-4 | 1036 | AAO83387.1 | |||||
TVDV | WRAIR/NMRC | Phase 1 | DENV-1 | Nauru/West Pac/1974 | NP_059433.1 | plasmid VR1012 | [76] |
(Tetravalent DNA vaccine with E80 modification in DENV-2) | DENV-2 | New Guinea C | QBK46951.1 | ||||
DENV-3 | H87 | AAA99437.1 | |||||
DENV-4 | H241 | AAX48017.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chawla, Y.M.; Bajpai, P.; Saini, K.; Reddy, E.S.; Patel, A.K.; Murali-Krishna, K.; Chandele, A. Regional Variation of the CD4 and CD8 T Cell Epitopes Conserved in Circulating Dengue Viruses and Shared with Potential Vaccine Candidates. Viruses 2024, 16, 730. https://doi.org/10.3390/v16050730
Chawla YM, Bajpai P, Saini K, Reddy ES, Patel AK, Murali-Krishna K, Chandele A. Regional Variation of the CD4 and CD8 T Cell Epitopes Conserved in Circulating Dengue Viruses and Shared with Potential Vaccine Candidates. Viruses. 2024; 16(5):730. https://doi.org/10.3390/v16050730
Chicago/Turabian StyleChawla, Yadya M., Prashant Bajpai, Keshav Saini, Elluri Seetharami Reddy, Ashok Kumar Patel, Kaja Murali-Krishna, and Anmol Chandele. 2024. "Regional Variation of the CD4 and CD8 T Cell Epitopes Conserved in Circulating Dengue Viruses and Shared with Potential Vaccine Candidates" Viruses 16, no. 5: 730. https://doi.org/10.3390/v16050730
APA StyleChawla, Y. M., Bajpai, P., Saini, K., Reddy, E. S., Patel, A. K., Murali-Krishna, K., & Chandele, A. (2024). Regional Variation of the CD4 and CD8 T Cell Epitopes Conserved in Circulating Dengue Viruses and Shared with Potential Vaccine Candidates. Viruses, 16(5), 730. https://doi.org/10.3390/v16050730