Cytokine Dynamics and Herpesvirus Interactions in Pediatric Liver and Kidney Transplant Recipients: The Distinct Behavior of HCMV, HHV6, HHV7 and EBV
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Clinical Samples
2.2. Immunoassay
2.3. Viral Detection in Clinical Samples
2.4. Statistical Analysis
3. Results
3.1. TNF-α, MIP-1β, MCP-1 and IL-13 Are Elevated in the Plasma of Post-Transplant Patients
3.2. Elevated Cytokines Are Preferentially Found in Samples with Multiple Viral Detection
3.3. Elevated Cytokines Levels Correlate with Detection of the β-Herpesviruses
3.4. Cytokines IL-4, IL-8 and IL-10 Significantly Increase in Patients with Graft Rejection
3.5. Detection of EBV Associates with an Immunomodulatory Effect
3.6. The β-Herpesviruses Appear to Reverse the EBV Immunomodulatory Effect
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EBV | Epstein–Barr virus |
G-CSF | granulocyte-colony stimulating factor |
GM-CSF | granulocyte/macrophage-colony stimulating factor |
HCMV | human cytomegalovirus |
HHV6 | human herpesvirus 6 |
HHV7 | human herpesvirus 7 |
IFN-γ | interferon-γ |
IL | interleukin |
IP-10 | interferon gamma-inducible protein 10 |
KSHV | Kaposi sarcoma associated virus |
LOD | limit of detection |
MCP-1 | monocyte chemoattractant protein 1 |
MIP1-β | macrophage inflammatory protein 1β |
PCA | principal component analysis |
PTLD | post-transplant lymphoproliferative syndrome |
qPCR | quantitative polymerase chain reaction |
RR | relative risk |
TNFα | tumor necrosis factor-α |
Appendix A
Patient ID | EBV Serology | HCMV Serology | ||
---|---|---|---|---|
Donor | Recipient | Donor | Recipient | |
TR1 | Positive | Negative | Negative | Positive |
TR4 | Positive | No data | Positive | Negative |
TR5 | No data | No data | Positive | Positive |
TR6 | No data | No data | Positive | Negative |
TR7 | No data | No data | Positive | Positive |
TR8 | No data | No data | Positive | Negative |
TR10 | Positive | Positive | Positive | Positive |
TR13 | Positive | Positive | Positive | Positive |
TR14 | Positive | Positive | Positive | Positive |
TR15 | No data | No data | No data | Positive |
TR16 | Positive | Positive | Positive | Positive |
TR17 | No data | No data | Positive | Positive |
TR22 | Positive | Positive | Positive | Positive |
TH6 | Positive | Positive | Positive | Negative |
TH7 | Positive | Positive | Positive | Positive |
TH9 | Positive | Negative | Negative | Negative |
TH10 | Positive | Negative | Positive | Positive |
TH12 | Negative | Positive | Positive | Positive |
TH13 | Positive | Positive | Positive | Negative |
TH15 | Negative | No data | Positive | Negative |
Appendix B
- a represents the number of samples positive for both the cytokine and the outcome of interest (e.g., rejection or positivity to viral DNAemia);
- b is the count of samples positive for the cytokine but negative for the outcome;
- c indicates the samples negative for the cytokine but positive for the outcome; and
- d includes the samples negative for both the cytokine and the outcome.
References
- Kawaguchi, Y.; Mori, Y.; Kimura, H. Human Herpesviruses; Springer: Singapore, 2018. [Google Scholar]
- Jenkins, F.J.; Rowe, D.T.; Rinaldo, C.R., Jr. Herpesvirus infections in organ transplant recipients. Clin. Diagn. Lab. Immunol. 2003, 10, 1–7. [Google Scholar] [CrossRef]
- Yuste, J.R.; del Pozo, J.L.; Quetglas, E.G.; Azanza, J.R. The most common infections in the transplanted patient. An. Sist. Sanit. Navar. 2006, 29 (Suppl. S2), 175–205. [Google Scholar]
- Okuno, T.; Higashi, K.; Shiraki, K.; Yamanishi, K.; Takahashi, M.; Kokado, Y.; Ishibashi, M.; Takahara, S.; Sonoda, T.; Tanaka, K.; et al. Human herpesvirus 6 infection in renal transplantation. Transplantation 1990, 49, 519–522. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Suga, S.; Asano, Y.; Nakashima, T.; Yazaki, T.; Ono, Y.; Fujita, T.; Tsuzuki, K.; Sugiyama, S.; Oshima, S. A prospective study of human herpesvirus-6 infection in renal transplantation. Transplantation 1992, 54, 879–883. [Google Scholar] [CrossRef] [PubMed]
- Defelitto, R.; Ciardullo, M.; Mattera, F.; de Santibáñes, E.; Surur, D. Trasplante de órganos. In Cirugía, Bases Clínicas y Terapéuticas; Jorge, D.R., Ed.; Facultad de Ciencias Médicas, Universidad Nacional de la Plata: La Plata, Argentina, 2013; pp. 411–461. [Google Scholar]
- Sanchez-Ponce, Y.; Fuentes-Panana, E.M. Molecular and immune interactions between beta- and gamma-herpesviruses in the immunocompromised host. J. Leukoc. Biol. 2022, 112, 79–95. [Google Scholar] [CrossRef]
- Cruz-Munoz, M.E.; Fuentes-Panana, E.M. Beta and Gamma Human Herpesviruses: Agonistic and Antagonistic Interactions with the Host Immune System. Front. Microbiol. 2017, 8, 2521. [Google Scholar] [CrossRef]
- Slobedman, B.; Barry, P.A.; Spencer, J.V.; Avdic, S.; Abendroth, A. Virus-encoded homologs of cellular interleukin-10 and their control of host immune function. J. Virol. 2009, 83, 9618–9629. [Google Scholar] [CrossRef]
- Sin, S.H.; Dittmer, D.P. Cytokine homologs of human gammaherpesviruses. J. Interferon. Cytokine Res. 2012, 32, 53–59. [Google Scholar] [CrossRef]
- Sanchez-Ponce, Y.; Varela-Fascinetto, G.; Romo-Vazquez, J.C.; Lopez-Martinez, B.; Sanchez-Huerta, J.L.; Parra-Ortega, I.; Fuentes-Panana, E.M.; Morales-Sanchez, A. Simultaneous Detection of Beta and Gamma Human Herpesviruses by Multiplex qPCR Reveals Simple Infection and Coinfection Episodes Increasing Risk for Graft Rejection in Solid Organ Transplantation. Viruses 2018, 10, 730. [Google Scholar] [CrossRef]
- Croghan, C.A.P.P.E.; Egeghy, P.P. Methods of Dealing with Values Below the Limit of Detection using SAS. South. SAS User Group 2003, 22, 22–24. [Google Scholar]
- Solez, K.; Racusen, L.C. The Banff classification revisited. Kidney Int. 2013, 83, 201–206. [Google Scholar] [CrossRef] [PubMed]
- McGeoch, D.J.; Cook, S.; Dolan, A.; Jamieson, F.E.; Telford, E.A. Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses. J. Mol. Biol. 1995, 247, 443–458. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, J. Human cytomegalovirus: Latency and reactivation in the myeloid lineage. J. Clin. Virol. 2008, 41, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Kati, S.; Tsao, E.H.; Gunther, T.; Weidner-Glunde, M.; Rothamel, T.; Grundhoff, A.; Kellam, P.; Schulz, T.F. Activation of the B cell antigen receptor triggers reactivation of latent Kaposi’s sarcoma-associated herpesvirus in B cells. J. Virol. 2013, 87, 8004–8016. [Google Scholar] [CrossRef] [PubMed]
- Traylen, C.M.; Patel, H.R.; Fondaw, W.; Mahatme, S.; Williams, J.F.; Walker, L.R.; Dyson, O.F.; Arce, S.; Akula, S.M. Virus reactivation: A panoramic view in human infections. Future Virol. 2011, 6, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Reeves, M.B.; MacAry, P.A.; Lehner, P.J.; Sissons, J.G.; Sinclair, J.H. Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc. Natl. Acad. Sci. USA 2005, 102, 4140–4145. [Google Scholar] [CrossRef] [PubMed]
- Hummel, M.; Abecassis, M.M. A model for reactivation of CMV from latency. J. Clin. Virol. 2002, 25 (Suppl. 2), S123–S136. [Google Scholar] [CrossRef] [PubMed]
- Holzerlandt, R.; Orengo, C.; Kellam, P.; Alba, M.M. Identification of new herpesvirus gene homologs in the human genome. Genome Res. 2002, 12, 1739–1748. [Google Scholar] [CrossRef]
- Frenkel, N.; Wyatt, L.S. HHV-6 and HHV-7 as exogenous agents in human lymphocytes. Dev. Biol. Stand. 1992, 76, 259–265. [Google Scholar]
- Katsafanas, G.C.; Schirmer, E.C.; Wyatt, L.S.; Frenkel, N. In vitro activation of human herpesviruses 6 and 7 from latency. Proc. Natl. Acad. Sci. USA 1996, 93, 9788–9792. [Google Scholar] [CrossRef]
- Flamand, L.; Stefanescu, I.; Ablashi, D.V.; Menezes, J. Activation of the Epstein-Barr virus replicative cycle by human herpesvirus 6. J. Virol. 1993, 67, 6768–6777. [Google Scholar] [CrossRef] [PubMed]
- Vieira, J.; O’Hearn, P.; Kimball, L.; Chandran, B.; Corey, L. Activation of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) lytic replication by human cytomegalovirus. J. Virol. 2001, 75, 1378–1386. [Google Scholar] [CrossRef] [PubMed]
- Zallio, F.; Primon, V.; Tamiazzo, S.; Pini, M.; Baraldi, A.; Corsetti, M.T.; Gotta, F.; Bertassello, C.; Salvi, F.; Rocchetti, A.; et al. Epstein-Barr virus reactivation in allogeneic stem cell transplantation is highly related to cytomegalovirus reactivation. Clin. Transplant. 2013, 27, E491–E497. [Google Scholar] [CrossRef]
- DesJardin, J.A.; Gibbons, L.; Cho, E.; Supran, S.E.; Falagas, M.E.; Werner, B.G.; Snydman, D.R. Human herpesvirus 6 reactivation is associated with cytomegalovirus infection and syndromes in kidney transplant recipients at risk for primary cytomegalovirus infection. J. Infect. Dis. 1998, 178, 1783–1786. [Google Scholar] [CrossRef]
- Razonable, R.R.; Rivero, A.; Brown, R.A.; Hart, G.D.; Espy, M.J.; van Cruijsen, H.; Wilson, J.; Groettum, C.; Kremers, W.; Smith, T.F.; et al. Detection of simultaneous beta-herpesvirus infections in clinical syndromes due to defined cytomegalovirus infection. Clin. Transplant. 2003, 17, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Kidd, I.M.; Clark, D.A.; Sabin, C.A.; Andrew, D.; Hassan-Walker, A.F.; Sweny, P.; Griffiths, P.D.; Emery, V.C. Prospective study of human betaherpesviruses after renal transplantation: Association of human herpesvirus 7 and cytomegalovirus co-infection with cytomegalovirus disease and increased rejection. Transplantation 2000, 69, 2400–2404. [Google Scholar] [CrossRef] [PubMed]
- Mendez, J.C.; Dockrell, D.H.; Espy, M.J.; Smith, T.F.; Wilson, J.A.; Harmsen, W.S.; Ilstrup, D.; Paya, C.V. Human beta-herpesvirus interactions in solid organ transplant recipients. J. Infect. Dis. 2001, 183, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Harma, M.; Hockerstedt, K.; Lyytikainen, O.; Lautenschlager, I. HHV-6 and HHV-7 antigenemia related to CMV infection after liver transplantation. J. Med. Virol. 2006, 78, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Jamalidoust, M.; Aliabadi, N.; Namayandeh, M.; Ziyaeyan, M. Human Herpesvirus 6 as an Indicator of Cytomegalovirus Infection and Its Attributable Disease Symptoms in Liver Transplant Recipients. Exp. Clin. Transplant. 2021, 19, 703–707. [Google Scholar] [CrossRef]
- Dockrell, D.H.; Prada, J.; Jones, M.F.; Patel, R.; Badley, A.D.; Harmsen, W.S.; Ilstrup, D.M.; Wiesner, R.H.; Krom, R.A.; Smith, T.F.; et al. Seroconversion to human herpesvirus 6 following liver transplantation is a marker of cytomegalovirus disease. J. Infect. Dis. 1997, 176, 1135–1140. [Google Scholar] [CrossRef]
- Humar, A.; Kumar, D.; Caliendo, A.M.; Moussa, G.; Ashi-Sulaiman, A.; Levy, G.; Mazzulli, T. Clinical impact of human herpesvirus 6 infection after liver transplantation. Transplantation 2002, 73, 599–604. [Google Scholar] [CrossRef]
- Chapenko, S.; Folkmane, I.; Tomsone, V.; Amerika, D.; Rozentals, R.; Murovska, M. Co-infection of two beta-herpesviruses (CMV and HHV-7) as an increased risk factor for 'CMV disease’ in patients undergoing renal transplantation. Clin. Transplant. 2000, 14, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Humar, A.; Malkan, G.; Moussa, G.; Greig, P.; Levy, G.; Mazzulli, T. Human herpesvirus-6 is associated with cytomegalovirus reactivation in liver transplant recipients. J. Infect. Dis. 2000, 181, 1450–1453. [Google Scholar] [CrossRef] [PubMed]
- Nasimfar, A.; Sadeghi, E.; Alborzi, A.; Sepehrvand, N.; Ziyaeyan, M.; Jamalidoust, M.; Malek-Hosseini, S.A. The Activation of Cytomegalovirus and Human Herpes Virus 6 after Liver Transplantation. Hepat. Mon. 2018, 18, e11987. [Google Scholar] [CrossRef]
- Lam, J.K.P.; Azzi, T.; Hui, K.F.; Wong, A.M.G.; McHugh, D.; Caduff, N.; Chan, K.H.; Munz, C.; Chiang, A.K.S. Co-infection of Cytomegalovirus and Epstein-Barr Virus Diminishes the Frequency of CD56(dim)NKG2A(+)KIR(-) NK Cells and Contributes to Suboptimal Control of EBV in Immunosuppressed Children with Post-transplant Lymphoproliferative Disorder. Front. Immunol. 2020, 11, 1231. [Google Scholar] [CrossRef] [PubMed]
- Ono, Y.; Ito, Y.; Kaneko, K.; Shibata-Watanabe, Y.; Tainaka, T.; Sumida, W.; Nakamura, T.; Kamei, H.; Kiuchi, T.; Ando, H.; et al. Simultaneous monitoring by real-time polymerase chain reaction of epstein-barr virus, human cytomegalovirus, and human herpesvirus-6 in juvenile and adult liver transplant recipients. Transplant. Proc. 2008, 40, 3578–3582. [Google Scholar] [CrossRef]
- Indolfi, G.; Heaton, N.; Smith, M.; Mieli-Vergani, G.; Zuckerman, M. Effect of early EBV and/or CMV viremia on graft function and acute cellular rejection in pediatric liver transplantation. Clin. Transplant. 2012, 26, E55–E61. [Google Scholar] [CrossRef]
- Reese, T.A.; Wakeman, B.S.; Choi, H.S.; Hufford, M.M.; Huang, S.C.; Zhang, X.; Buck, M.D.; Jezewski, A.; Kambal, A.; Liu, C.Y.; et al. Helminth infection reactivates latent gamma-herpesvirus via cytokine competition at a viral promoter. Science 2014, 345, 573–577. [Google Scholar] [CrossRef]
- Wang, G.; Zarek, C.; Chang, T.; Tao, L.; Lowe, A.; Reese, T.A. Th2 Cytokine Modulates Herpesvirus Reactivation in a Cell Type Specific Manner. J. Virol. 2021, 95, e01946-20. [Google Scholar] [CrossRef]
- Flamand, L.; Gosselin, J.; D’Addario, M.; Hiscott, J.; Ablashi, D.V.; Gallo, R.C.; Menezes, J. Human herpesvirus 6 induces interleukin-1 beta and tumor necrosis factor alpha, but not interleukin-6, in peripheral blood mononuclear cell cultures. J. Virol. 1991, 65, 5105–5110. [Google Scholar] [CrossRef]
- Stein, J.; Volk, H.D.; Liebenthal, C.; Kruger, D.H.; Prosch, S. Tumour necrosis factor alpha stimulates the activity of the human cytomegalovirus major immediate early enhancer/promoter in immature monocytic cells. J. Gen. Virol. 1993, 74 Pt 11, 2333–2338. [Google Scholar] [CrossRef]
- Germani, G.; Rodriguez-Castro, K.; Russo, F.P.; Senzolo, M.; Zanetto, A.; Ferrarese, A.; Burra, P. Markers of acute rejection and graft acceptance in liver transplantation. World J. Gastroenterol. 2015, 21, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Conti, F.; Calmus, Y.; Rouer, E.; Gaulard, P.; Louvel, A.; Houssin, D.; Zafrani, E.S. Increased expression of interleukin-4 during liver allograft rejection. J. Hepatol. 1999, 30, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.; Daniel, V.; Naujokat, C.; Schmidt, J.; Mehrabi, A.; Zeier, M.; Opelz, G. Evidence for IFN-gamma up- and IL-4 downregulation late post-transplant in patients with good kidney graft outcome. Clin. Transplant. 2007, 21, 449–459. [Google Scholar] [CrossRef]
- Warle, M.C.; Metselaar, H.J.; Hop, W.C.; Gyssens, I.C.; Kap, M.; Kwekkeboom, J.; De Rave, S.; Zondervan, P.E.; JN, I.J.; Tilanus, H.W.; et al. Early differentiation between rejection and infection in liver transplant patients by serum and biliary cytokine patterns. Transplantation 2003, 75, 146–151. [Google Scholar] [CrossRef]
- Ilmakunnas, M.; Hockerstedt, K.; Makisalo, H.; Siitonen, S.; Repo, H.; Pesonen, E.J. Hepatic IL-8 release during graft procurement is associated with impaired graft function after human liver transplantation. Clin. Transplant. 2010, 24, 29–35. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, H.; Hu, K.; Lv, G.; Fu, Y.; Ayana, D.A.; Zhao, P.; Jiang, Y. The imbalance between Tregs, Th17 cells and inflammatory cytokines among renal transplant recipients. BMC Immunol. 2015, 16, 56. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Zhou, H.; Zheng, G.; Wang, G.; Fu, Y.; Jiang, Y. Imbalance of different types of CD4(+)Foxp3(+) T cells in renal transplant recipients. Immunol. Investig. 2014, 43, 838–850. [Google Scholar] [CrossRef]
- Mohammadi, F.; Solgi, G.; Tajik, M.; Ahmadpoor, P.; Nikoeinejad, H.; Einollahi, B.; Nazari, B.; Lessan-Pezeshki, M.; Amirzargar, A. Enzyme-Linked Immunosorbent Spot (ELISpot) monitoring of cytokine-producing cells for the prediction of acute rejection in renal transplant patients. Eur. Cytokine Netw. 2017, 28, 93–101. [Google Scholar] [CrossRef]
- Kim, N.; Yoon, Y.I.; Yoo, H.J.; Tak, E.; Ahn, C.S.; Song, G.W.; Lee, S.G.; Hwang, S. Combined Detection of Serum IL-10, IL-17, and CXCL10 Predicts Acute Rejection Following Adult Liver Transplantation. Mol. Cells 2016, 39, 639–644. [Google Scholar] [CrossRef]
- Limaye, A.P.; La Rosa, C.; Longmate, J.; Diamond, D.J. Plasma IL-10 Levels to Guide Antiviral Prophylaxis Prevention of Late-Onset Cytomegalovirus Disease, in High Risk Solid Kidney and Liver Transplant Recipients. Transplantation 2016, 100, 210–216. [Google Scholar] [CrossRef]
- Gosselin, J.; Flamand, L.; D’Addario, M.; Hiscott, J.; Stefanescu, I.; Ablashi, D.V.; Gallo, R.C.; Menezes, J. Modulatory effects of Epstein-Barr, herpes simplex, and human herpes-6 viral infections and coinfections on cytokine synthesis. A comparative study. J. Immunol. 1992, 149, 181–187. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, L.; Zhu, Z.; He, W.; Gao, L.; Zhang, W.; Liu, J.; Huang, A. Effects of IL-10- and FasL-overexpressing dendritic cells on liver transplantation tolerance in a heterotopic liver transplantation rat model. Immunol. Cell Biol. 2019, 97, 714–725. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, L.; He, W.; Qiu, M.; Gao, L.; Liu, J.; Huang, A. Cotransfection with IL-10 and TGF-beta1 into immature dendritic cells enhances immune tolerance in a rat liver transplantation model. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306, G575–G581. [Google Scholar] [CrossRef]
- Niu, J.; Yue, W.; Song, Y.; Zhang, Y.; Qi, X.; Wang, Z.; Liu, B.; Shen, H.; Hu, X. Prevention of acute liver allograft rejection by IL-10-engineered mesenchymal stem cells. Clin. Exp. Immunol. 2014, 176, 473–484. [Google Scholar] [CrossRef]
- Hong, I.C.; Mullen, P.M.; Precht, A.F.; Khanna, A.; Li, M.; Behling, C.; Lopez, V.F.; Chiou, H.C.; Moss, R.B.; Hart, M.E. Non-viral human IL-10 gene expression reduces acute rejection in heterotopic auxiliary liver transplantation in rats. Microsurgery 2003, 23, 432–436. [Google Scholar] [CrossRef]
- Wang, C.; Tay, S.S.; Tran, G.T.; Hodgkinson, S.J.; Allen, R.D.; Hall, B.M.; McCaughan, G.W.; Sharland, A.F.; Bishop, G.A. Donor IL-4-treatment induces alternatively activated liver macrophages and IDO-expressing NK cells and promotes rat liver allograft acceptance. Transpl. Immunol. 2010, 22, 172–178. [Google Scholar] [CrossRef]
- Deng, M.; Wang, J.; Wu, H.; Wang, M.; Cao, D.; Li, J.; Wu, Y.; Gong, J. IL-4 Alleviates Ischaemia-Reperfusion Injury by Inducing Kupffer Cells M2 Polarization via STAT6-JMJD3 Pathway after Rat Liver Transplantation. Biomed. Res. Int. 2020, 2020, 2953068. [Google Scholar] [CrossRef]
Cytokine | LOD * | Cytokine | LOD * | Cytokine | LOD * | Cytokine | LOD * |
---|---|---|---|---|---|---|---|
IL-1β | 0.6 | IL-7 | 1.1 | IL-17 | 3.3 | GM-CSF | 1.7 |
IL-2 | 1.6 | IL-8 | 1 | IFN-γ | 6.4 | G-CSF | 2.2 |
IL-4 | 0.7 | IL-10 | 0.3 | MCP1 | 1.1 | ||
IL-5 | 0.6 | IL-12 | 3.5 | MIP1β | 2.4 | ||
IL-6 | 2.6 | IL-13 | 0.7 | TNF-α | 6 |
Transplant | Renal | Liver |
---|---|---|
N° of patients | 13 | 7 |
Age range at transplant (median) | 6–17 years (14.5) | 4–8 years (4.5) |
Sex | ||
Female | 15% | 57% |
Male | 85% | 43% |
Type of donor | ||
Diseased | 54% | 86% |
Living | 46% | 14% |
N° of samples (median/patient) | 192 (15) | 92 (13) |
Pretransplant diagnosis | 77% ESRD * of unknown etiology | 14% Bile duct atresia |
14% Fulminant Hepatitis | ||
8% Focal and segmental glomerulosclerosis | 14% Neonatal giant cell hepatitis | |
14% Tyrosinemia | ||
8% ESRD secondary to **JRA hypoplasia | 14% Bayler disease | |
14% Alalgille syndrome | ||
7% Microscopic polyangiitis | 14% Progressive intrahepatic family cholestasis |
Cytokine | Positive | Negative | Cytokine | Positive | Negative |
---|---|---|---|---|---|
TNF-α | 158 | 0 | IL-6 | 94 | 64 |
MIP-1β | 155 | 3 | IL-12 | 75 | 83 |
MCP-1 | 146 | 12 | IL-2 | 74 | 84 |
IL-13 | 143 | 15 | IL-4 | 48 | 110 |
IFN-γ | 123 | 35 | IL-10 | 35 | 123 |
IL-17 | 121 | 37 | IL-5 | 18 | 140 |
IL-8 | 118 | 40 | G-CSF | 17 | 141 |
IL-7 | 108 | 50 | GM-CSF | 2 | 156 |
IL-1β | 100 | 58 |
Virus | Comparison | r Value | p Value |
---|---|---|---|
EBV | Single (G1) vs. leukocyte (G2) | 0.93 | <0.0001 |
Multiple (G3) vs. plasma (G4) | 0.75 | 0.0042 | |
Single (G1) vs. plasma (G4) | −0.4 | 0.1822 | |
Multiple (G3) vs. leukocyte (G2) | −0.32 | 0.2800 | |
HCMV | Single (G1) vs. leukocyte (G2) | 0.82 | 0.0009 |
Multiple (G3) vs. plasma (G4) | 0.60 | 0.0320 | |
Single (G1) vs. plasma (G4) | 0.88 | 0.0001 | |
Multiple (G3) vs. leukocyte (G2) | 0.8 | 0.0018 | |
HHV6 | Single (G1) vs. leukocyte (G2) | 0.64 | 0.0207 |
Multiple (G3) vs. plasma (G4) | 0.61 | 0.0302 | |
Single (G1) vs. plasma (G4) | 0.85 | 0.0005 | |
Multiple (G3) vs. leukocyte (G2) | 0.78 | 0.0025 | |
HHV7 | Single (G1) vs. leukocyte (G2) | 0.33 | 0.2634 |
Multiple (G3) vs. plasma (G4) | 0.55 | 0.0557 | |
Single (G1) vs. plasma (G4) | 0.28 | 0.3502 | |
Multiple (G3) vs. leukocyte (G2) | 0.38 | 0.1999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Ponce, Y.; Murillo-Eliosa, J.R.; Morales-Sanchez, A.; Fuentes-Pananá, E.M. Cytokine Dynamics and Herpesvirus Interactions in Pediatric Liver and Kidney Transplant Recipients: The Distinct Behavior of HCMV, HHV6, HHV7 and EBV. Viruses 2024, 16, 1067. https://doi.org/10.3390/v16071067
Sánchez-Ponce Y, Murillo-Eliosa JR, Morales-Sanchez A, Fuentes-Pananá EM. Cytokine Dynamics and Herpesvirus Interactions in Pediatric Liver and Kidney Transplant Recipients: The Distinct Behavior of HCMV, HHV6, HHV7 and EBV. Viruses. 2024; 16(7):1067. https://doi.org/10.3390/v16071067
Chicago/Turabian StyleSánchez-Ponce, Yessica, Juan Rafael Murillo-Eliosa, Abigail Morales-Sanchez, and Ezequiel M. Fuentes-Pananá. 2024. "Cytokine Dynamics and Herpesvirus Interactions in Pediatric Liver and Kidney Transplant Recipients: The Distinct Behavior of HCMV, HHV6, HHV7 and EBV" Viruses 16, no. 7: 1067. https://doi.org/10.3390/v16071067
APA StyleSánchez-Ponce, Y., Murillo-Eliosa, J. R., Morales-Sanchez, A., & Fuentes-Pananá, E. M. (2024). Cytokine Dynamics and Herpesvirus Interactions in Pediatric Liver and Kidney Transplant Recipients: The Distinct Behavior of HCMV, HHV6, HHV7 and EBV. Viruses, 16(7), 1067. https://doi.org/10.3390/v16071067