The Interactions of the Complement System with Human Cytomegalovirus
Abstract
:1. The Complement System
1.1. The Classical Pathway
1.2. The Lectin Pathway
1.3. The Alternative Pathway
1.4. The Membrane Attack Complex (MAC)
2. Complement in Antiviral Immunity and Mechanisms of Viral Complement Evasion
2.1. Antiviral Effects of Complement
2.1.1. Recognition and Opsonization
2.1.2. Induction of Chemotaxis to Sites of Infection and Regulating Inflammatory Cytokine Responses
2.1.3. Membrane Lysis of Viruses and Virally Infected Cells
2.1.4. Enhancement of Antiviral Adaptive Immune Responses
2.2. Viral Mechanisms Counteracting the Complement System
2.2.1. Inhibition of Complement Pattern Recognition Molecules
2.2.2. Virally Encoded Complement Regulating Proteins
2.2.3. Inhibition of Cleavage of Complement Proteins
2.2.4. Suppression of Anaphylatoxin Biproducts
2.2.5. Altering Complement Protein Synthesis during Infection
2.2.6. Incorporation of Host Complement Proteins into the Viral Membrane
3. Interactions between Human Herpesviruses and the Complement System
3.1. Virally Encoded Complement Inhibiting Proteins
3.2. Complement Proteins as Receptors for Viral Entry
3.3. Incorporation of Host Complement-Inhibiting Proteins on the Surface of Virions
4. Associations and Reported Interactions between HCMV and Human Complement Proteins
4.1. Complement Evasion Using CD55, CD46, and CD59
4.2. Viral Entry Regulated by CD46 and Mannose-Binding Lectin
4.3. Effect of C1qBP on Viral DNA Replication and Gene Expression
4.4. Role of C1qBP in Nuclear Egress
5. Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Sharif, W.Z.; Sunyer, J.O.; Lambris, J.D.; Smith, L.C. Sea urchin coelomocytes specifically express a homologue of the complement component C3. J. Immunol. 1998, 160, 2983–2997. [Google Scholar] [CrossRef] [PubMed]
- Levashina, E.A.; Moita, L.F.; Blandin, S.; Vriend, G.; Lagueux, M.; Kafatos, F.C. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 2001, 104, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Kimura, A.; Sakaguchi, E.; Nonaka, M. Multi-component complement system of Cnidaria: C3, Bf, and MASP genes expressed in the endodermal tissues of a sea anemone, Nematostella vectensis. Immunobiology 2009, 214, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Lubbers, R.; van Essen, M.F.; van Kooten, C.; Trouw, L.A. Production of complement components by cells of the immune system. Clin. Exp. Immunol. 2017, 188, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Merle, N.S.; Church, S.E.; Fremeaux-Bacchi, V.; Roumenina, L.T. Complement System Part I—Molecular Mechanisms of Activation and Regulation. Front. Immunol. 2015, 6, 262. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, S.A.; Sander, B.; Jensen, R.K.; Pedersen, J.S.; Golas, M.M.; Jensenius, J.C.; Hansen, A.G.; Thiel, S.; Andersen, G.R. Structure and activation of C1, the complex initiating the classical pathway of the complement cascade. Proc. Natl. Acad. Sci. USA 2017, 114, 986–991. [Google Scholar] [CrossRef] [PubMed]
- Pangburn, M.K.; Rawal, N. Structure and function of complement C5 convertase enzymes. Biochem. Soc. Trans. 2002, 30 Pt 6, 1006–1010. [Google Scholar] [CrossRef]
- Heja, D.; Kocsis, A.; Dobo, J.; Szilagyi, K.; Szasz, R.; Zavodszky, P.; Pal, G.; Gal, P. Revised mechanism of complement lectin-pathway activation revealing the role of serine protease MASP-1 as the exclusive activator of MASP-2. Proc. Natl. Acad. Sci. USA 2012, 109, 10498–10503. [Google Scholar] [CrossRef]
- Podack, E.R.; Tschoop, J.; Muller-Eberhard, H.J. Molecular organization of C9 within the membrane attack complex of complement. Induction of circular C9 polymerization by the C5b-8 assembly. J. Exp. Med. 1982, 156, 268–282. [Google Scholar] [CrossRef]
- Morgan, B.P. Regulation of the complement membrane attack pathway. Crit. Rev. Immunol. 1999, 19, 173–198. [Google Scholar] [CrossRef]
- Santos-Lopez, J.; de la Paz, K.; Fernandez, F.J.; Vega, M.C. Structural biology of complement receptors. Front. Immunol. 2023, 14, 1239146. [Google Scholar] [CrossRef] [PubMed]
- Dunkelberger, J.R.; Song, W.C. Complement and its role in innate and adaptive immune responses. Cell Res. 2010, 20, 34–50. [Google Scholar] [CrossRef] [PubMed]
- Klos, A.; Tenner, A.J.; Johswich, K.O.; Ager, R.R.; Reis, E.S.; Kohl, J. The role of the anaphylatoxins in health and disease. Mol. Immunol. 2009, 46, 2753–2766. [Google Scholar] [CrossRef] [PubMed]
- Markiewski, M.M.; Lambris, J.D. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am. J. Pathol. 2007, 171, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.B.; Jane-Wit, D.; Pober, J.S. Complement Membrane Attack Complex: New Roles, Mechanisms of Action, and Therapeutic Targets. Am. J. Pathol. 2020, 190, 1138–1150. [Google Scholar] [CrossRef] [PubMed]
- Killick, J.; Morisse, G.; Sieger, D.; Astier, A.L. Complement as a regulator of adaptive immunity. Semin. Immunopathol. 2018, 40, 37–48. [Google Scholar] [CrossRef] [PubMed]
- West, E.E.; Kolev, M.; Kemper, C. Complement and the Regulation of T Cell Responses. Annu. Rev. Immunol. 2018, 36, 309–338. [Google Scholar] [CrossRef]
- Clarke, E.V.; Tenner, A.J. Complement modulation of T cell immune responses during homeostasis and disease. J. Leukoc. Biol. 2014, 96, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Murugaiah, V.; Varghese, P.M.; Beirag, N.; De Cordova, S.; Sim, R.B.; Kishore, U. Complement Proteins as Soluble Pattern Recognition Receptors for Pathogenic Viruses. Viruses 2021, 13, 824. [Google Scholar] [CrossRef]
- Sinha, A.; Singh, A.K.; Kadni, T.S.; Mullick, J.; Sahu, A. Virus-Encoded Complement Regulators: Current Status. Viruses 2021, 13, 208. [Google Scholar] [CrossRef]
- Mellors, J.; Tipton, T.; Longet, S.; Carroll, M. Viral Evasion of the Complement System and Its Importance for Vaccines and Therapeutics. Front. Immunol. 2020, 11, 1450. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, P.; Sharma, S.; Pal, P.; Ojha, H.; Mullick, J.; Sahu, A. The imitation game: A viral strategy to subvert the complement system. FEBS Lett. 2020, 594, 2518–2542. [Google Scholar] [CrossRef]
- Maloney, B.E.; Perera, K.D.; Saunders, D.R.D.; Shadipeni, N.; Fleming, S.D. Interactions of viruses and the humoral innate immune response. Clin. Immunol. 2020, 212, 108351. [Google Scholar] [CrossRef]
- Agrawal, P.; Nawadkar, R.; Ojha, H.; Kumar, J.; Sahu, A. Complement Evasion Strategies of Viruses: An Overview. Front. Microbiol. 2017, 8, 1117. [Google Scholar] [CrossRef] [PubMed]
- Ojha, H.; Panwar, H.S.; Gorham, R.D., Jr.; Morikis, D.; Sahu, A. Viral regulators of complement activation: Structure, function and evolution. Mol. Immunol. 2014, 61, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Heggi, M.T.; Nour El-Din, H.T.; Morsy, D.I.; Abdelaziz, N.I.; Attia, A.S. Microbial evasion of the complement system: A continuous and evolving story. Front. Immunol. 2023, 14, 1281096. [Google Scholar] [CrossRef]
- Stoermer, K.A.; Morrison, T.E. Complement and viral pathogenesis. Virology 2011, 411, 362–373. [Google Scholar] [CrossRef]
- Varkoly, K.; Beladi, R.; Hamada, M.; McFadden, G.; Irving, J.; Lucas, A.R. Viral SERPINS-A Family of Highly Potent Immune-Modulating Therapeutic Proteins. Biomolecules 2023, 13, 1393. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.G.; Shchelkunov, S.N.; Kotwal, G.J. The cowpox virus-encoded homolog of the vaccinia virus complement control protein is an inflammation modulatory protein. Virology 1997, 229, 126–133. [Google Scholar] [CrossRef]
- Arvin, A.; Campadelli-Fiume, G.; Mocarski, E.; Moore, P.S.; Roizman, B.; Whitley, R.; Yamanishi, K. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis, Cambridge University Press: Cambridge, UK, 2007.
- Friedman, H.M.; Glorioso, J.C.; Cohen, G.H.; Hastings, J.C.; Harris, S.L.; Eisenberg, R.J. Binding of complement component C3b to glycoprotein gC of herpes simplex virus type 1: Mapping of gC-binding sites and demonstration of conserved C3b binding in low-passage clinical isolates. J. Virol. 1986, 60, 470–475. [Google Scholar] [CrossRef]
- Fries, L.F.; Friedman, H.M.; Cohen, G.H.; Eisenberg, R.J.; Hammer, C.H.; Frank, M.M. Glycoprotein C of herpes simplex virus 1 is an inhibitor of the complement cascade. J. Immunol. 1986, 137, 1636–1641. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.L.; Frank, I.; Yee, A.; Cohen, G.H.; Eisenberg, R.J.; Friedman, H.M. Glycoprotein C of herpes simplex virus type 1 prevents complement-mediated cell lysis and virus neutralization. J. Infect. Dis. 1990, 162, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Huemer, H.P.; Wang, Y.; Garred, P.; Koistinen, V.; Oppermann, S. Herpes simplex virus glycoprotein C: Molecular mimicry of complement regulatory proteins by a viral protein. Immunology 1993, 79, 639–647. [Google Scholar] [PubMed]
- Kostavasili, I.; Sahu, A.; Friedman, H.M.; Eisenberg, R.J.; Cohen, G.H.; Lambris, J.D. Mechanism of complement inactivation by glycoprotein C of herpes simplex virus. J. Immunol. 1997, 158, 1763–1771. [Google Scholar] [CrossRef] [PubMed]
- Frank, I.; Friedman, H.M. A novel function of the herpes simplex virus type 1 Fc receptor: Participation in bipolar bridging of antiviral immunoglobulin G. J. Virol. 1989, 63, 4479–4488. [Google Scholar] [CrossRef] [PubMed]
- Litwin, V.; Grose, C. Herpesviral Fc receptors and their relationship to the human Fc receptors. Immunol. Res. 1992, 11, 226–238. [Google Scholar] [CrossRef] [PubMed]
- Litwin, V.; Jackson, W.; Grose, C. Receptor properties of two varicella-zoster virus glycoproteins, gpI and gpIV, homologous to herpes simplex virus gE and gI. J. Virol. 1992, 66, 3643–3651. [Google Scholar] [CrossRef] [PubMed]
- Spiller, O.B.; Blackbourn, D.J.; Mark, L.; Proctor, D.G.; Blom, A.M. Functional activity of the complement regulator encoded by Kaposi’s sarcoma-associated herpesvirus. J. Biol. Chem. 2003, 278, 9283–9289. [Google Scholar] [CrossRef] [PubMed]
- Spiller, O.B.; Mark, L.; Blue, C.E.; Proctor, D.G.; Aitken, J.A.; Blom, A.M.; Blackbourn, D.J. Dissecting the regions of virion-associated Kaposi’s sarcoma-associated herpesvirus complement control protein required for complement regulation and cell binding. J. Virol. 2006, 80, 4068–4078. [Google Scholar] [CrossRef]
- Mold, C.; Bradt, B.M.; Nemerow, G.R.; Cooper, N.R. Epstein-Barr virus regulates activation and processing of the third component of complement. J. Exp. Med. 1988, 168, 949–969. [Google Scholar] [CrossRef]
- Stegen, C.; Yakova, Y.; Henaff, D.; Nadjar, J.; Duron, J.; Lippe, R. Analysis of virion-incorporated host proteins required for herpes simplex virus type 1 infection through a RNA interference screen. PLoS ONE 2013, 8, e53276. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, X.; Yang, L.; Fu, W.; Pan, D.; Liu, J.; Ye, J.; Zhao, Q.; Zhu, H.; Cheng, T.; et al. Modulation of host CD59 expression by varicella-zoster virus in human xenografts in vivo. Virology 2016, 491, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Santoro, F.; Kennedy, P.E.; Locatelli, G.; Malnati, M.S.; Berger, E.A.; Lusso, P. CD46 is a cellular receptor for human herpesvirus 6. Cell 1999, 99, 817–827. [Google Scholar] [CrossRef]
- Mori, Y.; Yang, X.; Akkapaiboon, P.; Okuno, T.; Yamanishi, K. Human herpesvirus 6 variant A glycoprotein H-glycoprotein L-glycoprotein Q complex associates with human CD46. J. Virol. 2003, 77, 4992–4999. [Google Scholar] [CrossRef] [PubMed]
- Mori, Y.; Seya, T.; Huang, H.L.; Akkapaiboon, P.; Dhepakson, P.; Yamanishi, K. Human herpesvirus 6 variant A but not variant B induces fusion from without in a variety of human cells through a human herpesvirus 6 entry receptor, CD46. J. Virol. 2002, 76, 6750–6761. [Google Scholar] [CrossRef] [PubMed]
- Ogembo, J.G.; Kannan, L.; Ghiran, I.; Nicholson-Weller, A.; Finberg, R.W.; Tsokos, G.C.; Fingeroth, J.D. Human complement receptor type 1/CD35 is an Epstein-Barr Virus receptor. Cell Rep. 2013, 3, 371–385. [Google Scholar] [CrossRef]
- Tanner, J.; Weis, J.; Fearon, D.; Whang, Y.; Kieff, E. Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell 1987, 50, 203–213. [Google Scholar] [CrossRef]
- Rautemaa, R.; Helander, T.; Meri, S. Herpes simplex virus 1 infected neuronal and skin cells differ in their susceptibility to complement attack. Immunology 2002, 106, 404–411. [Google Scholar] [CrossRef]
- Spiller, O.B.; Morgan, B.P.; Tufaro, F.; Devine, D.V. Altered expression of host-encoded complement regulators on human cytomegalovirus-infected cells. Eur. J. Immunol. 1996, 26, 1532–1538. [Google Scholar] [CrossRef]
- Spiller, O.B.; Hanna, S.M.; Devine, D.V.; Tufaro, F. Neutralization of cytomegalovirus virions: The role of complement. J. Infect. Dis. 1997, 176, 339–347. [Google Scholar] [CrossRef]
- Spear, G.T.; Lurain, N.S.; Parker, C.J.; Ghassemi, M.; Payne, G.H.; Saifuddin, M. Host cell-derived complement control proteins CD55 and CD59 are incorporated into the virions of two unrelated enveloped viruses. Human T cell leukemia/lymphoma virus type I (HTLV-I) and human cytomegalovirus (HCMV). J. Immunol. 1995, 155, 4376–4381. [Google Scholar] [CrossRef]
- Milbradt, J.; Kraut, A.; Hutterer, C.; Sonntag, E.; Schmeiser, C.; Ferro, M.; Wagner, S.; Lenac, T.; Claus, C.; Pinkert, S.; et al. Proteomic analysis of the multimeric nuclear egress complex of human cytomegalovirus. Mol. Cell Proteom. 2014, 13, 2132–2146. [Google Scholar] [CrossRef] [PubMed]
- Milbradt, J.; Auerochs, S.; Marschall, M. Cytomegaloviral proteins pUL50 and pUL53 are associated with the nuclear lamina and interact with cellular protein kinase C. J. Gen. Virol. 2007, 88 Pt 10, 2642–2650. [Google Scholar] [CrossRef]
- Marschall, M.; Marzi, A.; aus dem Siepen, P.; Jochmann, R.; Kalmer, M.; Auerochs, S.; Lischka, P.; Leis, M.; Stamminger, T. Cellular p32 recruits cytomegalovirus kinase pUL97 to redistribute the nuclear lamina. J. Biol. Chem. 2005, 280, 33357–33367. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Colletti, K.; Pari, G.S. Identification of human cytomegalovirus UL84 virus- and cell-encoded binding partners by using proteomics analysis. J. Virol. 2008, 82, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Chen, Y.; Qiao, H.; Tao, R.; Gu, W.; Shang, S. Human mannose-binding lectin inhibits human cytomegalovirus infection in human embryonic pulmonary fibroblast. APMIS 2012, 120, 675–682. [Google Scholar] [CrossRef]
- Stein, K.R.; Gardner, T.J.; Hernandez, R.E.; Kraus, T.A.; Duty, J.A.; Ubarretxena-Belandia, I.; Moran, T.M.; Tortorella, D. CD46 facilitates entry and dissemination of human cytomegalovirus. Nat. Commun. 2019, 10, 2699. [Google Scholar] [CrossRef]
- Kim, D.D.; Song, W.C. Membrane complement regulatory proteins. Clin. Immunol. 2006, 118, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Parsons, A.J.; Stein, K.R.; Atanasoff, K.E.; Ophir, S.I.; Casado, J.P.; Tortorella, D. The CD46 ectodomain participates in human cytomegalovirus infection of epithelial cells. J. Gen. Virol. 2023, 104, 001892. [Google Scholar] [CrossRef]
- Martinez-Martin, N.; Marcandalli, J.; Huang, C.S.; Arthur, C.P.; Perotti, M.; Foglierini, M.; Ho, H.; Dosey, A.M.; Shriver, S.; Payandeh, J.; et al. An Unbiased Screen for Human Cytomegalovirus Identifies Neuropilin-2 as a Central Viral Receptor. Cell 2018, 174, 1158–1171. [Google Scholar] [CrossRef]
- Kilpatrick, D.C. Introduction to mannan-binding lectin. Biochem. Soc. Trans. 2003, 31 Pt 4, 745–747. [Google Scholar] [CrossRef] [PubMed]
- Mason, C.P.; Tarr, A.W. Human lectins and their roles in viral infections. Molecules 2015, 20, 2229–2271. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wu, D.; Tao, R.; Shang, S. Association between mannose-binding lectin gene polymorphism and pediatric cytomegalovirus infection. Viral Immunol. 2010, 23, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Cervera, C.; Lozano, F.; Linares, L.; Anton, A.; Balderramo, D.; Suarez, B.; Pascal, M.; Sanclemente, G.; Cofan, F.; Ricart, M.J.; et al. Influence of mannose-binding lectin gene polymorphisms on the invasiveness of cytomegalovirus disease after solid organ transplantation. Transplant. Proc. 2009, 41, 2259–2261. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.C.; Kamil, J.P. Pathogen at the Gates: Human Cytomegalovirus Entry and Cell Tropism. Viruses 2018, 10, 704. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, W.; Luo, B. The Effects of Herpes Virus Glycoprotein Glycosylation On Viral Infection and Pathogenesis. Future Virol. 2023, 18, 721–732. [Google Scholar] [CrossRef]
- Pednekar, L.; Pathan, A.A.; Paudyal, B.; Tsolaki, A.G.; Kaur, A.; Abozaid, S.M.; Kouser, L.; Khan, H.A.; Peerschke, E.I.; Shamji, M.H.; et al. Analysis of the Interaction between Globular Head Modules of Human C1q and Its Candidate Receptor gC1qR. Front. Immunol. 2016, 7, 567. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, H.C.; O’Hare, P. Retargeting of the mitochondrial protein p32/gC1Qr to a cytoplasmic compartment and the cell surface. J. Cell Sci. 2001, 114 Pt 11, 2115–2123. [Google Scholar] [CrossRef] [PubMed]
- Muta, T.; Kang, D.; Kitajima, S.; Fujiwara, T.; Hamasaki, N. p32 protein, a splicing factor 2-associated protein, is localized in mitochondrial matrix and is functionally important in maintaining oxidative phosphorylation. J. Biol. Chem. 1997, 272, 24363–24370. [Google Scholar] [CrossRef]
- Chen, R.; Xiao, M.; Gao, H.; Chen, Y.; Li, Y.; Liu, Y.; Zhang, N. Identification of a novel mitochondrial interacting protein of C1QBP using subcellular fractionation coupled with CoIP-MS. Anal. Bioanal. Chem. 2016, 408, 1557–1564. [Google Scholar] [CrossRef]
- Song, K.; Wu, Y.; Fu, B.; Wang, L.; Hao, W.; Hua, F.; Sun, Y.; Dorf, M.E.; Li, S. Leaked Mitochondrial C1QBP Inhibits Activation of the DNA Sensor cGAS. J. Immunol. 2021, 207, 2155–2166. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhang, Z.; Loewenstein, P.M.; Desai, K.; Tang, Q.; Mao, D.; Symington, J.S.; Green, M. Molecular cloning and characterization of a cellular protein that interacts with the human immunodeficiency virus type 1 Tat transactivator and encodes a strong transcriptional activation domain. J. Virol. 1995, 69, 3007–3016. [Google Scholar] [CrossRef]
- Nightingale, K.; Lin, K.M.; Ravenhill, B.J.; Davies, C.; Nobre, L.; Fielding, C.A.; Ruckova, E.; Fletcher-Etherington, A.; Soday, L.; Nichols, H.; et al. High-Definition Analysis of Host Protein Stability during Human Cytomegalovirus Infection Reveals Antiviral Factors and Viral Evasion Mechanisms. Cell Host Microbe 2018, 24, 447–460.e11. [Google Scholar] [CrossRef] [PubMed]
- Nobre, L.V.; Nightingale, K.; Ravenhill, B.J.; Antrobus, R.; Soday, L.; Nichols, J.; Davies, J.A.; Seirafian, S.; Wang, E.C.; Davison, A.J.; et al. Human cytomegalovirus interactome analysis identifies degradation hubs, domain associations and viral protein functions. eLife 2019, 8, e49894. [Google Scholar] [CrossRef] [PubMed]
- Du, G.; Stinski, M.F. Interaction network of proteins associated with human cytomegalovirus IE2-p86 protein during infection: A proteomic analysis. PLoS ONE 2013, 8, e81583. [Google Scholar] [CrossRef] [PubMed]
- Marchini, A.; Liu, H.; Zhu, H. Human cytomegalovirus with IE-2 (UL122) deleted fails to express early lytic genes. J. Virol. 2001, 75, 1870–1878. [Google Scholar] [CrossRef] [PubMed]
- Pari, G.S. Nuts and bolts of human cytomegalovirus lytic DNA replication. Curr. Top. Microbiol. Immunol. 2008, 325, 153–166. [Google Scholar]
- Huang, L.; Chi, J.; Berry, F.B.; Footz, T.K.; Sharp, M.W.; Walter, M.A. Human p32 is a novel FOXC1-interacting protein that regulates FOXC1 transcriptional activity in ocular cells. Invest. Ophthalmol. Vis. Sci. 2008, 49, 5243–5249. [Google Scholar] [CrossRef]
- Petersen-Mahrt, S.K.; Estmer, C.; Ohrmalm, C.; Matthews, D.A.; Russell, W.C.; Akusjarvi, G. The splicing factor-associated protein, p32, regulates RNA splicing by inhibiting ASF/SF2 RNA binding and phosphorylation. EMBO J. 1999, 18, 1014–1024. [Google Scholar] [CrossRef]
- Van Scoy, S.; Watakabe, I.; Krainer, A.R.; Hearing, J. Human p32: A coactivator for Epstein-Barr virus nuclear antigen-1-mediated transcriptional activation and possible role in viral latent cycle DNA replication. Virology 2000, 275, 145–157. [Google Scholar] [CrossRef]
- Wang, Y.; Finan, J.E.; Middeldorp, J.M.; Hayward, S.D. P32/TAP, a cellular protein that interacts with EBNA-1 of Epstein-Barr virus. Virology 1997, 236, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Kato, A.; Oyama, M.; Kozuka-Hata, H.; Arii, J.; Kawaguchi, Y. Role of Host Cell p32 in Herpes Simplex Virus 1 De-Envelopment during Viral Nuclear Egress. J. Virol. 2015, 89, 8982–8998. [Google Scholar] [CrossRef] [PubMed]
- Changotra, H.; Turk, S.M.; Artigues, A.; Thakur, N.; Gore, M.; Muggeridge, M.I.; Hutt-Fletcher, L.M. Epstein-Barr virus glycoprotein gM can interact with the cellular protein p32 and knockdown of p32 impairs virus. Virology 2016, 489, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Bender, B.J.; Kamil, J.P.; Lye, M.F.; Pesola, J.M.; Reim, N.I.; Hogle, J.M.; Coen, D.M. Human cytomegalovirus UL97 phosphorylates the viral nuclear egress complex. J. Virol. 2015, 89, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Kamil, J.P.; Coughlin, M.; Reim, N.I.; Coen, D.M. Human cytomegalovirus UL50 and UL53 recruit viral protein kinase UL97, not protein kinase C, for disruption of nuclear lamina and nuclear egress in infected cells. J. Virol. 2014, 88, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Milbradt, J.; Auerochs, S.; Sticht, H.; Marschall, M. Cytomegaloviral proteins that associate with the nuclear lamina: Components of a postulated nuclear egress complex. J. Gen. Virol. 2009, 90 Pt 3, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Atalay, R.; Zimmermann, A.; Wagner, M.; Borst, E.; Benz, C.; Messerle, M.; Hengel, H. Identification and expression of human cytomegalovirus transcription units coding for two distinct Fcgamma receptor homologs. J. Virol. 2002, 76, 8596–8608. [Google Scholar] [CrossRef] [PubMed]
- Lilley, B.N.; Ploegh, H.L.; Tirabassi, R.S. Human cytomegalovirus open reading frame TRL11/IRL11 encodes an immunoglobulin G Fc-binding protein. J. Virol. 2001, 75, 11218–11221. [Google Scholar] [CrossRef]
- Antonsson, A.; Johansson, P.J.H. Binding of human and animal immunoglobulins to the IgG Fc receptor induced by human cytomegalovirus. J. Gen. Virol. 2001, 82 Pt 5, 1137–1145. [Google Scholar] [CrossRef]
- Jenks, J.A.; Goodwin, M.L.; Permar, S.R. The Roles of Host and Viral Antibody Fc Receptors in Herpes Simplex Virus (HSV) and Human Cytomegalovirus (HCMV) Infections and Immunity. Front. Immunol. 2019, 10, 2110. [Google Scholar] [CrossRef]
- Li, F.; Freed, D.C.; Tang, A.; Rustandi, R.R.; Troutman, M.C.; Espeseth, A.S.; Zhang, N.; An, Z.; McVoy, M.; Zhu, H.; et al. Complement enhances in vitro neutralizing potency of antibodies to human cytomegalovirus glycoprotein B (gB) and immune sera induced by gB/MF59 vaccination. NPJ Vaccines 2017, 2, 36. [Google Scholar] [CrossRef] [PubMed]
- Britt, W.J.; Vugler, L.; Stephens, E.B. Induction of complement-dependent and -independent neutralizing antibodies by recombinant-derived human cytomegalovirus gp55-116 (gB). J. Virol. 1988, 62, 3309–3318. [Google Scholar] [CrossRef] [PubMed]
- Ohta, A.; Fujita, A.; Murayama, T.; Iba, Y.; Kurosawa, Y.; Yoshikawa, T.; Asano, Y. Recombinant human monoclonal antibodies to human cytomegalovirus glycoprotein B neutralize virus in a complement-dependent manner. Microbes Infect. 2009, 11, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, X.J.; Brockman, M.A.; Alicot, E.; Ma, M.; Fischer, M.B.; Zhou, X.; Knipe, D.M.; Carroll, M.C. Humoral response to herpes simplex virus is complement-dependent. Proc. Natl. Acad. Sci. USA 1999, 96, 12708–12712. [Google Scholar] [CrossRef] [PubMed]
- Liszewski, M.K.; Kolev, M.; Le Friec, G.; Leung, M.; Bertram, P.G.; Fara, A.F.; Subias, M.; Pickering, M.C.; Drouet, C.; Meri, S.; et al. Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation. Immunity 2013, 39, 1143–1157. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Leffler, J.; Smolag, K.I.; Mytych, J.; Bjork, A.; Chaves, L.D.; Alexander, J.J.; Quigg, R.J.; Blom, A.M. Factor H uptake regulates intracellular C3 activation during apoptosis and decreases the inflammatory potential of nucleosomes. Cell Death Differ. 2016, 23, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Schaffler, A.; Buechler, C. CTRP family: Linking immunity to metabolism. Trends Endocrinol. Metab. 2012, 23, 194–204. [Google Scholar] [CrossRef]
- Tam, J.C.; Bidgood, S.R.; McEwan, W.A.; James, L.C. Intracellular sensing of complement C3 activates cell autonomous immunity. Science 2014, 345, 1256070. [Google Scholar] [CrossRef]
Class | Name | Function | Pathway |
---|---|---|---|
Pattern Recognition Molecules | C1q | C1q recognizes antibody or antibody–antigen complexes and contributes to the activation of the classical pathway via the C1 complex (C1rC1s)2. | Classical |
Mannose-Binding Lectin (MBL) | MBL recognizes foreign carbohydrates on microbial surfaces and contributes to the activation of the lectin pathway mediated by MASPs. | Lectin | |
Ficolins | Pattern recognition of foreign carbohydrates, same as above. | Lectin | |
Collectins | Pattern recognition of foreign carbohydrates, same as above. | Lectin | |
Activating Enzymes | C1r | C1r is a serine protease and subcomponent of the C1 complex. Upon binding to C1q, C1r proteolytically cleaves C1s to initiate classical pathway activation. | Classical |
C1s | C1s is a serine protease and subcomponent of the C1 complex. Upon activation by C1r, C1s proteolytically cleaves C4 (into C4a, C4b) and C2 (into C2a, C2b) in the classical pathway. | Classical | |
C2a | C2a assembles with C4b to form the C3 convertase (C4bC2a) of the classical and lectin pathways. | Classical, Lectin | |
Factor D (FD) | FD is a serine protease that cleaves FB to produce Bb in the alternative pathway. | Alternative | |
Factor B (FB) | FB is a serine protease that provides catalytic activity and is a subcomponent of the C3 convertase (C3bBb) and C5 convertase (C3bBbC3b) of the alternative pathway. | Alternative | |
MBL-Associated Serine Protease 1 (MASP-1) | MASP-1 is a serine protease that cleaves C2 (into C2a and C2b) and activates MASP-2 in the lectin pathway. | Lectin | |
MBL-Associated Serine Protease 2 (MASP-2) | MASP-2 is a serine protease that cleaves C4 (into C4a and C4b) and C2 (into C2a and C2b) in conjunction with MASP-1 in the lectin pathway. | Lectin | |
Opsonins | C4b | C4b binds covalently to complement activating surfaces and is an opsonin recognized by complement receptors on cells. C4b is also a subcomponent of the C3 convertase (C4bC2a) and C5 convertase (C4bC2aC3b) of the classical and lectin pathways. | Classical, Lectin |
C3b | C3b is deposited on complement activating surfaces and is a potent opsonin recognized by complement receptors on cells. C3b is also a subcomponent of the C3 convertase (C3bBb) and C5 convertase (C3bBbC3b) of the alternative pathway, as well as the C5 convertase (C4bC2aC3b) of the classical and lectin pathways. | All | |
Inflammatory Mediators | C3a | C3a is a potent anaphylatoxin and is recognized by C3a receptors on cells. C3a can induce inflammation, extravasation, and chemotaxis of cells to sites of infection. | All |
C5a | C5a is a potent anaphylatoxin and is recognized by C5a receptors on cells. C5a can induce inflammation, extravasation, and chemotaxis of cells to sites of infection. | All | |
Membrane Attack Complex (MAC) | C5b | The MAC is a multiprotein complex assembled during the terminal stage of the complement cascade that produces a pore on complement-activating surfaces, resulting in membrane lysis. | All |
C6 | All | ||
C7 | All | ||
C8 | All | ||
C9 | All | ||
Complement Regulators | C1 Esterase Inhibitor (C1-INH) | C1-INH is a protease inhibitor that regulates the classical pathway of complement by inhibiting C1r and C1s serine proteases in the C1 complex. C1-INH also regulates the lectin pathway by inhibiting the cleavage of C4 and C2 by MASPs. | Classical, Lectin |
C1q-Binding Protein (C1qBP/gC1qBP/p32) | C1qBP regulates the classical pathway by binding to C1q and inhibiting the activation of the C1 complex. | Classical | |
C4b-Binding Protein (C4bp) | C4bp regulates the classical and lectin pathways by binding to C4b and preventing the formation, or accelerating the decay, of the C3 convertase (C4bC2a) in both pathways. | Classical, Lectin | |
Complement Receptor 1 (CR1/CD35) | CD35 regulates the classical, lectin, and alternative pathways by serving as a receptor for C3b and C4b. CD35 accelerates the decay of the classical/lectin C3 convertase (C4bC2a) and C5 convertase (C4bC2aC3b). Similarly, CD35 can accelerate the decay of the alternative pathway C3 convertase (C3bBb) and C5 convertase (C3bBbC3b). | All | |
Membrane Cofactor Protein (MCP/CD46) | CD46 regulates the classical, lectin, and alternative pathways by serving as a co-factor for the inactivation of C3b and C4b by Factor I (FI). | All | |
Decay-Accelerating Factor (DAF/CD55) | CD55 regulates the classical, lectin, and alternative pathways by binding to C4b and C3b to inhibit the assembly, or accelerate the decay, of C3 convertases (C4bC2a and C3bBb) and C5 convertases (C4bC2aC3b and C3bBbC3b) in all three pathways. | All | |
Factor H (FH) | FH regulates the alternative pathway by inhibiting the assembly of the alternative pathway C3 convertase (C3bBb) and C5 convertase (C3bBbC3b) by competing with Factor B (FB) for the binding of C3b. FH also facilitates the decay of the C3 and C5 convertases by displacing Bb and acting as a co-factor for the Factor-I-mediated cleavage and inactivation of C3b. | Alternative | |
Factor I (FI) | FI regulates the classical, lectin, and alternative pathways by cleaving and degrading C3b and C4b in the presence of co-factors such as Factor H (FH), C4b-binding protein (C4bp), CR1 (CD35), or MCP (CD46). | All | |
Properdin (P) | Properdin positively regulates and enhances complement by stabilizing the alternative pathway C3 convertase (C3bBb). | Alternative | |
MAC- inhibitory protein (MAC-IP/CD59) | CD59 regulates the classical, lectin, and alternative pathways by inhibiting the polymerization of C9 to prevent the assembly of the MAC (C5bC6C7C8C9). | All | |
Complement Receptors | Complement Receptor 1 (CR1/CD35) | CD35 recognizes C3b and C4b on complement-activating surfaces and enhances phagocytosis. CD35 also has complement-regulating functions, as described above. | |
Complement Receptor 2 (CR2/CD21) | CD21 binds to C3d-coated antigens and can regulate B-cell activation and antigen processing and presentation. | ||
Complement Receptor 3 (CR3/CD11b-CD18) | CD11b/CD18 recognizes iC3b and facilitates phagocytosis, adhesion, and immune cell trafficking to sites of infection. | ||
Complement Receptor 4 (CR4/CD11c-CD18) | CD11c/CD18 recognizes iC3b and facilitates phagocytosis, adhesion, and immune cell trafficking to sites of infection. CD11c/CD18 may also contribute to antigen presentation. |
Complement Protein | HCMV Protein(s) | Biological Process | Reference |
---|---|---|---|
CD55 | Unknown | Complement evasion | [50,51,52] |
CD59 | Unknown | Complement evasion | [50,51,52] |
C1qBP | UL50 | Nuclear egress complex (NEC) | [53] |
UL53 | [53,54] | ||
UL97 | [55] | ||
UL84 | Viral gene expression | [56] | |
MBL | Unknown | Viral entry (Pulmonary Fibroblasts) | [57] |
CD46 | gH/gL/UL128-130-131A | Viral entry (Epithelial, Trophoblasts) | [50,58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lujan, E.; Zhang, I.; Garon, A.C.; Liu, F. The Interactions of the Complement System with Human Cytomegalovirus. Viruses 2024, 16, 1171. https://doi.org/10.3390/v16071171
Lujan E, Zhang I, Garon AC, Liu F. The Interactions of the Complement System with Human Cytomegalovirus. Viruses. 2024; 16(7):1171. https://doi.org/10.3390/v16071171
Chicago/Turabian StyleLujan, Eduardo, Isadora Zhang, Andrea Canto Garon, and Fenyong Liu. 2024. "The Interactions of the Complement System with Human Cytomegalovirus" Viruses 16, no. 7: 1171. https://doi.org/10.3390/v16071171
APA StyleLujan, E., Zhang, I., Garon, A. C., & Liu, F. (2024). The Interactions of the Complement System with Human Cytomegalovirus. Viruses, 16(7), 1171. https://doi.org/10.3390/v16071171