Prevalence and Clinical Impact of Viral and Bacterial Coinfections in Hospitalized Children and Adolescents Aged under 18 Years with COVID-19 during the Omicron Wave in Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Statistical Analysis
3. Results
3.1. Pathogen Distribution
3.2. The Impact of Coinfections on Clinical Manifestations and Disease Course
Characterization of the Study Groups
3.3. Comparison of Clinical Characteristics between Study Groups
3.3.1. SARS-CoV-2 Monoinfection vs. SARS-CoV-2 with Other Respiratory Viruses
3.3.2. SARS-CoV-2 Monoinfection vs. Bacterial Coinfections
3.3.3. SARS-CoV-2 vs. Other Respiratory Viruses as Monoinfections
3.3.4. SARS-CoV-2 vs. SARS-CoV-2 + Other Respiratory Viruses and Bacterial Coinfection
3.4. Expected versus Observed Co-Detections with SARS-CoV-2
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hale, T.; Angrist, N.; Goldszmidt, R.; Kira, B.; Petherick, A.; Phillips, T.; Webster, S.; Cameron-Blake, E.; Hallas, L.; Majumdar, S.; et al. A Global Panel Database of Pandemic Policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 2021, 5, 529–538. [Google Scholar] [CrossRef]
- El-Heneidy, A.; Ware, R.S.; Robson, J.M.; Cherian, S.G.; Lambert, S.B.; Grimwood, K. Respiratory Virus Detection during the COVID-19 Pandemic in Queensland, Australia. Aust. N. Z. J. Public Health 2022, 46, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Yakovlev, A.S.; Belyaletdinova, I.K.; Mazankova, L.N.; Samitova, E.R.; Osmanov, I.M.; Gavelya, N.V.; Volok, V.P.; Kolpakova, E.S.; Shishova, A.A.; Dracheva, N.A.; et al. SARS-CoV-2 Infection in Children in Moscow in 2020: Clinical Features and Impact on Circulation of Other Respiratory Viruses: SARS-CoV-2 Infection in Children in Moscow in 2020. Int. J. Infect. Dis. 2022, 116, 331–338. [Google Scholar] [CrossRef]
- Chow, E.J.; Uyeki, T.M.; Chu, H.Y. The Effects of the COVID-19 Pandemic on Community Respiratory Virus Activity. Nat. Rev. Microbiol. 2023, 21, 195–210. [Google Scholar] [CrossRef]
- Dee, K.; Schultz, V.; Haney, J.; Bissett, L.A.; Magill, C.; Murcia, P.R. Influenza A and Respiratory Syncytial Virus Trigger a Cellular Response That Blocks Severe Acute Respiratory Syndrome Virus 2 Infection in the Respiratory Tract. J. Infect. Dis. 2023, 227, 1396–1406. [Google Scholar] [CrossRef] [PubMed]
- Coronavirus Statistics in Russia: Online, for Today, by Day. Available online: https://gogov.ru/articles/covid-19 (accessed on 27 October 2023).
- Fan, Y.; Li, X.; Zhang, L.; Wan, S.; Zhang, L.; Zhou, F. SARS-CoV-2 Omicron Variant: Recent Progress and Future Perspectives. Signal Transduct. Target. Ther. 2022, 7, 141. [Google Scholar] [CrossRef]
- Hui, K.P.Y.; Ho, J.C.W.; Cheung, M.; Ng, K.; Ching, R.H.H.; Lai, K.; Kam, T.T.; Gu, H.; Sit, K.-Y.; Hsin, M.K.Y.; et al. SARS-CoV-2 Omicron Variant Replication in Human Bronchus and Lung Ex Vivo. Nature 2022, 603, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Adams, K. Prevalence of SARS-CoV-2 and Influenza Coinfection and Clinical Characteristics Among Children and Adolescents Aged 18 Years Who Were Hospitalized or Died with Influenza—United States, 2021–2022 Influenza Season. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1589–1596. [Google Scholar] [CrossRef]
- Moffitt, K.L.; Nakamura, M.M.; Young, C.C.; Newhams, M.M.; Halasa, N.B.; Reed, J.N.; Fitzgerald, J.C.; Spinella, P.C.; Soma, V.L.; Walker, T.C.; et al. Community-Onset Bacterial Coinfection in Children Critically Ill With Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Open Forum Infect. Dis. 2023, 10, ofad122. [Google Scholar] [CrossRef]
- Klink, G.V.; Danilenko, D.; Komissarov, A.B.; Yolshin, N.; Shneider, O.; Shcherbak, S.; Nabieva, E.; Shvyrev, N.; Konovalova, N.; Zheltukhina, A.; et al. An Early SARS-CoV-2 Omicron Outbreak in a Dormitory in Saint Petersburg, Russia. Viruses 2023, 15, 1415. [Google Scholar] [CrossRef]
- Nextstrain: Real-Time Tracking of Pathogen Evolution. Available online: https://nextstrain.org/ncov/gisaid/global/all-time?dmax=2023-03-10&dmin=2022-01-09&f_region=Europe&l=clock (accessed on 19 July 2024).
- Bahl, A.; Mielke, N.; Johnson, S.; Desai, A.; Qu, L. Severe COVID-19 Outcomes in Pediatrics: An Observational Cohort Analysis Comparing Alpha, Delta, and Omicron Variants. Lancet Reg. Health Am. 2022, 18, 100405. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.R.; Harrison, C.J.; Myers, A.L.; Jackson, M.A.; Selvarangan, R. Differences in Pediatric SARS-CoV-2 Symptomology and Co-Infection Rates among COVID-19 Pandemic Waves. J. Clin. Virol. 2022, 154, 105220. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Zhou, L.; Lv, J.; Yang, S.; Chen, G.; Liu, X.; Han, C.; Tan, X.; Qian, S.; Wu, Z.; et al. Bacterial Coinfections Contribute to Severe COVID-19 in Winter. Cell Res. 2023, 33, 562–564. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.-C.; Hsu, Y.-L.; Lin, C.-H.; Wei, H.-M.; Chen, J.-A.; Low, Y.-Y.; Chiu, Y.-T.; Lin, H.-C.; Hwang, K.-P. Bacterial Coinfections in Hospitalized Children with COVID-19 during the SARS-CoV-2 Omicron BA.2 Variant Pandemic in Taiwan. Front. Med. 2023, 10, 1178041. [Google Scholar] [CrossRef] [PubMed]
- Agathis, N.T.; Patel, K.; Milucky, J.; Taylor, C.A.; Whitaker, M.; Pham, H.; Anglin, O.; Chai, S.J.; Alden, N.B.; Meek, J.; et al. Codetections of Other Respiratory Viruses Among Children Hospitalized With COVID-19. Pediatrics 2023, 151, e2022059037. [Google Scholar] [CrossRef] [PubMed]
- Malveste Ito, C.R.; Moreira, A.L.E.; da Silva, P.A.N.; Santos, M.D.O.; dos Santos, A.P.; Rézio, G.S.; de Brito, P.N.; Rezende, A.P.C.; Fonseca, J.G.; Peixoto, F.A.D.O.; et al. Viral Coinfection of Children Hospitalized with Severe Acute Respiratory Infections during COVID-19 Pandemic. Biomedicines 2023, 11, 1402. [Google Scholar] [CrossRef] [PubMed]
- Stowe, J.; Tessier, E.; Zhao, H.; Guy, R.; Muller-Pebody, B.; Zambon, M.; Andrews, N.; Ramsay, M.; Lopez Bernal, J. Interactions between SARS-CoV-2 and Influenza, and the Impact of Coinfection on Disease Severity: A Test-Negative Design. Int. J. Epidemiol. 2021, 50, 1124–1133. [Google Scholar] [CrossRef] [PubMed]
- Swets, M.C.; Russell, C.D.; Harrison, E.M.; Docherty, A.B.; Lone, N.; Girvan, M.; Hardwick, H.E.; Visser, L.G.; Openshaw, P.J.M.; Groeneveld, G.H.; et al. SARS-CoV-2 Co-Infection with Influenza Viruses, Respiratory Syncytial Virus, or Adenoviruses. Lancet 2022, 399, 1463–1464. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.S.; Diniz, L.M.; Oliveira, M.C.L.; Simões e Silva, A.C.; Colosimo, E.A.; Mak, R.H.; Pinhati, C.C.; Galante, S.C.; Veloso, I.Y.; Martelli-Júnior, H.; et al. Outcomes of SARS-CoV-2 and Seasonal Viruses Among Children Hospitalized in Brazil. Pediatrics 2024, 153, e2023064326. [Google Scholar] [CrossRef]
- Schultz-Cherry, S. Viral Interference: The Case of Influenza Viruses. J. Infect. Dis. 2015, 212, 1690–1691. [Google Scholar] [CrossRef]
- Pinky, L.; Dobrovolny, H.M. Coinfections of the Respiratory Tract: Viral Competition for Resources. PLoS ONE 2016, 11, e0155589. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, B. Heterologous Immunity: Role in Natural and Vaccine-Induced Resistance to Infections. Front. Immunol. 2019, 10, 2631. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Mihaylova, V.T.; Landry, M.L.; Foxman, E.F. Interference between Rhinovirus and Influenza A Virus: A Clinical Data Analysis and Experimental Infection Study. Lancet Microbe 2020, 1, e254–e262. [Google Scholar] [CrossRef] [PubMed]
Pathogen | n | SARS-CoV-2 Positive n = 381 | SARS-CoV-2 Negative n = 193 |
---|---|---|---|
AdV | 41 | 25 (6.56%) | 16 (8.29%) |
hRV | 32 | 9 (2.36%) | 23 (11.92%) |
PIV 3 | 9 | 9 (2.36%) | 0 (0.00%) |
hBoV | 20 | 7 (1.84%) | 13 (6.74%) |
IAV | 14 | 6 (1.57%) | 8 (4.15%) |
RSV | 22 | 6 (1.57%) | 16 (8.29%) |
hCoV HKU-1/OC 43 | 12 | 4 (1.05%) | 8 (4.15%) |
hCoV NL63/229E | 2 | 2 (0.52%) | 0 (0.00%) |
hMPV | 13 | 1 (0.26%) | 12 (6.22%) |
IBV | 21 | 0 (0.00%) | 21 (10.88%) |
PIV 2 | 1 | 0 (0.00%) | 1 (0.51%) |
Age, Years | All | Viral Coinfection | p Value | |
---|---|---|---|---|
Yes | No | |||
n | 381 | 64 | 317 | <0.0001 |
Under 1 | 34 (8.92%) | 3 (4.69%) | 31 (9.78%) | <0.0001 |
1–4 | 160 (41.99%) | 41 (64.06%) | 119 (37.54%) | <0.0001 |
5–11 | 89 (23.36%) | 15 (23.44%) | 74 (23.34%) | <0.0001 |
12–17 | 98 (25.72%) | 5 (7.81%) | 93 (29.34%) | <0.0001 |
Pathogen | n | SARS-CoV-2 Positive n = 381 | SARS-CoV-2 Negative n = 193 |
---|---|---|---|
S. aureus | 64 | 46 (12.07%) | 18 (9.33%) |
S. viridans | 18 | 14 (3.67%) | 4 (2.07%) |
S. pneumoniae | 13 | 9 (2.36%) | 4 (2.07%) |
Acinetobacter sp. | 4 | 4 (1.05%) | 0 (0.00%) |
H. influenzae | 5 | 3 (0.79%) | 2 (2.07%) |
S. pyogenes | 4 | 3 (0.79%) | 1 (0.51%) |
C. Pneumoniae | 4 | 2 (0.52%) | 2 (2.07%) |
C. albicans | 2 | 2 (0.52%) | 0 (0.00%) |
K. pneumoniae | 3 | 1 (0.26%) | 2 (2.07%) |
Enterobacter sp. | 2 | 1 (0.26%) | 1 (0.51%) |
M. pneumoniae | 2 | 1 (0.26%) | 1 (0.51%) |
E. faecalis | 1 | 1 (0.26%) | 0 (0.00%) |
S. pasteuri | 1 | 1 (0.26%) | 0 (0.00%) |
S. mitis/S.oralis | 1 | 1 (0.26%) | 0 (0.00%) |
P. Aeruginosa | 2 | 0 (0.00%) | 2 (2.07%) |
Age, years | All | Bacterial Coinfection | p Value | |
---|---|---|---|---|
Yes | No | |||
n | 381 | 76 | 305 | <0.0001 |
Under 1 | 34 (8.92%) | 6 (7.89%) | 28 (9.18%) | <0.0001 |
1–4 | 160 (41.99%) | 31 (40.79%) | 129 (42.30%) | <0.0001 |
5–11 | 89 (23.36%) | 18 (23.68%) | 71 (23.28%) | <0.0001 |
12–17 | 98 (25.72%) | 21 (27.63%) | 77 (25.25%) | <0.0001 |
1. SARS-CoV-2 | 2. SARS-CoV-2 + Virus | 3. SARS-CoV-2 + Bacteria | 4. Respiratory Viruses | 5. SARS-CoV-2 + Virus + Bacteria | |
---|---|---|---|---|---|
n | 257 | 48 | 60 | 74 | 16 |
Study participants, Median IQR or % | |||||
Age, years | 5 [1.0; 13.0] | 3 [1.0; 4.5] * | 5 [2.0; 12.0] | 3 [2.0; 7.0] * | 3 [2.0; 9.750] |
Sex, Male | 0.52 | 0.65 | 0.53 | 0.59 | 0.63 |
Symptoms | |||||
Fever | 0.87 | 0.92 | 0.93 | 0.88 | 0.81 |
Runny nose | 0.51 | 0.57 | 0.53 | 0.68 * | 0.44 |
Cough | 0.48 | 0.41 | 0.55 | 0.78 * | 0.63 |
Sore throat | 0.16 * | 0.22 | 0.25 | 0.05 | 0.06 |
Headache | 0.14 * | 0.08 | 0.18 | 0.03 | 0.0 |
Hoarseness | 0.09 | 0.03 | 0.08 | 0.15 | 0.0 |
Weakness | 0.09 | 0.14 | 0.17 | 0.12 | 0.06 |
Vomiting | 0.08 | 0.08 | 0.07 | 0.04 | 0.13 |
Shortness of breath | 0.06 | 0.05 | 0.1 | 0.28 * | 0 |
Abdominal pain | 0.05 | 0.14 | 0.02 | 0.09 | 0.19 * |
Temperature, °C | 38.90 [37.80; 39.40] | 39.35 [38.85; 39.60] * | 38.80 [38.03; 39.20] | 39.10 [38.00; 39.70] | 38.85 [38.00; 39.35] |
Duration of illness, days | 9 [7.00; 13.00] | 7 [7.00; 10.50] | 12 [9.25; 14.00] * | 10 [7.00; 13.00] | 10.5 [8.0; 15.25] |
Duration of fever, days | 3 [1.00; 4.00] | 3 [2.00; 4.00] | 3 [2.00; 5.00] | 3 [2.00; 4.00] | 4 [3.0; 5.0] |
Respiratory failure | 0.02 | 0.05 | 0 | 0.18 * | 0.06 |
Bronchitis | 0.03 | 0.16 * | 0.03 | 0.24 * | 0 |
Pneumonia | 0.03 | 0.03 | 0.15 * | 0.12 * | 0.19 * |
Complete blood count | |||||
WBC, × 109/L | 7 [5.100; 9.800] | 9 [7.650; 12.95] | 7.9 [5.80; 12.10] | 9.75 [6.18; 13.95] * | 7.75 [6.43; 11.55] |
WBC ↑ | 0.16 | 0.3 | 0.27 | 0.34 * | 0.19 |
WBC ↓ | 0.15 | 0.03 | 0.17 | 0.09 | 0.13 |
Hemoglobin, g/L | 127.0 [120.0; 134.0] | 122.0 [115.5; 127.0] | 129.0 [121.0; 139.0] | 123.5 [115.8; 133.0] | 132.5 [124.0; 137.5] |
Hemoglobin ↓ | 0.08 | 0.11 | 0.1 | 0.05 | 0.06 |
Platelets, × 109/L | 271.0 [221.0; 340.5] | 286.0 [218.5; 337.0] | 273.5 [210.3; 360.0] | 297.5 [233.0; 361.5] | 282.0 [250.5; 364.3] |
Platelets ↑ | 0.17 | 0.11 | 0.12 | 0.16 | 0.13 |
ESR | 15 [10.00; 22.00] | 17 [10.00; 25.50] | 13 [8.25; 22.75] | 16 [11.00; 22.50] | 16.0 [9.25; 21.50] |
ESR ↑ | 0.44 | 0.57 | 0.42 | 0.53 | 0.5 |
CRP ↑ | 0.09 | 0.19 | 0.1 | 0.05 | 0.13 |
Virus | Expected Co-Detections | Observed Co-Detections | Chi-Square Test, p Value |
---|---|---|---|
IBV | 8 | 0 | 0.0075 * |
hMPV | 5 | 0 | 0.0615 |
hRV | 10 | 2 | 0.0367 * |
RSV | 8 | 4 | 0.3829 |
hBoV | 6 | 2 | 0.2858 |
hCoV HKU-1/OC 43 | 4 | 2 | 0.6860 |
IAV | 4 | 2 | 0.6860 |
AdV | 8 | 7 | >0.9999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakovlev, A.S.; Afanasev, V.V.; Alekseenko, S.I.; Belyaletdinova, I.K.; Isankina, L.N.; Gryaznova, I.A.; Skalny, A.V.; Kozlovskaya, L.I.; Ishmukhametov, A.A.; Karganova, G.G. Prevalence and Clinical Impact of Viral and Bacterial Coinfections in Hospitalized Children and Adolescents Aged under 18 Years with COVID-19 during the Omicron Wave in Russia. Viruses 2024, 16, 1180. https://doi.org/10.3390/v16081180
Yakovlev AS, Afanasev VV, Alekseenko SI, Belyaletdinova IK, Isankina LN, Gryaznova IA, Skalny AV, Kozlovskaya LI, Ishmukhametov AA, Karganova GG. Prevalence and Clinical Impact of Viral and Bacterial Coinfections in Hospitalized Children and Adolescents Aged under 18 Years with COVID-19 during the Omicron Wave in Russia. Viruses. 2024; 16(8):1180. https://doi.org/10.3390/v16081180
Chicago/Turabian StyleYakovlev, Alexander S., Vladislav V. Afanasev, Svetlana I. Alekseenko, Ilmira K. Belyaletdinova, Ludmila N. Isankina, Irina A. Gryaznova, Anatoly V. Skalny, Liubov I. Kozlovskaya, Aydar A. Ishmukhametov, and Galina G. Karganova. 2024. "Prevalence and Clinical Impact of Viral and Bacterial Coinfections in Hospitalized Children and Adolescents Aged under 18 Years with COVID-19 during the Omicron Wave in Russia" Viruses 16, no. 8: 1180. https://doi.org/10.3390/v16081180
APA StyleYakovlev, A. S., Afanasev, V. V., Alekseenko, S. I., Belyaletdinova, I. K., Isankina, L. N., Gryaznova, I. A., Skalny, A. V., Kozlovskaya, L. I., Ishmukhametov, A. A., & Karganova, G. G. (2024). Prevalence and Clinical Impact of Viral and Bacterial Coinfections in Hospitalized Children and Adolescents Aged under 18 Years with COVID-19 during the Omicron Wave in Russia. Viruses, 16(8), 1180. https://doi.org/10.3390/v16081180