A Novel Mastadenovirus from Nyctalus noctula Which Represents a Distinct Evolutionary Branch of Viruses from Bats in Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Nucleic Acid Extraction, Reverse Transcription, Library Preparation and High-Throughput Sequencing
2.3. Genome Sequence Assembly and Annotation of Novel Virus
2.4. Phylogenetic Analysis
2.5. Maps Generation
3. Results
3.1. Mastadenovirus Detection
3.2. Genome Characterization of Novel Mastadenovirus BatAdV/MOW15-Nn19/Quixote
3.3. Phylogenetic Analysis of Bat Mastadenoviruses from Russia
4. Discussion
4.1. Prevalence of Mastadenoviruses in Bat Populations
4.2. Genomic Features of the Provisionaly Novel Mastadenovirus Species
4.3. Could the Pipistrellus Bats Distribute Mastadenoviruses around the Old World until Australia?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benko, M.; Aoki, K.; Arnberg, N.; Davison, A.J.; Echavarria, M.; Hess, M.; Jones, M.S.; Kaján, G.L.; Kajon, A.E.; Mittal, S.K.; et al. ICTV Virus Taxonomy Profile: Adenoviridae 2022. J. Gen. Virol. 2022, 103, 001721. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, J.; Pérez-Illana, M.; Martín-González, N.; Martín, C.S. Adenovirus structure: What is new? Int. J. Mol. Sci. 2021, 22, 5240. [Google Scholar] [CrossRef] [PubMed]
- Ntumvi, N.F.; Diffo, J.L.D.; Tamoufe, U.; Ndze, V.N.; Takuo, J.M.; Mouiche, M.M.M.; Nwobegahay, J.; LeBreton, M.; Gillis, A.; Rimoin, A.W.; et al. Evaluation of bat adenoviruses suggests co-evolution and host roosting behaviour as drivers for diversity. Microb. Genom. 2021, 7, 000561. [Google Scholar] [CrossRef] [PubMed]
- Viral Zone Website. Mastadenovirus (Taxid:10509). Available online: https://viralzone.expasy.org/183 (accessed on 25 January 2024).
- Balboni, A.; Verin, R.; Morandi, F.; Poli, A.; Prosperi, S.; Battilani, M. Molecular epidemiology of canine adenovirus type 1 and type 2 in free-ranging red foxes (Vulpes vulpes) in Italy. Vet. Microbiol. 2013, 162, 551–557. [Google Scholar] [CrossRef]
- Hou, J.; Xu, J.; Wang, B.; Zhang, H.; Yin, B.; Li, G.; Lei, F.; Cai, X.; Zhu, Y.; Wang, L. First identification of canine adenovirus 1 in mink and bioinformatics analysis of its 100 K protein. Front. Microbiol. 2023, 14. [Google Scholar] [CrossRef] [PubMed]
- Oleaga, A.; Balseiro, A.; Espí, A.; Royo, L.J. Wolf (Canis lupus) as canine adenovirus type 1 (CAdV-1) sentinel for the endangered cantabrian brown bear (Ursus arctos arctos). Transbound. Emerg. Dis. 2022, 69, 516–523. [Google Scholar] [CrossRef]
- Kosoltanapiwat, N.; Tongshoob, J.; Ampawong, S.; Reamtong, O.; Prasittichai, L.; Yindee, M.; Tongthainan, D.; Tulayakul, P.; Boonnak, K. Simian adenoviruses: Molecular and serological survey in monkeys and humans in Thailand. One Health 2022, 15, 100434. [Google Scholar] [CrossRef] [PubMed]
- Medkour, H.; Amona, I.; Akiana, J.; Davoust, B.; Bitam, I.; Levasseur, A.; Tall, M.L.; Diatta, G.; Sokhna, C.; Hernandez-Aguilar, R.A.; et al. Adenovirus infections in African humans and wild non-human primates: Great diversity and cross-species transmis-sion. Viruses 2020, 12, 657. [Google Scholar] [CrossRef]
- Chen, E.C.; Yagi, S.; Kelly, K.R.; Mendoza, S.P.; Maninger, N.; Rosenthal, A.; Spinner, A.; Bales, K.L.; Schnurr, D.P.; Lerche, N.W.; et al. Cross-species transmission of a novel adenovirus associated with a fulminant pneumonia outbreak in a new world monkey colony. PLoS Pathog. 2011, 7, e1002155. [Google Scholar] [CrossRef]
- Dehghan, S.; Seto, J.; Liu, E.B.; Ismail, A.M.; Madupu, R.; Heim, A.; Jones, M.S.; Dyer, D.W.; Chodosh, J.; Seto, D. A Zoonotic Adenoviral Human Pathogen Emerged through Genomic Recombination among Human and Nonhuman Simian Hosts. J. Virol. 2019, 93, e00564-19. [Google Scholar] [CrossRef]
- Harvey, W.; Hutto, E.H.; Chilton, J.A.; Chamanza, R.; Mysore, J.V.; Parry, N.M.A.; Dick, E.; Wojcinski, Z.W.; Piaia, A.; Garcia, B.; et al. Chapter 3—Infectious diseases of non-human primates. In Spontaneous Pathology of the Laboratory Non-Human Primate; Bradley, A.E., Chilton, J.A., Mahler, B.W., Eds.; Elsevier Academic Press Inc.: Amsterdam, The Netherlands, 2023; pp. 15–69. ISBN 9780128130889. [Google Scholar] [CrossRef]
- Katayama, M.; Murakami, S.; Matsugo, H.; Kamiki, H.; Fujii, M.; Takenaka-Uema, A.; Horimoto, T. Complete genome se-quence of a novel bat mastadenovirus C strain isolated from Rhinolophus cornutus in Japan. Arch. Virol. 2022, 167, 1245581. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, H.; Kajihara, M.; Nao, N.; Shigeno, A.; Fujikura, D.; Hang’Ombe, B.M.; Mweene, A.S.; Mutemwa, A.; Squarre, D.; Yamada, M.; et al. Characterization of a novel bat adenovirus isolated from straw-colored fruit bat (Eidolon helvum). Viruses 2017, 9, 371. [Google Scholar] [CrossRef] [PubMed]
- Sonntag, M.; Mühldorfer, K.; Speck, S.; Wibbelt, G.; Kurth, A. New adenovirus in bats, Germany. Emerg. Infect. Dis. 2009, 15, 2052–2055. [Google Scholar] [CrossRef]
- Dacheux, L.; Cervantes-Gonzalez, M.; Guigon, G.; Thiberge, J.M.; Vandenbogaert, M.; Maufrais, C.; Caro, V.; Bourhy, H. A preliminary study of viral metagenomics of french bat species in contact with humans: Identification of new mammalian vi-ruses. PLoS ONE 2014, 9, e87194. [Google Scholar] [CrossRef] [PubMed]
- Kohl, C.; Vidovszky, M.Z.; Mühldorfer, K.; Dabrowski, P.W.; Radonić, A.; Nitsche, A.; Wibbelt, G.; Kurth, A.; Harrach, B. Ge-nome Analysis of Bat Adenovirus 2: Indications of Interspecies Transmission. J. Virol. 2012, 86, 1888–1892. [Google Scholar] [CrossRef] [PubMed]
- Vidovszky, M.Z.; Kohl, C.; Boldogh, S.; Görföl, T.; Wibbelt, G.; Kurth, A.; Harrach, B. Random sampling of the Central European bat fauna reveals the existence of numerous hitherto unknown adenoviruses. Acta Vet. Hung. 2015, 63, 508–525. [Google Scholar] [CrossRef] [PubMed]
- Jánoska, M.; Vidovszky, M.; Molnár, V.; Liptovszky, M.; Harrach, B.; Benko, M. Novel adenoviruses and herpesviruses de-tected in bats. Vet. J. 2011, 189, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Diakoudi, G.; Lanave, G.; Moreno, A.; Chiapponi, C.; Sozzi, E.; Prosperi, A.; Larocca, V.; Losurdo, M.; Decaro, N.; Martella, V.; et al. Surveillance for adenoviruses in bats in Italy. Viruses 2019, 11, 523. [Google Scholar] [CrossRef]
- Iglesias-Caballero, M.; Juste, J.; Vázquez-Morón, S.; Falcon, A.; Aznar-Lopez, C.; Ibáñez, C.; Pozo, F.; Ruiz, G.; Berciano, J.M.; Garin, I.; et al. New adenovirus groups in western palaearctic bats. Viruses 2018, 10, 443. [Google Scholar] [CrossRef]
- Cholleti, H.; de Jong, J.; Blomström, A.L.; Berg, M. Characterization of Pipistrellus pygmaeus Bat Virome from Sweden. Viruses 2022, 14, 1654. [Google Scholar] [CrossRef]
- Hardmeier, I.; Aeberhard, N.; Qi, W.; Schoenbaechler, K.; Kraettli, H.; Hatt, J.M.; Fraefel, C.; Kubacki, J. Metagenomic analysis of fecal and tissue samples from 18 endemic bat species in Switzerland revealed a diverse virus composition including poten-tially zoonotic viruses. PLoS ONE 2021, 16, e0252534. [Google Scholar] [CrossRef] [PubMed]
- Speranskaya, A.S.; Artiushin, I.V.; Samoilov, A.E.; Korneenko, E.V.; Khabudaev, K.V.; Ilina, E.N.; Yusefovich, A.P.; Safonova, M.V.; Dolgova, A.S.; Gladkikh, A.S.; et al. Identification and Genetic Characterization of MERS-Related Coronavirus Isolated from Nathusius’ Pipistrelle (Pipistrellus nathusii) near Zvenigorod (Moscow Region, Russia). Int. J. Environ. Res. Public Health 2023, 20, 3702. [Google Scholar] [CrossRef]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. Curr. Protoc. Bio-inform. 2020, 70, e102. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Tcherepanov, V.; Ehlers, A.; Upton, C. Genome annotation transfer utility (GATU): Rapid annotation of viral genomes using a closely related reference genome. BMC Genom. 2006, 7, 150. [Google Scholar] [CrossRef]
- Nishimura, Y.; Yoshida, T.; Kuronishi, M.; Uehara, H.; Ogata, H.; Goto, S. ViPTree: The viral proteomic tree server. Bioinformatics 2017, 33, 2379–2380. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2018, 20, 1160–1166. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accu-rate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Minh, B.Q.; Nguyen, M.A.T.; Von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Plotly Technologies Inc. Collaborative Data Science. Montréal, QC. 2015. Available online: https://plot.ly (accessed on 7 July 2024).
- Böszörményi, K.P.; Podgorski, I.I.; Vidovszky, M.Z.; Sós, E.; Benkő, M.; Harrach, B. Full genome sequence analysis of a novel adenovirus from a captive polar bear (Ursus maritimus). Virus Res. 2020, 277, 197846. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Vandenberghe, L.H.; Kryazhimskiy, S.; Grant, R.; Calcedo, R.; Yuan, X.; Keough, M.; Sandhu, A.; Wang, Q.; Medina-Jaszek, C.A.; et al. Isolation and characterization of adenoviruses persistently shed from the gastrointestinal tract of non-human primates. PLoS Pathog. 2009, 5, e1000503. [Google Scholar] [CrossRef] [PubMed]
- Harrach, B. Adenoviruses: General Features. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Prada, D.; Boyd, V.; Baker, M.L.; O’Dea, M.; Jackson, B. Viral diversity of microbats within the south west botanical province of western Australia. Viruses 2019, 11, 1157. [Google Scholar] [CrossRef] [PubMed]
- Drexler, J.F.; Corman, V.M.; Wegner, T.; Tateno, A.F.; Zerbinati, R.M.; Gloza-Rausch, F.; Seebens, A.; Müller, M.A.; Drosten, C. Amplification of emerging viruses in a bat colony. Emerg. Infect. Dis. 2011, 17, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Kohl, C.; Nitsche, A.; Kurth, A. Update on potentially zoonotic viruses of european bats. Vaccines 2021, 9, 690. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.A.; Almela, E.G.; García-Moreno, M.; Marina, A.I.; Carrasco, L. A viral RNA motif involved in signaling the initiation of translation on non-AUG codons. RNA 2019, 25, 431–452. [Google Scholar] [CrossRef] [PubMed]
- Lack, J.B.; Van Den Bussche, R.A. Identifying the confounding factors in resolving phylogenetic relationships in Vespertilio-nidae. J. Mammal. 2010, 91, 1435–1448. [Google Scholar] [CrossRef]
- Zhukova, S.S.; Solovyeva, E.N.; Artyushin, I.V.; Kruskop, S.V. Paraphyly of the Pipistrelles (Pipistrellus; Vespertilionidae) is Confirmed by the Analysis of the Nuclear Gene Markers. Dokl. Biochem. Biophys. 2022, 507, 302–306. [Google Scholar] [CrossRef]
- Moratelli, R.; Burgin, C.; Cláudio, V.; Novaes, R.; López-Baucells, A.; Haslauer, R. Family Vespertilionidae (Vesper Bats). In Handbook of the Mammals of the World; Wilson, D.E., Mittermeier, R.A., Eds.; Bats. Lynx Edicions: Barcelona, Spain, 2019; Volume 9, pp. 716–981. [Google Scholar]
- Lagerveld, S.; Poerink, B.J.; Geelhoed, S.C.V. Offshore occurrence of a migratory bat, pipistrellus nathusii, depends on season-ality and weather conditions. Animals 2021, 11, 3442. [Google Scholar] [CrossRef]
- Kitchener, D.J.; Caputi, N.; Jones, B. Revision of Australo-Papuan Pipistrellus and Falsistrellus (Microchiroptera: Vespertilio-nidae). Rec. West. Aust. Mus. 1986, 12, 435–495. [Google Scholar]
- Simmons, N.B. Order Chiroptera. In Mammal Species of the World, 3rd ed.; Wilson, D.E., Reeder, D.M., Eds.; The Johns Hopkins University Press: Baltimore, MD, USA, 2005. [Google Scholar]
Gene Coordinates, Encoding Protein Length | Gene Name | Protein Description; Function, Accordingly to ICTV | Transcription Class | Nearest Homolog (Proteins) | |||
---|---|---|---|---|---|---|---|
Genbank ID | Identity | Query Coverage, % | |||||
1 | 372–968, 199 aa | E1A | R, E1A; Modulation of the host cell transcriptional machinery | E1 | QGX41997 * | 39.13% | 74% |
2 | 1034–1258, 75 aa | ORF2 | Putative protein | Unknown | - | - | |
3 | 1050–1289 complement, 80 aa | ORF33 | Putative protein | Unknown | - | - | |
4 | 1422–2150, 243 aa | E1B 19K | R, E1B small; Modulation of the host cell transcriptional machinery | QGX41989 * | 39.92% | 96% | |
5 | 1811–3271, 487 aa | E1B 55K | R, E1B Large; Modulation of the host cell transcriptional machinery | QGX41980 * | 47.00% | 99% | |
6 | 3271–3621, 117 aa | ORF32 | Putative protein | Intermediate | Unknown | - | - |
7 | 3602–4270, 223 aa | IX | S (IX); Capsid minor protein | QGX41995 * | 53.55% | 66% | |
8 | 4274–5344 complement, 357 aa | IVa2 | D, S (IVa2); Capsid minor protein | QGX41983 * | 86.52% | 99% | |
9 | 5371–8619 complement, 1083 aa | POL | D; DNA polymerase | E2b | QGX41975 * | 76.90% | 98% |
10 | 8619–10,250 complement, 544 aa | pTP | D; pTP, Preterminal protein; Important role in the initiation of viral DNA replication | QGX41978 * | 83.39% | 99% | |
11 | 10,530–11,684, 445 aa | L1_1 | D; pP3 52k | L1 | QGX41986 * | 73.42% | 99% |
12 | 11,629–13,278, 550 aa | L1_2 | D, S (pIIIa); Pre-hexon-linking protein, phosphoprotein Capsid minor protein | QGX41979 * | 80.00% | 99% | |
13 | 13,382–14,776, 465 aa | L2_1 | S (III); penton base; Capsid major protein | L2 | QGX41981 * | 84.70% | 99% |
14 | 14,810–15,349, 180 aa | L2_2 | S (pVII), major core; Associated with the DNA and form the core within the virion | QGX41998 * | 74.51% | 27% | |
15 | 15,412–16,509, 366 aa | L2_3 | S (V), minor core; Associated with the DNA and form the core within the virion | QGX41987 * | 70.89% | 98% | |
16 | 16,455–16,754 complement, 100 aa | ORF14 | Putative protein | Unknown | - | - | |
17 | 16,585–16,821, 79 aa | L2_4 | S (pX), pre-core protein X; Associated with the DNA and form the core within the virion | YP_009388318 | 61.19% | 84% | |
18 | 16,908–17,657, 250 aa | L3_1 | S (pVI); Capsid minor protein | L3 | QGX41988 * | 72.31% | 99% |
19 | 17,767–20,466, 900 aa | L3_2 | S (II), hexon; Capsid major protein | QGX41976 * | 83.70% | 99% | |
20 | 20,468–21,088, 207 aa | L3_3 | D, S, protease; Peptidase_C5 | QGX41993 * | 79.41% | 98% | |
21 | 21,128–22,564 complement, 479 aa | DBP | D, DBP; DNA binding protein | E2a | QGX41982 * | 58.44% | 99% |
22 | 22,594–24,696, 701 aa | L4_1 | D, 100 kDa Shutoff | L4 | QGX41977 * | 72.38% | 92% |
23 | 24,542–25,042, 157 aa | L4_2 | D, R, phosphoprotein 2, pP2 | QGX41999 * | 56.73% | 56% | |
24 | 25,332–26,099, 256 aa | L4_3 | S (pVIII), hexon associated protein; Capsid minor protein | QGX41992 * | 85.15% | 89% | |
25 | 26,083–26,478, 132 aa | E3S | H, 14,4 kDA protein | E3 | YP_010796290 | 30.65% | 80% |
26 | 26,533–30,003, 1157 aa | E3L | H, pE3L | QGX41974 * | 29.21% | 99% | |
27 | 30,059–32,377, 773 aa | pIV | S (IV), fiber; Capsid major protein | L5 | QGX41984 * | 33.24% | 56% |
28 | 32,416–32,874 complement, 153 aa | E4 Orf6/7 | R, E4 protein; Modulation of the host cell transcriptional machinery | E4 | AGT77890 | 44.59% | 36% |
29 | 32,899–33,717 complement, 273 aa | E4 Orf6 | R, E4 protein; Modulation of the host cell transcriptional machinery | QGX41990 * | 36.69% | 89% | |
30 | 33,687–34,226, 180 aa | E4 Orf26 | Putative protein | Unknown | - | - | |
31 | 34,207–34,572, 122 aa | E4 Orf27 | Putative protein | Unknown | - | - | |
32 | 34,584–35,285, 234 aa | E4 Orf28 | R, Putative dUTPase | QGX41994 * | 27.07% | 75% | |
33 | 35,313–36,422, 370 aa | E4 Orf29 | ORF19, Putative protein | QGX41985 * | 35.94% | 86% | |
34 | 36,476–37,060, 195 aa | E4 Orf30 | R, Putative dUTPase | QGX41991 * | 55.61% | 95% | |
35 | 37,094–37,558, 155 aa | E4 Orf31 | Putative protein | Unknown | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speranskaya, A.S.; Dorokhin, A.V.; Korneenko, E.V.; Chudinov, I.K.; Samoilov, A.E.; Kruskop, S.V. A Novel Mastadenovirus from Nyctalus noctula Which Represents a Distinct Evolutionary Branch of Viruses from Bats in Europe. Viruses 2024, 16, 1207. https://doi.org/10.3390/v16081207
Speranskaya AS, Dorokhin AV, Korneenko EV, Chudinov IK, Samoilov AE, Kruskop SV. A Novel Mastadenovirus from Nyctalus noctula Which Represents a Distinct Evolutionary Branch of Viruses from Bats in Europe. Viruses. 2024; 16(8):1207. https://doi.org/10.3390/v16081207
Chicago/Turabian StyleSperanskaya, Anna S., Alexander V. Dorokhin, Elena V. Korneenko, Ivan K. Chudinov, Andrei E. Samoilov, and Sergei V. Kruskop. 2024. "A Novel Mastadenovirus from Nyctalus noctula Which Represents a Distinct Evolutionary Branch of Viruses from Bats in Europe" Viruses 16, no. 8: 1207. https://doi.org/10.3390/v16081207
APA StyleSperanskaya, A. S., Dorokhin, A. V., Korneenko, E. V., Chudinov, I. K., Samoilov, A. E., & Kruskop, S. V. (2024). A Novel Mastadenovirus from Nyctalus noctula Which Represents a Distinct Evolutionary Branch of Viruses from Bats in Europe. Viruses, 16(8), 1207. https://doi.org/10.3390/v16081207