Identifying Allosteric Small-Molecule Binding Sites of Inactive NS2B-NS3 Proteases of Pathogenic Flaviviridae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection, Superposition, and Analysis of 3D Structures of NS2B-NS3 Proteases
2.2. Sequence Analysis
2.2.1. Zika Virus NS2B-NS3 Sequence Set Compilation and Alignment
2.2.2. West Nile Virus NS2B-NS3 Sequence Set Compilation and Alignment
2.2.3. Yellow Fever Virus NS2B-NS3 Sequence Set Compilation and Alignment
2.2.4. Japanese Encephalitis Virus NS2B-NS3 Sequence Set Compilation and Alignment
2.2.5. Dengue-1, -2, -3, and -4 Virus NS2B-NS3 Sequence Set Compilation and Alignment
- DENV-1: 4628 sequences (614 unique sequences)
- DENV-2: 3816 sequences (553 unique sequences)
- DENV-3: 1739 sequences (263 unique sequences)
- DENV-4: 862 sequences (202 unique sequences)
2.3. Analysis and Visualization
- The active closed state is defined by the distance between Cα-atoms of D75 of NS3-pro and G82 of NS2B being smaller than 10 Å. All other models of the inactive state with the NS2B loop unwrapped are further sub-divided by the conformation of the C-terminal end of NS3-pro according to the values of the angle defined below.
- The inactive transient state is characterized by the C-terminal fragment hairpin displacement following the unwrapping of NS2B. The extension of the C-terminal end region for this state is defined by the Cα atoms of G148, N152, and S158 (numbering from DENV-2) residues of NS3-pro being over 90°.
- The inactive fully opened state is characterized by the hairpin unfolding and rearrangement of the NS3-pro C-terminal fragment, with the angle defined above being less than 90°.
3. Results
3.1. Three Targetable Conformational States of NS2B-NS3-Pro for the Five Viruses
3.1.1. Closed Conformation/Active State
3.1.2. Open Conformation/Inactive State
3.2. Conformational Variations Among Flaviviral NS2B-NS3 Proteases Across the Three States
3.3. Identification of Druggable Pockets in Two Inactive States of the NS2B-NS3 Protease
3.3.1. Pocket Locations and Their Composition
3.3.2. Backbone Conformational Conservation of the Pockets Between Flaviviruses
3.4. Sequential Variations Around Pockets and the Risk of Drug Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pierson, T.C.; Diamond, M.S. The Continued Threat of Emerging Flaviviruses. Nat. Microbiol. 2020, 5, 796–812. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Qi, Z. Mosquito-Borne Flaviviruses and Current Therapeutic Advances. Viruses 2022, 14, 1226. [Google Scholar] [CrossRef]
- CDC. About Viral Hemorrhagic Fevers. Available online: https://www.cdc.gov/viral-hemorrhagic-fevers/about/index.html (accessed on 17 November 2024).
- Wang, Q.-Y.; Shi, P.-Y. Flavivirus Entry Inhibitors. ACS Infect. Dis. 2015, 1, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Slon Campos, J.L.; Mongkolsapaya, J.; Screaton, G.R. The Immune Response against Flaviviruses. Nat. Immunol. 2018, 19, 1189–1198. [Google Scholar] [CrossRef] [PubMed]
- Narayan, R.; Tripathi, S. Intrinsic ADE: The Dark Side of Antibody Dependent Enhancement During Dengue Infection. Front. Cell. Infect. Microbiol. 2020, 10, 580096. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Cai, W.; Cheng, A.; Wang, M.; Yin, Z.; Jia, R. Flaviviruses: Innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. Front. Immunol. 2022, 13, 829433. [Google Scholar] [CrossRef]
- Brecher, M.; Zhang, J.; Li, H. The Flavivirus Protease as a Target for Drug Discovery. Virol. Sin. 2013, 28, 326–336. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Li, H. Flavivirus NS2B/NS3 Protease: Structure, Function, and Inhibition. In Viral Proteases and Their Inhibitors; Elsevier: Amsterdam, The Netherlands, 2017; pp. 163–188. ISBN 978-0-12-809712-0. [Google Scholar]
- Chernov, A.V.; Shiryaev, S.A.; Aleshin, A.E.; Ratnikov, B.I.; Smith, J.W.; Liddington, R.C.; Strongin, A.Y. The Two-Component NS2B-NS3 Proteinase Represses DNA Unwinding Activity of the West Nile Virus NS3 Helicase. J. Biol. Chem. 2008, 283, 17270–17278. [Google Scholar] [CrossRef]
- Shi, Y.; Gao, G.F. Structural Biology of the Zika Virus. Trends Biochem. Sci. 2017, 42, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Patkar, C.G.; Jones, C.T.; Chang, Y.; Warrier, R.; Kuhn, R.J. Functional Requirements of the Yellow Fever Virus Capsid Protein. J. Virol. 2007, 81, 6471–6481. [Google Scholar] [CrossRef] [PubMed]
- Dethoff, E.A.; Boerneke, M.A.; Gokhale, N.S.; Muhire, B.M.; Martin, D.P.; Sacco, M.T.; McFadden, M.J.; Weinstein, J.B.; Messer, W.B.; Horner, S.M.; et al. Pervasive Tertiary Structure in the Dengue Virus RNA Genome. Proc. Natl. Acad. Sci. USA 2018, 115, 11513–11518. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, A.; Manoharan, M. Dengue Virus. In Emerging and Reemerging Viral Pathogens; Elsevier: Amsterdam, The Netherlands, 2020; pp. 281–359. ISBN 978-0-12-819400-3. [Google Scholar]
- Solomon, T. Recent Advances in Japanese Encephalitis. J. Neurovirol. 2003, 9, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Samrat, S.K.; Xu, J.; Li, Z.; Zhou, J.; Li, H. Antiviral Agents against Flavivirus Protease: Prospect and Future Direction. Pathogens 2022, 11, 293. [Google Scholar] [CrossRef] [PubMed]
- Wahaab, A.; Mustafa, B.E.; Hameed, M.; Stevenson, N.J.; Anwar, M.N.; Liu, K.; Wei, J.; Qiu, Y.; Ma, Z. Potential Role of Flavivirus NS2B-NS3 Proteases in Viral Pathogenesis and Anti-Flavivirus Drug Discovery Employing Animal Cells and Models: A Review. Viruses 2021, 14, 44. [Google Scholar] [CrossRef] [PubMed]
- Voss, S.; Nitsche, C. Inhibitors of the Zika Virus Protease NS2B-NS3. Bioorganic Med. Chem. Lett. 2020, 30, 126965. [Google Scholar] [CrossRef]
- Aleshin, A.E.; Shiryaev, S.A.; Strongin, A.Y.; Liddington, R.C. Structural Evidence for Regulation and Specificity of Flaviviral Proteases and Evolution of the Flaviviridae Fold. Protein Sci. 2007, 16, 795–806. [Google Scholar] [CrossRef]
- Pastorino, B.; Nougairède, A.; Wurtz, N.; Gould, E.; De Lamballerie, X. Role of Host Cell Factors in Flavivirus Infection: Implications for Pathogenesis and Development of Antiviral Drugs. Antivir. Res. 2010, 87, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Fishburn, A.T.; Pham, O.H.; Kenaston, M.W.; Beesabathuni, N.S.; Shah, P.S. Let’s Get Physical: Flavivirus-Host Protein-Protein Interactions in Replication and Pathogenesis. Front. Microbiol. 2022, 13, 847588. [Google Scholar] [CrossRef] [PubMed]
- Starvaggi, J.; Previti, S.; Zappalà, M.; Ettari, R. The Inhibition of NS2B/NS3 Protease: A New Therapeutic Opportunity to Treat Dengue and Zika Virus Infection. IJMS 2024, 25, 4376. [Google Scholar] [CrossRef]
- Da Silva-Júnior, E.F.; De Araújo-Júnior, J.X. Peptide Derivatives as Inhibitors of NS2B-NS3 Protease from Dengue, West Nile, and Zika Flaviviruses. Bioorganic Med. Chem. 2019, 27, 3963–3978. [Google Scholar] [CrossRef]
- Meewan, I.; Shiryaev, S.A.; Kattoula, J.; Huang, C.-T.; Lin, V.; Chuang, C.-H.; Terskikh, A.V.; Abagyan, R. Allosteric Inhibitors of Zika Virus NS2B-NS3 Protease Targeting Protease in “Super-Open” Conformation. Viruses 2023, 15, 1106. [Google Scholar] [CrossRef] [PubMed]
- Shiryaev, S.A.; Cieplak, P.; Cheltsov, A.; Liddington, R.C.; Terskikh, A.V. Dual Function of Zika Virus NS2B-NS3 Protease. PLoS Pathog. 2023, 19, e1011795. [Google Scholar] [CrossRef]
- Knyazhanskaya, E.; Morais, M.C.; Choi, K.H. Flavivirus Enzymes and Their Inhibitors. In The Enzymes; Elsevier: Amsterdam, The Netherlands, 2021; Volume 49, pp. 265–303. ISBN 978-0-12-823468-6. [Google Scholar]
- João, E.E.; Lopes, J.R.; Guedes, B.F.R.; da Silva Sanches, P.R.; Chin, C.M.; Dos Santos, J.L.; Scarim, C.B. Advances in Drug Discovery of Flavivirus NS2B-NS3pro Serine Protease Inhibitors for the Treatment of Dengue, Zika, and West Nile Viruses. Bioorg. Chem. 2024, 153, 107914. [Google Scholar] [CrossRef] [PubMed]
- Braun, N.J.; Quek, J.P.; Huber, S.; Kouretova, J.; Rogge, D.; Lang-Henkel, H.; Cheong, E.Z.K.; Chew, B.L.A.; Heine, A.; Luo, D.; et al. Structure-Based Macrocyclization of Substrate Analogue NS2B-NS3 Protease Inhibitors of Zika, West Nile and Dengue Viruses. ChemMedChem 2020, 15, 1439–1452. [Google Scholar] [CrossRef] [PubMed]
- Huber, S.; Braun, N.J.; Schmacke, L.C.; Murra, R.; Bender, D.; Hildt, E.; Heine, A.; Steinmetzer, T. Synthesis and Structural Characterization of New Macrocyclic Inhibitors of the Zika Virus NS2B–NS3 Protease. Arch. Pharm. 2024, 357, 2400250. [Google Scholar] [CrossRef] [PubMed]
- Burley, S.K.; Berman, H.M.; Kleywegt, G.J.; Markley, J.L.; Nakamura, H.; Velankar, S. Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive. Methods Mol. Biol. 2017, 1607, 627–641. [Google Scholar] [CrossRef] [PubMed]
- Weinert, T.; Olieric, V.; Waltersperger, S.; Panepucci, E.; Chen, L.; Zhang, H.; Zhou, D.; Rose, J.; Ebihara, A.; Kuramitsu, S.; et al. Fast Native-SAD Phasing for Routine Macromolecular Structure Determination. Nat. Methods 2015, 12, 131–133. [Google Scholar] [CrossRef]
- Chandramouli, S.; Joseph, J.S.; Daudenarde, S.; Gatchalian, J.; Cornillez-Ty, C.; Kuhn, P. Serotype-Specific Structural Differences in the Protease-Cofactor Complexes of the Dengue Virus Family. J. Virol. 2010, 84, 3059–3067. [Google Scholar] [CrossRef] [PubMed]
- Noble, C.G.; Seh, C.C.; Chao, A.T.; Shi, P.Y. Ligand-Bound Structures of the Dengue Virus Protease Reveal the Active Conformation. J. Virol. 2012, 86, 438–446. [Google Scholar] [CrossRef]
- Brister, J.R.; Ako-adjei, D.; Bao, Y.; Blinkova, O. NCBI Viral Genomes Resource. Nucleic Acids Res. 2015, 43, D571–D577. [Google Scholar] [CrossRef]
- Abagyan, R.; Totrov, M.; Kuznetsov, D. ICM? A New Method for Protein Modeling and Design: Applications to Docking and Structure Prediction from the Distorted Native Conformation. J. Comput. Chem. 1994, 15, 488–506. [Google Scholar] [CrossRef]
- Finn, R.D.; Attwood, T.K.; Babbitt, P.C.; Bateman, A.; Bork, P.; Bridge, A.J.; Chang, H.-Y.; Dosztányi, Z.; El-Gebali, S.; Fraser, M.; et al. InterPro in 2017—Beyond Protein Family and Domain Annotations. Nucleic Acids Res. 2017, 45, D190–D199. [Google Scholar] [CrossRef] [PubMed]
- Neves, M.A.C.; Totrov, M.; Abagyan, R. Docking and Scoring with ICM: The Benchmarking Results and Strategies for Improvement. J. Comput. Aided Mol. Des. 2012, 26, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Molsoft LLC. Available online: https://www.molsoft.com/ (accessed on 17 November 2024).
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- The UniProt Consortium UniProt: A Worldwide Hub of Protein Knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [CrossRef] [PubMed]
- Li, Y.; Zhang, Z.; Phoo, W.W.; Loh, Y.R.; Li, R.; Yang, H.Y.; Jansson, A.E.; Hill, J.; Keller, T.H.; Nacro, K.; et al. Structural Insights into the Inhibition of Zika Virus NS2B-NS3 Protease by a Small-Molecule Inhibitor. Structure 2018, 26, 555–564.e3. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Loh, Y.R.; Phoo, W.W.; Hung, A.W.; Kang, C.; Luo, D. Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus. Science 2016, 354, 1597–1600. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Li, C.-Y.; Chen, X.-L.; Williams, B.T.; Li, K.; Gao, Y.-N.; Wang, P.; Wang, N.; Gao, C.; Zhang, S.; et al. Insights into Methionine S-Methylation in Diverse Organisms. Nat. Commun. 2022, 13, 2947. [Google Scholar] [CrossRef]
- Quek, J.P.; Liu, S.; Zhang, Z.; Li, Y.; Ng, E.Y.; Loh, Y.R.; Hung, A.W.; Luo, D.; Kang, C. Identification and Structural Characterization of Small Molecule Fragments Targeting Zika Virus NS2B-NS3 Protease. Antivir. Res. 2020, 175, 104707. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Cheng, J.; Wu, Y.; Zhang, Y.; Jiang, H.; Wang, J.; Wang, X.; Cheng, M. Identification and In Silico Binding Study of a Highly Potent DENV NS2B-NS3 Covalent Inhibitor. ACS Med. Chem. Lett. 2022, 13, 599–607. [Google Scholar] [CrossRef]
- Shin, H.J.; Kim, M.-H.; Lee, J.-Y.; Hwang, I.; Yoon, G.Y.; Kim, H.S.; Kwon, Y.-C.; Ahn, D.-G.; Kim, K.-D.; Kim, B.-T.; et al. Structure-Based Virtual Screening: Identification of a Novel NS2B-NS3 Protease Inhibitor with Potent Antiviral Activity against Zika and Dengue Viruses. Microorganisms 2021, 9, 545. [Google Scholar] [CrossRef] [PubMed]
- Norshidah, H.; Leow, C.H.; Ezleen, K.E.; Wahab, H.A.; Vignesh, R.; Rasul, A.; Lai, N.S. Assessing the Potential of NS2B/NS3 Protease Inhibitors Biomarker in Curbing Dengue Virus Infections: In Silico vs. In Vitro Approach. Front. Cell. Infect. Microbiol. 2023, 13, 1061937. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Liu, Y.; Ren, R.; Liu, Y.; He, Y.; Qi, Z.; Peng, H.; Zhao, P. Identification of Clinical Candidates against West Nile Virus by Activity Screening in Vitro and Effect Evaluation in Vivo. J. Med. Virol. 2022, 94, 4918–4925. [Google Scholar] [CrossRef]
- Kok, B.H.; Lim, H.T.; Lim, C.P.; Lai, N.S.; Leow, C.Y.; Leow, C.H. Dengue Virus Infection—A Review of Pathogenesis, Vaccines, Diagnosis and Therapy. Virus Res. 2023, 324, 199018. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Huo, T.; Lin, Y.-L.; Nie, S.; Wu, F.; Hua, Y.; Wu, J.; Kneubehl, A.R.; Vogt, M.B.; Rico-Hesse, R.; et al. Discovery, X-Ray Crystallography and Antiviral Activity of Allosteric Inhibitors of Flavivirus NS2B-NS3 Protease. J. Am. Chem. Soc. 2019, 141, 6832–6836. [Google Scholar] [CrossRef] [PubMed]
- RCSB PDB. RCSB PDB–7M1V: Structure of Zika Virus NS2b-NS3 Protease Mutant Binding the Compound NSC86314 in the Super-Open Conformation. Available online: https://www.rcsb.org/structure/7M1V (accessed on 17 November 2024).
- Erbel, P.; Schiering, N.; D’Arcy, A.; Renatus, M.; Kroemer, M.; Lim, S.P.; Yin, Z.; Keller, T.H.; Vasudevan, S.G.; Hommel, U. Structural Basis for the Activation of Flaviviral NS3 Proteases from Dengue and West Nile Virus. Nat. Struct. Mol. Biol. 2006, 13, 372–373. [Google Scholar] [CrossRef] [PubMed]
- Noske, G.D.; Gawriljuk, V.O.; Fernandes, R.S.; Furtado, N.D.; Bonaldo, M.C.; Oliva, G.; Godoy, A.S. Structural Characterization and Polymorphism Analysis of the NS2B-NS3 Protease from the 2017 Brazilian Circulating Strain of Yellow Fever Virus. Biochim. Biophys. Acta Gen. Subj. 2020, 1864, 129521. [Google Scholar] [CrossRef]
- RCSB PDB. RCSB PDB—2M9P: NMR Structure of an Inhibitor Bound Dengue NS3 Protease. Available online: https://www.rcsb.org/structure/2M9P (accessed on 17 November 2024).
- RCSB PDB. RCSB PDB—5YW1: Crystal Structure of Full Length NS3 Protein (eD4NS2BNS3) in Complex with Bovine Pancreatic Trypsin Inhibitor. Available online: https://www.rcsb.org/structure/5YW1 (accessed on 24 November 2024).
- Luo, D.; Xu, T.; Hunke, C.; Grüber, G.; Vasudevan, S.G.; Lescar, J. Crystal Structure of the NS3 Protease-Helicase from Dengue Virus. J. Virol. 2008, 82, 173–183. [Google Scholar] [CrossRef]
- Luo, D.; Wei, N.; Doan, D.N.; Paradkar, P.N.; Chong, Y.; Davidson, A.D.; Kotaka, M.; Lescar, J.; Vasudevan, S.G. Flexibility between the Protease and Helicase Domains of the Dengue Virus NS3 Protein Conferred by the Linker Region and Its Functional Implications. J. Biol. Chem. 2010, 285, 18817–18827. [Google Scholar] [CrossRef]
- RCSB PDB. RCSB PDB—5YVJ: Crystal Structure of Full Length NS2B47-NS3 (gD4NS2BNS3) from Dengue Virus 4 in Open Conformation. Available online: https://www.rcsb.org/structure/5YVJ (accessed on 17 December 2024).
- An, J.; Totrov, M.; Abagyan, R. Pocketome via Comprehensive Identification and Classification of Ligand Binding Envelopes. Mol Cell Proteom. 2005, 4, 752–761. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, R.P.; Maiorov, V.N.; Holloway, M.K.; Cornell, W.D.; Gao, Y.-D. Drug-like Density: A Method of Quantifying the “Bindability” of a Protein Target Based on a Very Large Set of Pockets and Drug-like Ligands from the Protein Data Bank. J. Chem. Inf. Model. 2010, 50, 2029–2040. [Google Scholar] [CrossRef] [PubMed]
- Nunes, D.A.D.F.; Santos, F.R.D.S.; Da Fonseca, S.T.D.; De Lima, W.G.; Nizer, W.S.D.C.; Ferreira, J.M.S.; De Magalhães, J.C. NS2B-NS3 Protease Inhibitors as Promising Compounds in the Development of Antivirals against Zika Virus: A Systematic Review. J. Med. Virol. 2022, 94, 442–453. [Google Scholar] [CrossRef]
- Lei, J.; Hansen, G.; Nitsche, C.; Klein, C.D.; Zhang, L.; Hilgenfeld, R. Crystal Structure of Zika Virus NS2B-NS3 Protease in Complex with a Boronate Inhibitor. Science 2016, 353, 503–505. [Google Scholar] [CrossRef] [PubMed]
- Su, X.-C.; Ozawa, K.; Qi, R.; Vasudevan, S.G.; Lim, S.P.; Otting, G. NMR Analysis of the Dynamic Exchange of the NS2B Cofactor between Open and Closed Conformations of the West Nile Virus NS2B-NS3 Protease. PLoS Negl. Trop. Dis. 2009, 3, e561. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Kang, C. Insights into Structures and Dynamics of Flavivirus Proteases from NMR Studies. IJMS 2020, 21, 2527. [Google Scholar] [CrossRef]
- Quek, J.-P.; Ser, Z.; Chew, B.L.A.; Li, X.; Wang, L.; Sobota, R.M.; Luo, D.; Phoo, W.W. Dynamic Interactions of Post Cleaved NS2B Cofactor and NS3 Protease Identified by Integrative Structural Approaches. Viruses 2022, 14, 1440. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Cheng, F.; Zhang, J.; Su, H.; Hu, H.; Zou, Y.; Li, M.; Xu, Y. Structure-Based Design of a Novel Inhibitor of the ZIKA Virus NS2B/NS3 Protease. Bioorganic Chem. 2022, 128, 106109. [Google Scholar] [CrossRef]
- Stank, A.; Kokh, D.B.; Fuller, J.C.; Wade, R.C. Protein Binding Pocket Dynamics. Acc. Chem. Res. 2016, 49, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Behnam, M.A.M.; Klein, C.D.P. Conformational Selection in the Flaviviral NS2B-NS3 Protease. Biochimie 2020, 174, 117–125. [Google Scholar] [CrossRef] [PubMed]
Flaviviruses | Closed | Transient | Fully Opened | ||||
---|---|---|---|---|---|---|---|
Abbreviation | With a Peptide-like Inhibitor | With a Ligand | Without a Ligand | With Small-Molecule Inhibitor | Without a Ligand | With Small-Molecule Inhibitor | Without a Ligand |
ZIKV | 5LC0, 5GJ4, 5H6V, 5YOF, 5ZMQ, 5ZMS, 5ZOB, 6JPW, 6KK2, 6KK3, 6KK4, 6KK5, 6KK6, 6KPQ, 6Y3B, 7DOC, 7O2M, 7O55, 7OBV, 7OC2, 7PFQ, 7PFY, 7PFZ, 7PG1, 7PGC, 7VLG, 7VLH, 7VLI, 7VXY, 7ZLC, 7ZLD, 7ZMI, 7ZNO, 7ZPD, 7ZQ1, 7ZQF, 7ZTM, 7ZUM, 7ZV4, 7ZVV, 7ZW5, 7ZWK, 7ZYS, 8A15, 8AQA, 8AQB, 8AQK | 5H4I, 5YOD, 6L4Z, 6L50, 7VXX | 5GPI | 7M1V | 5GXJ, 5T1V, 5TFN, 5TFO, 6UM3 | ||
WNV | 2FP7, 2IJO *, 2YOL, 3E90, 5IDK | 2GGV | |||||
YFV | 6URV | ||||||
JEV | 4R8T | ||||||
DENV-1 | 3L6P, 3LKW | ||||||
DENV-2 | 2M9P, 2M9Q | 6MO0, 6MO1, 6MO2 | 2FOM, 4M9F, 4M9I, 4M9K, 4M9M, 4M9T | ||||
DENV-3 | 3U1I, 3U1J * | ||||||
DENV-4 | 5YVU *, 5YW1 * | 5YVV, 5YVW, 5YVY, 7VMV | 2VBC, 2WHX, 2WZQ, 5YVJ |
ASP, CLOSED STATE | ||||||
ZIKV | WNV | YFV | DENV-2 | DENV-3 | DENV-4 | |
DENV-4 | 0.9 | 0.7 | 0.7 | 3.7 | 0.5 | 0.0 |
DENV-3 | 0.8 | 0.6 | 0.7 | 3.97 | 0.0 | |
DENV-2 | 3.8 | 3.99 | 3.9 | 0.0 | ||
YFV | 0.5 | 0.6 | 0.0 | |||
WNV | 0.4 | 0.0 | ||||
ZIKV | 0.0 | |||||
AP1, TRANSIENT STATE | ||||||
WNV | DENV-1 | DENV-2 | DENV-4 | |||
DENV-4 | 0.7 | 0.7 | 2.9 | 0.0 | ||
DENV-2 | 2.97 | 2.9 | 0.0 | |||
DENV-1 | 0.7 | 0.0 | ||||
WNV | 0.0 | |||||
AP2, FULLY OPENED STATE | ||||||
ZIKV | JEV | |||||
JEV | 0.7 | 0.0 | ||||
ZIKV | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabski, H.; Grabska, S.; Abagyan, R. Identifying Allosteric Small-Molecule Binding Sites of Inactive NS2B-NS3 Proteases of Pathogenic Flaviviridae. Viruses 2025, 17, 6. https://doi.org/10.3390/v17010006
Grabski H, Grabska S, Abagyan R. Identifying Allosteric Small-Molecule Binding Sites of Inactive NS2B-NS3 Proteases of Pathogenic Flaviviridae. Viruses. 2025; 17(1):6. https://doi.org/10.3390/v17010006
Chicago/Turabian StyleGrabski, Hovakim, Siranuysh Grabska, and Ruben Abagyan. 2025. "Identifying Allosteric Small-Molecule Binding Sites of Inactive NS2B-NS3 Proteases of Pathogenic Flaviviridae" Viruses 17, no. 1: 6. https://doi.org/10.3390/v17010006
APA StyleGrabski, H., Grabska, S., & Abagyan, R. (2025). Identifying Allosteric Small-Molecule Binding Sites of Inactive NS2B-NS3 Proteases of Pathogenic Flaviviridae. Viruses, 17(1), 6. https://doi.org/10.3390/v17010006