Evaluation of COVID-19 Booster Vaccine Effectiveness
1. Introduction
2. Real-World Vaccine Effectiveness of Booster Doses
3. Immunogenicity and Antibody Responses
4. Vaccine Effectiveness Against Emerging Variants of Concern
5. Recommendations for Special Populations
6. Concluding Remarks
- (1)
- Understanding long-term safety and immune responses requires extended observation periods. Current vaccines provide only time-limited immunity, with waning efficacy necessitating booster doses. Addressing this technical bottleneck is essential.
- (2)
- Most approved vaccines target the rapidly evolving spike protein, which undergoes antigenic drift. Developing universal coronavirus or pan-sarbecovirus vaccines that target conserved viral components is crucial for broad-spectrum protection.
- (3)
- Injectable vaccines provide inadequate protection at respiratory mucosal surfaces and constrain their ability to prevent transmission. Overcoming these challenges will require the continuous monitoring of SARS-CoV-2 evolution and advancements in vaccine design, such as the development of nasal vaccines.
Author Contributions
Conflicts of Interest
References
- Katz, M.A.; Cohuet, S.; Bino, S.; Tarkhan-Mouravi, O.; Kryeziu, B.; Otorbaeva, D.; Stavridis, K.; Stosic, M.; Sulo, J.; Machablishvili, A.; et al. COVID-19 vaccine effectiveness against SARS-CoV-2-confirmed hospitalisation in the eastern part of the WHO European Region (2022–2023): A test-negative case-control study from the EuroSAVE network. Lancet Reg. Health Eur. 2024, 47, 101095. [Google Scholar] [CrossRef]
- Qu, B.; Li, X. Special Issue “New Insights into Current and Future Vaccines against SARS-CoV-2 Variants of Concern and Interest”. Vaccines 2023, 11, 603. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Faraone, J.N.; Hsu, C.C.; Chamblee, M.; Zheng, Y.M.; Carlin, C.; Bednash, J.S.; Horowitz, J.C.; Mallampalli, R.K.; Saif, L.J.; et al. Neutralization escape, infectivity, and membrane fusion of JN.1-derived SARS-CoV-2 SLip, FLiRT, and KP.2 variants. Cell Rep. 2024, 43, 114520. [Google Scholar] [CrossRef] [PubMed]
- Bobrovitz, N.; Ware, H.; Ma, X.; Li, Z.; Hosseini, R.; Cao, C.; Selemon, A.; Whelan, M.; Premji, Z.; Issa, H.; et al. Protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against the omicron variant and severe disease: A systematic review and meta-regression. Lancet Infect. Dis. 2023, 23, 556–567. [Google Scholar] [CrossRef]
- Wratil, P.R.; Stern, M.; Priller, A.; Willmann, A.; Almanzar, G.; Vogel, E.; Feuerherd, M.; Cheng, C.C.; Yazici, S.; Christa, C.; et al. Three exposures to the spike protein of SARS-CoV-2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern. Nat. Med. 2022, 28, 496–503. [Google Scholar] [CrossRef]
- Arunachalam, P.S.; Lai, L.; Samaha, H.; Feng, Y.; Hu, M.; Hui, H.S.; Wali, B.; Ellis, M.; Davis-Gardner, M.E.; Huerta, C.; et al. Durability of immune responses to mRNA booster vaccination against COVID-19. J. Clin. Investig. 2023, 133, e167955. [Google Scholar] [CrossRef]
- Huang, C.Q.; Vishwanath, S.; Carnell, G.W.; Chan, A.C.Y.; Heeney, J.L. Immune imprinting and next-generation coronavirus vaccines. Nat. Microbiol. 2023, 8, 1971–1985. [Google Scholar] [CrossRef] [PubMed]
- Yisimayi, A.; Song, W.; Wang, J.; Jian, F.; Yu, Y.; Chen, X.; Xu, Y.; Yang, S.; Niu, X.; Xiao, T.; et al. Repeated Omicron exposures override ancestral SARS-CoV-2 immune imprinting. Nature 2024, 625, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Hojo-Souza, N.S.; Jassat, W.; Guidoni, D.L.; de Souza, F.S.H. Risks of Adverse Outcomes for Hospitalized COVID-19 Patients during the Four Waves in Brazil According to SARS-CoV-2 Variants, Age Group, and Vaccine Status. Viruses 2023, 15, 1997. [Google Scholar] [CrossRef]
- Nah, E.H.; Cho, S.; Park, H.; Kim, S.; Noh, D.; Kwon, E.; Cho, H.I. SARS-CoV-2 Antibody Response and Sustainability after a Third Dose of BNT162b2 in Healthcare Workers at Health Promotion Centers. Viruses 2023, 15, 751. [Google Scholar] [CrossRef]
- Ventura-Enriquez, Y.; Cortina-De la Rosa, E.; Diaz-Padilla, E.; Murrieta, S.; Segundo-Martinez, S.; Fernandez-Sanchez, V.; Vargas-De-Leon, C. Immunogenicity of Two Doses of BNT162b2 mRNA COVID-19 Vaccine with a ChAdOx1-S Booster Dose among Navy Personnel in Mexico. Viruses 2024, 16, 551. [Google Scholar] [CrossRef]
- Wang, J.; Huang, L.; Guo, N.; Yao, Y.P.; Zhang, C.; Xu, R.; Jiao, Y.M.; Li, Y.Q.; Song, Y.R.; Wang, F.S.; et al. Dynamics of SARS-CoV-2 Antibody Responses up to 9 Months Post-Vaccination in Individuals with Previous SARS-CoV-2 Infection Receiving Inactivated Vaccines. Viruses 2023, 15, 917. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ciriza, L.; González, Á.; del Pozo, J.L.; Fernandez-Montero, A.; Carmona-Torre, F.; Martínez de Aguirre, P.; Sarasa, M.d.M.; Carlos, S.; Reina, G. COVID-19 Vaccine Booster Dose Fails to Enhance Antibody Response to Omicron Variant in Reinfected Healthcare Workers. Viruses 2025, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Mori, A.; Ishio, T.; Kobayashi, M.; Tsukamoto, S.; Kajikawa, S.; Yokoyama, E.; Kanaya, M.; Izumiyama, K.; Muraki, H.; et al. Initial Efficacy of the COVID-19 mRNA Vaccine Booster and Subsequent Breakthrough Omicron Variant Infection in Patients with B-Cell Non-Hodgkin’s Lymphoma: A Single-Center Cohort Study. Viruses 2024, 16, 328. [Google Scholar] [CrossRef]
- Del Mastro, A.; Picascia, S.; D’Apice, L.; Trovato, M.; Barba, P.; Di Biase, I.; Di Biase, S.; Laccetti, M.; Belli, A.; Amato, G.; et al. Booster Dose of SARS-CoV-2 mRNA Vaccine in Kidney Transplanted Patients Induces Wuhan-Hu-1 Specific Neutralizing Antibodies and T Cell Activation but Lower Response against Omicron Variant. Viruses 2023, 15, 1132. [Google Scholar] [CrossRef] [PubMed]
- Gardner, B.J.; Kilpatrick, A.M. Predicting Vaccine Effectiveness for Hospitalization and Symptomatic Disease for Novel SARS-CoV-2 Variants Using Neutralizing Antibody Titers. Viruses 2024, 16, 479. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, B.; Zhang, D. Evaluation of COVID-19 Booster Vaccine Effectiveness. Viruses 2025, 17, 179. https://doi.org/10.3390/v17020179
Qu B, Zhang D. Evaluation of COVID-19 Booster Vaccine Effectiveness. Viruses. 2025; 17(2):179. https://doi.org/10.3390/v17020179
Chicago/Turabian StyleQu, Bingqian, and Dingmei Zhang. 2025. "Evaluation of COVID-19 Booster Vaccine Effectiveness" Viruses 17, no. 2: 179. https://doi.org/10.3390/v17020179
APA StyleQu, B., & Zhang, D. (2025). Evaluation of COVID-19 Booster Vaccine Effectiveness. Viruses, 17(2), 179. https://doi.org/10.3390/v17020179