Novel Oronasal Drainage for Long COVID: Proposed Mechanisms—Case Report
Abstract
:1. Introduction
2. Materials and Methods
2.1. Safety and Ethics
2.2. Materials
2.3. Patient Selection Criteria
2.4. Overview of OND
2.4.1. Site of Action
2.4.2. Physiological Component
2.4.3. Biochemical Component
2.4.4. Fluid Mechanical Component
2.4.5. Secretions
2.4.6. Side Effects
2.4.7. Treatment Cycle
3. Case Report
3.1. Anamnesis
3.2. Physical Examination
3.3. Interventions
3.4. Evaluation
3.5. Results
4. Discussion
4.1. In General
4.2. Laboratory Findings—SARS-CoV-2 S Protein
4.3. Side Effects
4.4. Proposed Mechanisms
4.5. Comparison to EAT
4.6. Future Research
4.7. Lymphatic Tissue Involvement in Long COVID: A Hypothesized Mechanism and Potential Therapeutic Approach
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Symptom Severity | ||||||||
---|---|---|---|---|---|---|---|---|
OND Treatment | Before | While OND | Follow-Up After OND | |||||
Days | −3 | 1–5 | 6–10 | 10–35 | ||||
n | 1 | 5 | 5 | 25 | ||||
Category | Symptom | Mean | Mean | SD | Mean | SD | Mean | SD |
systemic | fatigue | 7.00 | 6.40 | 0.89 | 5.60 | 0.89 | 5.00 | 0.89 |
PEM | 8.00 | 1.40 | 0.89 | 1.80 | 0.83 | 3.04 | 1.11 | |
sweats | 8.00 | 5.20 | 1.64 | 4.60 | 0.55 | 3.77 | 1.27 | |
temperature issues | 7.00 | 6.80 | 0.84 | 5.00 | 0.00 | 3.85 | 1.19 | |
pulmonary | awakened feeling of not being able to breathe | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
dry cough | 3.00 | 2.00 | 1.00 | 1.00 | 0.00 | 1.00 | 0.28 | |
respiratory issues | 8.00 | 2.80 | 1.64 | 1.60 | 0.89 | 0.92 | 0.63 | |
dyspnea | 8.00 | 1.60 | 0.55 | 1.40 | 0.55 | 1.35 | 0.49 | |
cardiovascular | high blood pressure | 4.00 | 0.60 | 1.34 | 0.00 | 0.00 | 0.15 | 0.46 |
palpitations | 4.00 | 1.40 | 0.55 | 1.00 | 0.00 | 1.04 | 0.20 | |
tachycardia | 5.00 | 3.80 | 0.84 | 1.40 | 0.55 | 1.58 | 0.58 | |
tightness of chest | 3.00 | 2.20 | 1.10 | 2.20 | 0.84 | 1.23 | 0.51 | |
gastrointestinal | abdominal pain | 7.00 | 0.80 | 1.30 | 0.60 | 0.55 | 0.81 | 0.90 |
diarrhea | 7.00 | 1.20 | 1.64 | 0.00 | 0.00 | 0.27 | 0.78 | |
nausea | 8.00 | 4.60 | 3.78 | 1.80 | 1.30 | 1.46 | 0.71 | |
vomiting | 4.00 | 2.60 | 3.71 | 0.00 | 0.00 | 0.00 | 0.00 | |
musculoskeletal | joint pain | 7.00 | 1.60 | 0.89 | 1.40 | 0.55 | 2.04 | 0.92 |
muscle aches | 7.00 | 1.40 | 0.55 | 1.60 | 0.55 | 2.50 | 1.07 | |
neuro-psychiatric | brain fog | 8.00 | 3.60 | 1.14 | 5.80 | 0.45 | 3.96 | 1.18 |
change of smell and taste | 4.00 | 5.40 | 1.14 | 2.80 | 1.10 | 1.27 | 0.72 | |
dizziness | 8.00 | 7.80 | 0.45 | 6.60 | 0.89 | 4.15 | 0.37 | |
headache | 6.00 | 4.20 | 1.10 | 3.40 | 0.55 | 2.50 | 0.91 | |
insomnia | 3.00 | 2.80 | 1.48 | 1.60 | 1.34 | 2.46 | 1.42 | |
neuralgia | 2.00 | 0.60 | 0.55 | 0.00 | 0.00 | 0.00 | 0.00 | |
other sleep issues | 5.00 | 2.80 | 2.77 | 1.60 | 1.95 | 1.73 | 0.83 | |
restless legs | 5.00 | 0.00 | 0.00 | 0.60 | 1.34 | 0.81 | 0.80 | |
sensorimotor issues | 8.00 | 3.00 | 0.00 | 2.40 | 0.55 | 1.04 | 0.20 | |
sleep apnea | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
immunologic | food intolerances | 8.00 | 5.40 | 1.67 | 3.00 | 1.00 | 1.73 | 0.72 |
new allergies | 8.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.43 | |
endocrine, reproductive | bladder control issues | 8.00 | 2.20 | 0.45 | 3.00 | 0.00 | 3.58 | 0.50 |
reproductive organs | 4.00 | 1.80 | 2.49 | 0.00 | 0.00 | 0.00 | 0.00 | |
head, ear, eye, nose, throat | hearing issues | 3.00 | 2.80 | 0.45 | 1.20 | 0.45 | 1.00 | 0.00 |
runny nose | 4.00 | 2.00 | 1.22 | 1.20 | 0.45 | 0.77 | 0.82 | |
sore throat | 4.00 | 2.20 | 2.05 | 1.00 | 0.00 | 1.00 | 0.40 | |
tinnitus | 2.00 | 0.40 | 0.55 | 0.00 | 0.00 | 0.15 | 0.46 | |
vision symptoms | 5.00 | 5.20 | 0.45 | 1.20 | 0.45 | 2.04 | 0.20 | |
oral | dental issues | 3.00 | 0.20 | 0.89 | 0.60 | 0.89 | 0.73 | 0.60 |
References
- Ivanova, N.; Sotirova, Y.; Gavrailov, G.; Nikolova, K.; Andonova, V. Advances in the Prophylaxis of Respiratory Infections by the Nasal and the Oromucosal Route: Relevance to the Fight with the SARS-CoV-2 Pandemic. Pharmaceutics 2022, 14, 530. [Google Scholar] [CrossRef] [PubMed]
- Bellocchio, L.; Dipalma, G.; Inchingolo, A.M.; Inchingolo, A.D.; Ferrante, L.; Del Vecchio, G.; Malcangi, G.; Palermo, A.; Qendro, A.; Inchingolo, F. COVID-19 on Oral Health: A New Bilateral Connection for the Pandemic. Biomedicines 2023, 12, 60. [Google Scholar] [CrossRef] [PubMed]
- O’Mahoney, L.L.; Routen, A.; Gillies, C.; Ekezie, W.; Welford, A.; Zhang, A.; Karamchandani, U.; Simms-Williams, N.; Cassambai, S.; Ardavani, A.; et al. The prevalence and long-term health effects of Long Covid among hospitalised and non-hospitalised populations: A systematic review and meta-analysis. EClinicalMedicine 2023, 55, 101762. [Google Scholar] [CrossRef] [PubMed]
- Bai, F.; Tomasoni, D.; Falcinella, C.; Barbanotti, D.; Castoldi, R.; Mule, G.; Augello, M.; Mondatore, D.; Allegrini, M.; Cona, A.; et al. Female gender is associated with long COVID syndrome: A prospective cohort study. Clin. Microbiol. Infect. 2022, 28, 611.e9–611.e16. [Google Scholar] [CrossRef] [PubMed]
- Bowe, B.; Xie, Y.; Al-Aly, Z. Postacute sequelae of COVID-19 at 2 years. Nat. Med. 2023, 29, 2347–2357. [Google Scholar] [CrossRef]
- Mogitate, M. Differences Between Patients With Chronic Epipharyngitis With and Without Previous COVID-19 Infection. Cureus 2024, 16, e51543. [Google Scholar] [CrossRef]
- Imai, K.; Yamano, T.; Nishi, S.; Nishi, R.; Nishi, T.; Tanaka, H.; Tsunoda, T.; Yoshimoto, S.; Tanaka, A.; Hiromatsu, K.; et al. Epipharyngeal Abrasive Therapy (EAT) Has Potential as a Novel Method for Long COVID Treatment. Viruses 2022, 14, 907. [Google Scholar] [CrossRef]
- Nishi, K.; Yoshimoto, S.; Nishi, S.; Nishi, T.; Nishi, R.; Tanaka, T.; Tsunoda, T.; Imai, K.; Tanaka, H.; Hotta, O.; et al. Epipharyngeal Abrasive Therapy (EAT) Reduces the mRNA Expression of Major Proinflammatory Cytokine IL-6 in Chronic Epipharyngitis. Int. J. Mol. Sci. 2022, 23, 9205. [Google Scholar] [CrossRef]
- Nishi, K.; Yoshimoto, S.; Tanaka, T.; Kimura, S.; Shinchi, Y.; Yamano, T. A Potential Novel Treatment for Chronic Cough in Long COVID Patients: Clearance of Epipharyngeal Residual SARS-CoV-2 Spike RNA by Epipharyngeal Abrasive Therapy. Cureus 2023, 15, e33421. [Google Scholar] [CrossRef]
- Yao, Q.; Doyle, M.E.; Liu, Q.R.; Appleton, A.; O’Connell, J.F.; Weng, N.P.; Egan, J.M. Long-Term Dysfunction of Taste Papillae in SARS-CoV-2. NEJM Evid. 2023, 2. [Google Scholar] [CrossRef]
- Cheung, C.C.L.; Goh, D.; Lim, X.; Tien, T.Z.; Lim, J.C.T.; Lee, J.N.; Tan, B.; Tay, Z.E.A.; Wan, W.Y.; Chen, E.X.; et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19. Gut 2022, 71, e9. [Google Scholar] [CrossRef] [PubMed]
- Gaebler, C.; Wang, Z.; Lorenzi, J.C.C.; Muecksch, F.; Finkin, S.; Tokuyama, M.; Cho, A.; Jankovic, M.; Schaefer-Babajew, D.; Oliveira, T.Y.; et al. Evolution of antibody immunity to SARS-CoV-2. Nature 2021, 591, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Proal, A.D.; VanElzakker, M.B.; Aleman, S.; Bach, K.; Boribong, B.P.; Buggert, M.; Cherry, S.; Chertow, D.S.; Davies, H.E.; Dupont, C.L.; et al. SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC). Nat. Immunol. 2023, 24, 1616–1627. [Google Scholar] [CrossRef] [PubMed]
- Stein, S.R.; Ramelli, S.C.; Grazioli, A.; Chung, J.Y.; Singh, M.; Yinda, C.K.; Winkler, C.W.; Sun, J.; Dickey, J.M.; Ylaya, K.; et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 2022, 612, 758–763. [Google Scholar] [CrossRef]
- Ghafari, M.; Hall, M.; Golubchik, T.; Ayoubkhani, D.; House, T.; MacIntyre-Cockett, G.; Fryer, H.R.; Thomson, L.; Nurtay, A.; Kemp, S.A.; et al. Prevalence of persistent SARS-CoV-2 in a large community surveillance study. Nature 2024, 626, 1094–1101. [Google Scholar] [CrossRef]
- Silva, J.; Lucas, C.; Sundaram, M.; Israelow, B.; Wong, P.; Klein, J.; Tokuyama, M.; Lu, P.; Venkataraman, A.; Liu, F.; et al. Saliva viral load is a dynamic unifying correlate of COVID-19 severity and mortality. medRxiv 2021. [Google Scholar] [CrossRef]
- Cappare, P.; D’Ambrosio, R.; De Cunto, R.; Darvizeh, A.; Nagni, M.; Gherlone, E. The Usage of an Air Purifier Device with HEPA 14 Filter during Dental Procedures in COVID-19 Pandemic: A Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2022, 19, 5139. [Google Scholar] [CrossRef]
- Fujimoto, M.; Katayama, K.; Nishikawa, K.; Mizoguchi, S.; Oda, K.; Hirabayashi, Y.; Suzuki, Y.; Haruki, A.; Ito, T.; Murata, T.; et al. A Kidney Transplant Recipient with Recurrent Henoch-Schonlein Purpura Nephritis Successfully Treated with Steroid Pulse Therapy and Epipharyngeal Abrasive Therapy. Nephron 2020, 144 (Suppl. S1), 54–58. [Google Scholar] [CrossRef]
- Mahawongkajit, P.; Soonthornkes, N. Comparative effectiveness of lidocaine sprays between sitting and supine position for patients undergoing upper gastrointestinal endoscopy: A prospective randomized controlled trial. Surg. Endosc. 2022, 36, 5067–5075. [Google Scholar] [CrossRef]
- Expertengruppe-Long-COVID. Long COVID—Arzneimittel: Maßnahmen zur Verbesserung der Versorgung von Long COVID-Erkrankten. In Eine Ausarbeitung der Expertengruppe Long COVID Off-Label-Use im Auftrag des Bundesministeriums für Gesundheit (BMG); BMG, B.f.G., Eds.; BMG Initiative LONG COVID: Berlin, Germany, 2024; pp. 1–27. [Google Scholar]
- Meek, H.C.; Stenfeldt, C.; Arzt, J. Morphological and Phenotypic Characteristics of the Bovine Nasopharyngeal Mucosa and Associated Lymphoid Tissue. J. Comp. Pathol. 2022, 198, 62–79. [Google Scholar] [CrossRef]
- Gallo, O.; Locatello, L.G.; Mazzoni, A.; Novelli, L.; Annunziato, F. The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol. 2021, 14, 305–316. [Google Scholar] [CrossRef] [PubMed]
- de Freitas Santoro, D.; de Sousa, L.B.; Camara, N.O.S.; de Freitas, D.; de Oliveira, L.A. SARS-CoV-2 and Ocular Surface: From Physiology to Pathology, a Route to Understand Transmission and Disease. Front. Physiol. 2021, 12, 612319. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Perez, P.; Kato, T.; Mikami, Y.; Okuda, K.; Gilmore, R.C.; Conde, C.D.; Gasmi, B.; Stein, S.; Beach, M.; et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat. Med. 2021, 27, 892–903. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Milanez-Almeida, P.; Martins, A.J.; Radtke, A.J.; Hoehn, K.B.; Oguz, C.; Chen, J.; Liu, C.; Tang, J.; Grubbs, G.; et al. Adaptive immune responses to SARS-CoV-2 persist in the pharyngeal lymphoid tissue of children. Nat. Immunol. 2023, 24, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, R.; Rumeau, C. Physiology of the paransal sinus ostia: Endoscopic findings. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2018, 135, 147–148. [Google Scholar] [CrossRef]
- Baldassarri, M.; Zguro, K.; Tomati, V.; Pastorino, C.; Fava, F.; Croci, S.; Bruttini, M.; Picchiotti, N.; Furini, S.; Pedemonte, N.; et al. Gain- and Loss-of-Function CFTR Alleles Are Associated with COVID-19 Clinical Outcomes. Cells 2022, 11, 4096. [Google Scholar] [CrossRef]
- Marquez-Miranda, V.; Rojas, M.; Duarte, Y.; Diaz-Franulic, I.; Holmgren, M.; Cachau, R.E.; Gonzalez-Nilo, F.D. Analysis of SARS-CoV-2 ORF3a structure reveals chloride binding sites. bioRxiv 2020. [Google Scholar] [CrossRef]
- Gu, H.; Fan, D.; Gao, J.; Zou, W.; Peng, Z.; Zhao, Z.; Ling, J.; LeGeros, R.Z. Effect of ZnCl2 on plaque growth and biofilm vitality. Arch. Oral Biol. 2012, 57, 369–375. [Google Scholar] [CrossRef]
- Mogitate, M. Epipharynegal Abrasive Therapy Downregulates the Number of Epipharyngeal Abrasive CD4 Cells With Symptomatic Recovery. Cureus 2023, 15, e50288. [Google Scholar] [CrossRef]
- Bao, Y.; Wu, S.; Chu, L.T.; Kwong, H.K.; Hartanto, H.; Huang, Y.; Lam, M.L.; Lam, R.H.W.; Chen, T.H. Early Committed Clockwise Cell Chirality Upregulates Adipogenic Differentiation of Mesenchymal Stem Cells. Adv. Biosyst. 2020, 4, e2000161. [Google Scholar] [CrossRef]
- Korn, S.M.; Dhamotharan, K.; Jeffries, C.M.; Schlundt, A. The preference signature of the SARS-CoV-2 Nucleocapsid NTD for its 5′-genomic RNA elements. Nat. Commun. 2023, 14, 3331. [Google Scholar] [CrossRef] [PubMed]
- Taneja, N.; Rathbun, L.; Hehnly, H.; Burnette, D.T. The balance between adhesion and contraction during cell division. Curr. Opin. Cell Biol. 2019, 56, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Shadloo-Jahromi, A.; Bavi, O.; Hossein Heydari, M.; Kharati-Koopaee, M.; Avazzadeh, Z. Dynamics of respiratory droplets carrying SARS-CoV-2 virus in closed atmosphere. Results Phys. 2020, 19, 103482. [Google Scholar] [CrossRef] [PubMed]
- Gusev, E.; Sarapultsev, A.; Solomatina, L.; Chereshnev, V. SARS-CoV-2-Specific Immune Response and the Pathogenesis of COVID-19. Int. J. Mol. Sci. 2022, 23, 1716. [Google Scholar] [CrossRef]
- Farid, H.; Khan, M.; Jamal, S.; Ghafoor, R. Oral manifestations of COVID-19-A literature review. Rev. Med. Virol. 2022, 32, e2248. [Google Scholar] [CrossRef]
- France, K.; Glick, M. Long COVID and oral health care considerations. J. Am. Dent. Assoc. 2022, 153, 167–174. [Google Scholar] [CrossRef]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef]
- Grach, S.L.; Seltzer, J.; Chon, T.Y.; Ganesh, R. Diagnosis and Management of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Mayo Clin. Proc. 2023, 98, 1544–1551. [Google Scholar] [CrossRef]
- Rochmawati, E.; Iskandar, A.C.; Kamilah, F. Persistent symptoms among post-COVID-19 survivors: A systematic review and meta-analysis. J. Clin. Nurs. 2024, 33, 29–39. [Google Scholar] [CrossRef]
- Stengel, A.; Malek, N.; Zipfel, S.; Goepel, S. Long Haulers-What Is the Evidence for Post-COVID Fatigue? Front. Psychiatry 2021, 12, 677934. [Google Scholar] [CrossRef]
- Tanikawa, T.; Kiba, Y.; Yu, J.; Hsu, K.; Chen, S.; Ishii, A.; Yokogawa, T.; Suzuki, R.; Inoue, Y.; Kitamura, M. Degradative Effect of Nattokinase on Spike Protein of SARS-CoV-2. Molecules 2022, 27, 5405. [Google Scholar] [CrossRef] [PubMed]
- Leitzke, M. Is the post-COVID-19 syndrome a severe impairment of acetylcholine-orchestrated neuromodulation that responds to nicotine administration? Bioelectron. Med. 2023, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Rao, Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat. Rev. Microbiol. 2021, 19, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.H.; Ryu, C.M.; Kim, J.S. Bacterial persistence: Fundamentals and clinical importance. J. Microbiol. 2019, 57, 829–835. [Google Scholar] [CrossRef]
- Justo, A.F.O.; Bueno, M.S.; Barbosa, G.R.; Perosa, A.H.; Carvalho, J.M.; Bellei, N. Comparison of viral load between saliva and nasopharyngeal swabs for SARS-CoV2: The role of days of symptoms onset on diagnosis. Mem. Inst. Oswaldo Cruz 2021, 116, e210018. [Google Scholar] [CrossRef]
- Theobald, S.J.; Simonis, A.; Georgomanolis, T.; Kreer, C.; Zehner, M.; Eisfeld, H.S.; Albert, M.C.; Chhen, J.; Motameny, S.; Erger, F.; et al. Long-lived macrophage reprogramming drives spike protein-mediated inflammasome activation in COVID-19. EMBO Mol. Med. 2021, 13, e14150. [Google Scholar] [CrossRef]
- Giacca, M. SARS-CoV-2 infection boosts inflammation in atherosclerotic plaques. Nat. Cardiovasc. Res. 2023, 2, 966–967. [Google Scholar] [CrossRef]
- Zhang, X.; Hong, B.; Wei, P.; Pei, P.; Xu, H.; Chen, L.; Tong, Y.; Chen, J.; Luo, S.Z.; Fan, H.; et al. Pathogen-host adhesion between SARS-CoV-2 spike proteins from different variants and human ACE2 studied at single-molecule and single-cell levels. Emerg. Microbes Infect. 2022, 11, 2658–2669. [Google Scholar] [CrossRef]
- Tromp, J.; Wong, M.; Ouwerkerk, W.; Wu, M.-Z.; Ren, Q.-W.; Chandramouli, C.; Teramoto, K.; Teng, K.T.-H.; Huang, J.; To, K.-K.-W.; et al. The association between baseline viral load and long-term risk in patients with COVID-19 in Hong Kong: A territory-wide study. Sci. Rep. 2024, 14, 30644. [Google Scholar] [CrossRef]
- Jakel, B.; Kedor, C.; Grabowski, P.; Wittke, K.; Thiel, S.; Scherbakov, N.; Doehner, W.; Scheibenbogen, C.; Freitag, H. Hand grip strength and fatigability: Correlation with clinical parameters and diagnostic suitability in ME/CFS. J. Transl. Med. 2021, 19, 159. [Google Scholar] [CrossRef]
- Gamage, A.M.; Tan, K.S.; Chan, W.O.Y.; Lew, Z.Z.R.; Liu, J.; Tan, C.W.; Rajagopalan, D.; Lin, Q.X.X.; Tan, L.M.; Venkatesh, P.N.; et al. Human Nasal Epithelial Cells Sustain Persistent SARS-CoV-2 Infection In Vitro, despite Eliciting a Prolonged Antiviral Response. mBio 2022, 13, e0343621. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Priya, H.; Mishra, D.; Kumar, H.; Monga, N.; Kumari, K. Oral manifestations and dental practice recommendations during COVID-19 pandemic. J. Fam. Med. Prim. Care 2021, 10, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Luo, B.; Liu, Y.; Wu, Y.; Chen, Y. Immune damage mechanisms of COVID-19 and novel strategies in prevention and control of epidemic. Front. Immunol. 2023, 14, 1130398. [Google Scholar] [CrossRef] [PubMed]
- Berkan, O.; Kiziloglu, I.; Keles, E.; Duman, L.; Bozkurt, M.; Adibelli, Z.; Oncel, G.; Berkan, N.; Ekemen Keles, Y.; Jones, J.H.; et al. Does the Thymus Index Predict COVID-19 Severity? J. Comput. Assist. Tomogr. 2023, 47, 236–243. [Google Scholar] [CrossRef]
- Forčić, D.; Mršić, K.; Perić-Balja, M.; Kurtović, T.; Ramić, S.; Silovski, T.; Pedišić, I.; Milas, I.; Halassy, B. An Unconventional Case Study of Neoadjuvant Oncolytic Virotherapy for Recurrent Breast Cancer. Vaccines 2024, 12, 958. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorenz, C.; Frankenberger, R. Novel Oronasal Drainage for Long COVID: Proposed Mechanisms—Case Report. Viruses 2025, 17, 210. https://doi.org/10.3390/v17020210
Lorenz C, Frankenberger R. Novel Oronasal Drainage for Long COVID: Proposed Mechanisms—Case Report. Viruses. 2025; 17(2):210. https://doi.org/10.3390/v17020210
Chicago/Turabian StyleLorenz, Claudia, and Roland Frankenberger. 2025. "Novel Oronasal Drainage for Long COVID: Proposed Mechanisms—Case Report" Viruses 17, no. 2: 210. https://doi.org/10.3390/v17020210
APA StyleLorenz, C., & Frankenberger, R. (2025). Novel Oronasal Drainage for Long COVID: Proposed Mechanisms—Case Report. Viruses, 17(2), 210. https://doi.org/10.3390/v17020210