High-Performance Genome Annotation for a Safer and Faster-Developing Phage Therapy
Abstract
:1. Introduction
1.1. Importance and Challenges of Genomics for Phage Therapy
1.1.1. Higher Standards in Genomics Are Key for the Safe Use of Phage Therapy
1.1.2. Bad Genomics Will Slow Down Phage Therapy Development
1.2. Efforts to Solve the Challenges of Phage Genomics
1.2.1. Why Are We Facing These Challenges?
1.2.2. Promoting Better Phage Genomics
1.2.3. A New Project to Take Part in Academic Efforts to Enhance Phage Genomics
- High-performance bioinformatics software development;
- A combination of phage therapy, genomics, and regulation expertise;
- A strong engagement towards our mission:
- ○
- Promotion of the advent of a safe phage therapy for patients and the environment;
- ○
- Providing help to academia and industry with their academic projects;
- ○
- Participating in global efforts to build the phage therapy ecosystem.
1.3. The RimeTOOLS Pipeline for Phage Genome Annotation
1.3.1. Using Large, Curated Databases to Produce High-Quality Annotations
- Finding a gene or domain that was already annotated using reliable methods.
- Comparing the gene to annotate the already known gene or domain.
- Deciding if the two compared genes are close enough to be considered functional homologs.
- Repeat until success or failure.
1.3.2. RimeTOOLS Is a Semi-Automatic Pipeline
1.4. Benchmarking RimeTOOLS Versus SEA-PHAGES
2. Methods
2.1. Phage Sequences
2.2. Phage Genome Annotation
2.3. Genome Annotation Comparison
3. Results and Discussion
3.1. Comparing Manual and Automated Annotation
3.2. In Silico and Wet Lab Annotation
4. Conclusions
4.1. Academic Phage Genome Annotation
- Manual structural annotation is marginally superior to rTOOLS automated structural annotation.
- rTOOLS automated functional annotation is superior to manual functional annotation.
4.2. Phage Genome Annotation for Phage Therapy
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strathdee, S.A.; Hatfull, G.F.; Mutalik, V.K.; Schooley, R.T. Phage therapy: From biological mechanisms to future directions. Cell 2023, 186, 17–31. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, Y.A.; Boyd, E.F. Mobilization of the Vibrio pathogenicity island between Vibrio cholerae isolates mediated by CP-T1 generalized transduction. FEMS Microbiol. Lett. 2002, 214, 153–157. [Google Scholar] [CrossRef]
- Mazaheri Nezhad Fard, R.; Barton, M.D.; Heuzenroeder, M.W. Bacteriophage-mediated transduction of antibiotic resistance in enterococci. Lett. Appl. Microbiol. 2011, 52, 559–564. [Google Scholar] [CrossRef]
- Val, M.E.; Bouvier, M.; Campos, J.; Sherratt, D.; Cornet, F.; Mazel, D.; Barre, F.-X. The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae. Mol. Cell 2005, 19, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Culot, A.; Grosset, N.; Gautier, M. Overcoming the challenges of phage therapy for industrial aquaculture: A review. Aquaculture 2019, 513, 734423. [Google Scholar] [CrossRef]
- Danovaro, R.; Dell’Anno, A.; Corinaldesi, C.; Magagnini, M.; Noble, R.; Tamburini, C.; Weinbauer, M. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 2008, 454, 1084–1087. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Government of the United Kingdom: London, UK, 2016; Available online: https://apo.org.au/node/63983 (accessed on 20 September 2021).
- European Medecines Agency. Guideline on Quality, Safety and Efficacy of Veterinary Medicinal Products Specifically Designed for Phage Therapy; European Medicines Agency: Amsterdam, Belgium, 2023. [Google Scholar]
- General Monograph—Version 1.0. Phage Active Pharmaceutical Ingredients. 2018. Available online: https://www.researchgate.net/publication/323866587_Supplementary_Material/data/5ab05e59458515ecebeb1c20/viruses-10-00064-s001.pdf?origin=scientificContributions (accessed on 8 May 2024).
- United States Food and Drug Administration Center for Biologics Evaluation; Research National Institute of Allergy and Infectious Diseases. Science and Regulation of Bacteriophage Therapy; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2021. [Google Scholar]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Adriaenssens, E.M.; Tolstoy, I.; Kropinski, A.M. Phage Annotation Guide: Guidelines for Assembly and High-Quality Annotation. PHAGE 2021, 2, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Fremin, B.J.; Bhatt, A.S.; Kyrpides, N.C.; Sengupta, A.; Sczyrba, A.; Maria da Silva, A.; Buchan, A.; Gaudin, A.; Brune, A.; Hirsch, A.M.; et al. Thousands of small, novel genes predicted in global phage genomes. Cell Rep. 2022, 39, 110984. [Google Scholar] [CrossRef]
- McNair, K.; Zhou, C.; Dinsdale, E.A.; Souza, B.; Edwards, R.A. PHANOTATE: A novel approach to gene identification in phage genomes. Bioinformatics 2019, 35, 4537–4542. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.E.; Malfatti, S.A.; Kimbrel, J.A.; Philipson, C.W.; McNair, K.E.; Hamilton, T.C.; Edwards, R.; Souza, B. multiPhATE: Bioinformatics pipeline for functional annotation of phage isolates. Bioinformatics 2019, 35, 4402–4404. [Google Scholar] [CrossRef] [PubMed]
- Tang, L. Contamination in sequence databases. Nat. Methods 2020, 17, 654. [Google Scholar] [CrossRef] [PubMed]
- Steinegger, M.; Salzberg, S.L. Terminating contamination: Large-scale search identifies more than 2,000,000 contaminated entries in GenBank. Genome Biol. 2020, 21, 115. [Google Scholar] [CrossRef] [PubMed]
- Lupo, V.; Van Vlierberghe, M.; Vanderschuren, H.; Kerff, F.; Baurain, D.; Cornet, L. Contamination in Reference Sequence Databases: Time for Divide-and-Rule Tactics. Front. Microbiol. 2021, 12, 755101. [Google Scholar] [CrossRef] [PubMed]
- Mavrogenis, A.F.; Quaile, A.; Scarlat, M.M. The good, the bad and the rude peer-review. Int. Orthop. 2020, 44, 413–415. [Google Scholar] [CrossRef]
- Sarewitz, D. The pressure to publish pushes down quality. Nature 2016, 533, 147. [Google Scholar] [CrossRef]
- Smaldino, P.E.; McElreath, R. The natural selection of bad science. R. Soc. Open Sci. 2016, 3, 160384. [Google Scholar] [CrossRef]
- Li, M.; Shen, Z. Science map of academic misconduct. Innovation 2024, 5, 100593. [Google Scholar] [CrossRef] [PubMed]
- Kuchment, A. The Forgotten Cure; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Wachsmuth, L.P.; Runyon, C.R.; Drake, J.M.; Dolan, E.L. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors’ Emotions about Mathematics. CBE Life Sci. Educ. 2017, 16, ar49. [Google Scholar] [CrossRef] [PubMed]
- International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef]
- Bouras, G.; Nepal, R.; Houtak, G.; Psaltis, A.J.; Wormald, P.J.; Vreugde, S. Pharokka: A fast scalable bacteriophage annotation tool. Bioinformatics 2023, 39, btac776. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, J.; Rasche, H.; Maughmer, C.; Criscione, A.; Mijalis, E.; Liu, M.; Hu, J.C.; Young, R.; Gill, J.J. Galaxy and Apollo as a biologist-friendly interface for high-quality cooperative phage genome annotation. PLoS Comput. Biol. 2020, 16, e1008214. [Google Scholar] [CrossRef] [PubMed]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat Methods 2022, 19, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Hanauer, D.I.; Graham, M.J.; Betancur, L.; Bobrownicki, A.; Cresawn, S.G.; Garlena, R.A.; Jacobs-Sera, D.; Kaufmann, N.; Pope, W.H.; Russell, D.A.; et al. An inclusive Research Education Community (iREC): Impact of the SEA-PHAGES program on research outcomes and student learning. Proc. Natl. Acad. Sci. USA 2017, 114, 13531–13536. [Google Scholar] [CrossRef] [PubMed]
- Russel, D. SEA-PHAGES 2019 Annual Letter; SEA-PHAGES Program: Chevy Chase, MD, USA, 2019. [Google Scholar]
- Rossier, O.; Labarre, C.; Lopes, A.; Auberdiac, M.; Tambosco, K.; Delaruelle, D.; Abes, H.; Arteni, A.A.; Ouldali, M.; Pieri, L.; et al. Genome sequence of PSonyx, a singleton bacteriophage infecting Corynebacterium glutamicum. Microbiol. Resour. Announc. 2024, 13, e0115523. [Google Scholar] [CrossRef]
- ISO 9001:2015; International Organization for Standardization. ISO: Geneva, Switzerland, 2024.
- European Medicines Agency (EMA). Good Laboratory Practice Compliance. 2012. Available online: https://www.ema.europa.eu/en/human-regulatory-overview/research-development/compliance-research-development/good-laboratory-practice-compliance (accessed on 20 February 2025).
- European Medicines Agency (EMA). Good Manufacturing Practice. 2022. Available online: https://www.ema.europa.eu/en/human-regulatory-overview/research-development/compliance-research-development/good-manufacturing-practice (accessed on 20 February 2025).
- McAlpine, L. Becoming a PI: From ‘doing’ to ‘managing’ research. Teach. High. Educ. 2016, 21, 49–63. [Google Scholar] [CrossRef]
- Boutet, E.; Lieberherr, D.; Tognolli, M.; Schneider, M.; Bansal, P.; Bridge, A.J.; Abes, H.; Arteni, A.A.; Ouldali, M.; Pieri, L.; et al. UniProtKB/Swiss-Prot, the Manually Annotated Section of the UniProt KnowledgeBase: How to Use the Entry View. Microbiol. Resour. Announc. 2016, 13, 23–54. [Google Scholar] [CrossRef]
- National Library of Medicine (US); National Center for Biotechnology Information. Nucleotide. 2019. Available online: https://www.ncbi.nlm.nih.gov/nucleotide/ (accessed on 4 September 2024).
- NCBI. Prokaryotic Genome Annotation Guide. 2022. Available online: https://www.ncbi.nlm.nih.gov/genbank/genomesubmit_annotation/ (accessed on 4 September 2024).
- SEA PHAGES. SEA PHAGES Discovery Guide. Available online: https://seaphagesphagediscoveryguide.helpdocsonline.com/home (accessed on 4 September 2024).
- Russell, D.A. Sequencing, Assembling, and Finishing Complete Bacteriophage Genomes. Bacteriophages Methods Protoc. 2018, 3, 109–125. [Google Scholar] [CrossRef]
- Margulies, M.; Egholm, M.; Altman, W.E.; Attiya, S.; Bader, J.S.; Bemben, L.A.; Berka, J.; Braverman, M.S.; Chen, Y.-J.; Chen, Z.; et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437, 376–380. [Google Scholar] [CrossRef]
- Gordon, D.; Abajian, C.; Green, P. Consed: A Graphical Tool for Sequence Finishing. Genome Res. 1998, 8, 195–202. [Google Scholar] [CrossRef] [PubMed]
- SEA PHAGES. Phages DB. Available online: https://phagesdb.org/ (accessed on 4 September 2024).
- Makhoul, J.C.; Valentine, M.; Campbell, C.; McLaughlin, E.G.; Vereline, F.H.; Collins, J.M.; Mcleish, K.Q.Y.; Izquierdo, J.D.; Gallagher, L.N.; Tyrrell, L.P.; et al. Genome sequence of Microbacterium foliorum phage CandC. Microbiol. Resour. Announc. 2024, 13, e01117–e01123. [Google Scholar] [CrossRef]
- NCBI. NCBI Genbank. Available online: https://www.ncbi.nlm.nih.gov/genbank/ (accessed on 4 September 2024).
- SEA PHAGES. PECAAN User Guide. 2016. Available online: https://seaphages.org/media/docs/PECAAN_User_Guide_Dec7_2016.pdf (accessed on 4 September 2024).
- SEA PHAGES. Guiding Priinciples. Available online: https://seaphagesbioinformatics.helpdocsonline.com/guiding-principles (accessed on 4 September 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Culot, A.; Abriat, G.; Furlong, K.P. High-Performance Genome Annotation for a Safer and Faster-Developing Phage Therapy. Viruses 2025, 17, 314. https://doi.org/10.3390/v17030314
Culot A, Abriat G, Furlong KP. High-Performance Genome Annotation for a Safer and Faster-Developing Phage Therapy. Viruses. 2025; 17(3):314. https://doi.org/10.3390/v17030314
Chicago/Turabian StyleCulot, Antoine, Guillaume Abriat, and Kieran P. Furlong. 2025. "High-Performance Genome Annotation for a Safer and Faster-Developing Phage Therapy" Viruses 17, no. 3: 314. https://doi.org/10.3390/v17030314
APA StyleCulot, A., Abriat, G., & Furlong, K. P. (2025). High-Performance Genome Annotation for a Safer and Faster-Developing Phage Therapy. Viruses, 17(3), 314. https://doi.org/10.3390/v17030314