Structural Capsidomics of Single-Stranded DNA Viruses
Abstract
:1. Introduction
Realm | Phylum | Virus Family | Virion Morphology | Genome | Hosts |
---|---|---|---|---|---|
Monodnaviria | Hofneiviricota | Inoviridae | Non-enveloped, filamentous | circular | Bacteria |
Paulinaviridae | |||||
Plectroviridae | |||||
Phixviricota | Microviridae | Non-enveloped T = 1 icosahedral capsid | circular | Bacteria | |
Commensaviricota * | Anelloviridae | Invertebrates, Vertebrates | |||
Cossaviricota | Bidnaviridae | T = 1 icosahedral capsid + additonal capsid? | linear, segmented | Invertebrates | |
Parvoviridae | Non-enveloped T = 1 icosahedral capsid | linear # | Invertebrates, Vertebrates | ||
Cressdnaviricota | Adamaviridae | Non-enveloped T = 1 icosahedral capsid | circular # | Invertebrates, Vertebrates | |
Amesuviridae | circular | Plants | |||
Anicreviridae | Invertebrates, Vertebrates | ||||
Circoviridae | Invertebrates, Vertebrates | ||||
Draupnirviridae | Invertebrates, Vertebrates | ||||
Endolinaviridae | Protists | ||||
Genomoviridae | circular # | Fungi, Plants, Invertebrates, Vertebrates | |||
Geplanaviridae | circular | Plants, Invertebrates, Vertebrates | |||
Kanorauviridae | Plants, Invertebrates, Vertebrates | ||||
Kirkoviridae | Vertebrates | ||||
Mahapunaviridae | Plants, Invertebrates, Vertebrates | ||||
Metaxyviridae | circular, segmented | Plants | |||
Nanoviridae | Plants | ||||
Naryaviridae | circular | Protists | |||
Nenyaviridae | Protists | ||||
Ouroboviridae | Invertebrates, Vertebrates | ||||
Pecoviridae | Vertebrates | ||||
Redondoviridae | Vertebrates | ||||
Smacoviridae | Invertebrates, Vertebrates | ||||
Vilyaviridae | Protists | ||||
Geminiviridae | Non-enveloped pseudoT = 1 icosahedral capsid | circular # | Plants, Invertebrates | ||
Bacilladnaviridae | Non-enveloped T = 3 icosahedral capsid | Circular | Protists, Invertebrates | ||
Gandreviridae | Invertebrates, Vertebrates | ||||
Saleviricota | Pleolipoviridae | Enveloped, pleomorphic particles | circular | Archaea | |
Varidnaviria | Preplasmiviricota | Finnlakeviridae | pseudoT = 21d capsid with internal membrane | Bacteria | |
not assigned | Alphasatellitidae | Satellite virus, genome packaged into capsids of the Geminiviridae | Plants, Invertebrates | ||
Tolecusatellitidae | Plants | ||||
Spiraviridae | Linear, non-enveloped, and helical particles | Archaea |
2. Assembly of Icosahedral Capsids
2.1. The Assembly of T = 1 Capsids
2.2. Assembly of T > 1 Capsids
3. Virus Families with Determined Capsid Structures
3.1. Parvoviridae
3.2. Microviridae
3.3. Circoviridae
3.4. Nanoviridae
3.5. Anelloviridae
3.6. Geminiviridae
3.7. Bacilladnaviridae
3.8. Finnlakeviridae
4. The Structure of the Capsid Building Blocks
4.1. The Jelly-Roll Motif in ssDNA T = 1 Capsids
4.2. The Surface Loops of ssDNA T = 1 Capsids
4.3. The Architecture of T > 1 Capsids
4.4. Genome Packaging of the ssDNA Virus Capsids
5. The ssDNA Capsidome
6. The CP N-Termini
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koonin, E.V.; Krupovic, M.; Agol, V.I. The Baltimore Classification of Viruses 50 Years Later: How Does It Stand in the Light of Virus Evolution? Microbiol. Mol. Biol. Rev. MMBR 2021, 85, e0005321. [Google Scholar] [CrossRef] [PubMed]
- Krupovic, M. Networks of evolutionary interactions underlying the polyphyletic origin of ssDNA viruses. Curr. Opin. Virol. 2013, 3, 578–586. [Google Scholar] [CrossRef]
- Zhao, L.; Rosario, K.; Breitbart, M.; Duffy, S. Eukaryotic Circular Rep-Encoding Single-Stranded DNA (CRESS DNA) Viruses: Ubiquitous Viruses With Small Genomes and a Diverse Host Range. Adv. Virus Res. 2019, 103, 71–133. [Google Scholar]
- Malathi, V.G.; Renuka Devi, P. ssDNA viruses: Key players in global virome. Virusdisease 2019, 30, 3–12. [Google Scholar] [CrossRef]
- Modrow, S.; Falke, D.; Truyen, U.; Schätzl, H. Viruses with a Single-Stranded DNA Genome. In Molecular Virology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 875–918. [Google Scholar]
- Torralba, B.; Blanc, S.; Michalakis, Y. Reassortments in single-stranded DNA multipartite viruses: Confronting expectations based on molecular constraints with field observations. Virus Evol. 2024, 10, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Atanasova, N.S.; Heiniö, C.H.; Demina, T.A.; Bamford, D.H.; Oksanen, H.M. The Unexplored Diversity of Pleolipoviruses: The Surprising Case of Two Viruses with Identical Major Structural Modules. Genes 2018, 9, 131. [Google Scholar] [CrossRef] [PubMed]
- Laanto, E.; Mäntynen, S.; De Colibus, L.; Marjakangas, J.; Gillum, A.; Stuart, D.I.; Ravantti, J.J.; Huiskonen, J.T.; Sundberg, L.R. Virus found in a boreal lake links ssDNA and dsDNA viruses. Proc. Natl. Acad. Sci. USA 2017, 114, 8378–8383. [Google Scholar] [CrossRef]
- Knezevic, P.; Adriaenssens, E.M.; Ictv Report Consortium. ICTV Virus Taxonomy Profile: Inoviridae. J. Gen. Virol. 2021, 102, 001614. [Google Scholar] [CrossRef]
- Prangishvili, D.; Mochizuki, T.; Krupovic, M.; Ictv Report Consortium. ICTV Virus Taxonomy Profile: Spiraviridae. J. Gen. Virol. 2020, 101, 240–241. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, P.; Adriaenssens, E.M.; Ictv Report Consortium. ICTV Virus Taxonomy Profile: Plectroviridae. J. Gen. Virol. 2021, 102, 001597. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Watanabe, S.; Sharmin, S.; Kawaguchi, T.; Tan, X.-E.; Wannigama, D.L.; Cui, L. RNA and Single-Stranded DNA Phages: Unveiling the Promise from the Underexplored World of Viruses. Int. J. Mol. Sci. 2023, 24, 17029. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Butkovic, A.; Kraberger, S.; Smeele, Z.; Martin, D.P.; Schmidlin, K.; Fontenele, R.S.; Shero, M.R.; Beltran, R.S.; Kirkham, A.L.; Aleamotu’a, M.; et al. Evolution of anelloviruses from a circovirus-like ancestor through gradual augmentation of the jelly-roll capsid protein. Virus Evol. 2023, 9, vead035. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.C.; Olson, A.J.; Schutt, C.E.; Winkler, F.K.; Bricogne, G. Tomato bushy stunt virus at 2.9 A resolution. Nature 1978, 276, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Abad-Zapatero, C.; Abdel-Meguid, S.S.; Johnson, J.E.; Leslie, A.G.; Rayment, I.; Rossmann, M.G.; Suck, D.; Tsukihara, T. Structure of southern bean mosaic virus at 2.8 A resolution. Nature 1980, 286, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Caspar, D.L.; Klug, A. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 1962, 27, 1–24. [Google Scholar] [CrossRef]
- Prasad, B.V.; Schmid, M.F. Principles of virus structural organization. Adv. Exp. Med. Biol. 2012, 726, 17–47. [Google Scholar]
- Luque, D.; Gómez-Blanco, J.; Garriga, D.; Brilot, A.F.; González, J.M.; Havens, W.M.; Carrascosa, J.L.; Trus, B.L.; Verdaguer, N.; Ghabrial, S.A.; et al. Cryo-EM near-atomic structure of a dsRNA fungal virus shows ancient structural motifs preserved in the dsRNA viral lineage. Proc. Natl. Acad. Sci. USA 2014, 111, 7641–7646. [Google Scholar] [CrossRef]
- Kejzar, N.; Laanto, E.; Rissanen, I.; Abrishami, V.; Selvaraj, M.; Moineau, S.; Ravantti, J.; Sundberg, L.R.; Huiskonen, J.T. Cryo-EM structure of ssDNA bacteriophage ΦCjT23 provides insight into early virus evolution. Nat. Commun. 2022, 13, 7478. [Google Scholar] [CrossRef]
- Munke, A.; Kimura, K.; Tomaru, Y.; Wang, H.; Yoshida, K.; Mito, S.; Hongo, Y.; Okamoto, K. Primordial Capsid and Spooled ssDNA Genome Structures Unravel Ancestral Events of Eukaryotic Viruses. mBio 2022, 13, e0015622. [Google Scholar] [CrossRef] [PubMed]
- Mietzsch, M.; Penzes, J.J.; Agbandje-McKenna, M. Twenty-Five Years of Structural Parvovirology. Viruses 2019, 11, 362. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.; McKenna, R.; Agbandje-McKenna, M. A comparative analysis of the structural architecture of ssDNA viruses. Comput. Math. Methods Med. 2008, 9, 183–196. [Google Scholar] [CrossRef]
- Trapani, S.; Bhat, E.A.; Yvon, M.; Lai-Kee-Him, J.; Hoh, F.; Vernerey, M.S.; Pirolles, E.; Bonnamy, M.; Schoehn, G.; Zeddam, J.L.; et al. Structure-guided mutagenesis of the capsid protein indicates that a nanovirus requires assembled viral particles for systemic infection. PLoS Pathog. 2023, 19, e1011086. [Google Scholar] [CrossRef]
- Bennett, A.; Hull, J.A.; Mietzsch, M.; Bhattacharya, N.; Chipman, P.; McKenna, R. Maize Streak Virus: Single and Gemini Capsid Architecture. Viruses 2024, 16, 1861. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.; Rodriguez, D.; Lister, S.; Boulton, M.; McKenna, R.; Agbandje-McKenna, M. Assembly and disassembly intermediates of maize streak geminivirus. Virology 2018, 525, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Fane, B.A.; Prevelige, P.E., Jr. Mechanism of scaffolding-assisted viral assembly. Adv. Protein Chem. 2003, 64, 259–299. [Google Scholar]
- Tsao, J.; Chapman, M.S.; Agbandje, M.; Keller, W.; Smith, K.; Wu, H.; Luo, M.; Smith, T.J.; Rossmann, M.G.; Compans, R.W.; et al. The three-dimensional structure of canine parvovirus and its functional implications. Science 1991, 251, 1456–1464. [Google Scholar] [CrossRef]
- Nelson, C.D.; Minkkinen, E.; Bergkvist, M.; Hoelzer, K.; Fisher, M.; Bothner, B.; Parrish, C.R. Detecting small changes and additional peptides in the canine parvovirus capsid structure. J. Virol. 2008, 82, 10397–10407. [Google Scholar] [CrossRef] [PubMed]
- López-Astacio, R.A.; Adu, O.F.; Lee, H.; Hafenstein, S.L.; Parrish, C.R. The Structures and Functions of Parvovirus Capsids and Missing Pieces: The Viral DNA and Its Packaging, Asymmetrical Features, Nonprotein Components, and Receptor or Antibody Binding and Interactions. J. Virol. 2023, 97, e00161-23. [Google Scholar] [CrossRef] [PubMed]
- Zadori, Z.; Szelei, J.; Lacoste, M.C.; Li, Y.; Gariepy, S.; Raymond, P.; Allaire, M.; Nabi, I.R.; Tijssen, P. A viral phospholipase A2 is required for parvovirus infectivity. Dev. Cell 2001, 1, 291–302. [Google Scholar] [CrossRef]
- Liu, P.; Chen, S.; Wang, M.; Cheng, A. The role of nuclear localization signal in parvovirus life cycle. Virol. J. 2017, 14, 80. [Google Scholar] [CrossRef]
- Emmanuel, S.N.; Mietzsch, M.; Tseng, Y.S.; Smith, J.K.; Agbandje-McKenna, M. Parvovirus Capsid-Antibody Complex Structures Reveal Conservation of Antigenic Epitopes Across the Family. Viral Immunol. 2021, 34, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Gulkis, M.; Luo, M.; Chipman, P.; Mietzsch, M.; Söderlund-Venermo, M.; Bennett, A.; McKenna, R. Structural Characterization of Human Bufavirus 1: Receptor Binding and Endosomal pH-Induced Changes. Viruses 2024, 16, 1258. [Google Scholar] [CrossRef]
- Penzes, J.J.; Soderlund-Venermo, M.; Canuti, M.; Eis-Hubinger, A.M.; Hughes, J.; Cotmore, S.F.; Harrach, B. Reorganizing the family Parvoviridae: A revised taxonomy independent of the canonical approach based on host association. Arch. Virol. 2020, 165, 2133–2146. [Google Scholar] [CrossRef]
- Stagg, S.M.; Yoshioka, C.; Davulcu, O.; Chapman, M.S. Cryo-electron Microscopy of Adeno-associated Virus. Chem. Rev. 2022, 122, 14018–14054. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Samulski, R.J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 2020, 21, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Soderlund-Venermo, M.; Young, N.S. Human Parvoviruses. Clin. Microbiol. Rev. 2017, 30, 43–113. [Google Scholar] [CrossRef] [PubMed]
- Kronenberg, S.; Bottcher, B.; von der Lieth, C.W.; Bleker, S.; Kleinschmidt, J.A. A conformational change in the adeno-associated virus type 2 capsid leads to the exposure of hidden VP1 N termini. J. Virol. 2005, 79, 5296–5303. [Google Scholar] [CrossRef]
- Leisi, R.; Di Tommaso, C.; Kempf, C.; Ros, C. The Receptor-Binding Domain in the VP1u Region of Parvovirus B19. Viruses 2016, 8, 61. [Google Scholar] [CrossRef]
- Meng, G.; Zhang, X.; Plevka, P.; Yu, Q.; Tijssen, P.; Rossmann, M.G. The structure and host entry of an invertebrate parvovirus. J. Virol. 2013, 87, 12523–12530. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, B.; El-Far, M.; Plevka, P.; Bowman, V.D.; Li, Y.; Tijssen, P.; Rossmann, M.G. Structure of Bombyx mori densovirus 1, a silkworm pathogen. J. Virol. 2011, 85, 4691–4697. [Google Scholar] [CrossRef] [PubMed]
- Simpson, A.A.; Chipman, P.R.; Baker, T.S.; Tijssen, P.; Rossmann, M.G. The structure of an insect parvovirus (Galleria mellonella densovirus) at 3.7 A resolution. Structure 1998, 6, 1355–1367. [Google Scholar] [CrossRef]
- Penzes, J.J.; Holm, M.; Yost, S.A.; Kaelber, J.T. Cryo-EM-based discovery of a pathogenic parvovirus causing epidemic mortality by black wasting disease in farmed beetles. Cell 2024, 187, 5604–5619.e14. [Google Scholar] [CrossRef]
- Pénzes, J.J.; Pham, H.T.; Chipman, P.; Smith, E.W.; McKenna, R.; Tijssen, P. Bipartite genome and structural organization of the parvovirus Acheta domesticus segmented densovirus. Nat. Commun. 2023, 14, 3515. [Google Scholar] [CrossRef] [PubMed]
- Pénzes, J.J.; Pham, H.T.; Chipman, P.; Bhattacharya, N.; McKenna, R.; Agbandje-McKenna, M.; Tijssen, P. Molecular biology and structure of a novel penaeid shrimp densovirus elucidate convergent parvoviral host capsid evolution. Proc. Natl. Acad. Sci. USA 2020, 117, 20211–20222. [Google Scholar] [CrossRef]
- Kaufmann, B.; Bowman, V.D.; Li, Y.; Szelei, J.; Waddell, P.J.; Tijssen, P.; Rossmann, M.G. Structure of Penaeus stylirostris densovirus, a shrimp pathogen. J. Virol. 2010, 84, 11289–11296. [Google Scholar] [CrossRef]
- McKenna, R.; Xia, D.; Willingmann, P.; Ilag, L.L.; Krishnaswamy, S.; Rossmann, M.G.; Olson, N.H.; Baker, T.S.; Incardona, N.L. Atomic structure of single-stranded DNA bacteriophage phi X174 and its functional implications. Nature 1992, 355, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Hamatake, R.K.; Aoyama, A.; Hayashi, M. The J gene of bacteriophage phi X174: In vitro analysis of J protein function. J. Virol. 1985, 54, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Burgess, A.B. Studies on the proteins of phi X174. II. The protein composition of the phi X coat. Proc. Natl. Acad. Sci. USA 1969, 64, 613–617. [Google Scholar] [CrossRef]
- Doore, S.M.; Fane, B.A. The microviridae: Diversity, assembly, and experimental evolution. Virology 2016, 491, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Kirchberger, P.C.; Martinez, Z.A.; Ochman, H. Organizing the Global Diversity of Microviruses. mBio 2022, 13, e00588-22. [Google Scholar] [CrossRef] [PubMed]
- Bernal, R.A.; Hafenstein, S.; Olson, N.H.; Bowman, V.D.; Chipman, P.R.; Baker, T.S.; Fane, B.A.; Rossmann, M.G. Structural studies of bacteriophage alpha3 assembly. J. Mol. Biol. 2003, 325, 11–24. [Google Scholar] [CrossRef] [PubMed]
- McKenna, R.; Bowman, B.R.; Ilag, L.L.; Rossmann, M.G.; Fane, B.A. Atomic structure of the degraded procapsid particle of the bacteriophage G4: Induced structural changes in the presence of calcium ions and functional implications. J. Mol. Biol. 1996, 256, 736–750. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Baxter, A.J.; Bator, C.M.; Fane, B.A.; Hafenstein, S.L. Cryo-EM Structure of Gokushovirus ΦEC6098 Reveals a Novel Capsid Architecture for a Single-Scaffolding Protein, Microvirus Assembly System. J. Virol. 2022, 96, e0099022. [Google Scholar] [CrossRef]
- Mietzsch, M.; Kailasan, S.; Bennett, A.; Chipman, P.; Fane, B.; Huiskonen, J.T.; Clarke, I.N.; McKenna, R. The Structure of Spiroplasma Virus 4: Exploring the Capsid Diversity of the Microviridae. Viruses 2024, 16, 1103. [Google Scholar] [CrossRef] [PubMed]
- Breitbart, M.; Delwart, E.; Rosario, K.; Segalés, J.; Varsani, A.; Ictv Report Consortium. ICTV Virus Taxonomy Profile: Circoviridae. J. Gen. Virol. 2017, 98, 1997–1998. [Google Scholar] [CrossRef]
- Khayat, R.; Brunn, N.; Speir, J.A.; Hardham, J.M.; Ankenbauer, R.G.; Schneemann, A.; Johnson, J.E. The 2.3-angstrom structure of porcine circovirus 2. J. Virol. 2011, 85, 7856–7862. [Google Scholar] [CrossRef]
- Sarker, S.; Terrón, M.C.; Khandokar, Y.; Aragão, D.; Hardy, J.M.; Radjainia, M.; Jiménez-Zaragoza, M.; de Pablo, P.J.; Coulibaly, F.; Luque, D.; et al. Structural insights into the assembly and regulation of distinct viral capsid complexes. Nat. Commun. 2016, 7, 13014. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.E.; Gronenborn, B.; Harding, R.M.; Mandal, B.; Grigoras, I.; Randles, J.W.; Sano, Y.; Timchenko, T.; Vetten, H.J.; Yeh, H.-H.; et al. ICTV Virus Taxonomy Profile: Nanoviridae. J. Gen. Virol. 2021, 102, 001544. [Google Scholar] [CrossRef] [PubMed]
- Varsani, A.; Opriessnig, T.; Celer, V.; Maggi, F.; Okamoto, H.; Blomström, A.-L.; Cadar, D.; Harrach, B.; Biagini, P.; Kraberger, S. Taxonomic update for mammalian anelloviruses (family Anelloviridae). Arch. Virol. 2021, 166, 2943–2953. [Google Scholar] [CrossRef]
- Liou, S.H.; Boggavarapu, R.; Cohen, N.R.; Zhang, Y.; Sharma, I.; Zeheb, L.; Mukund Acharekar, N.; Rodgers, H.D.; Islam, S.; Pitts, J.; et al. Structure of anellovirus-like particles reveal a mechanism for immune evasion. Nat. Commun. 2024, 15, 7219. [Google Scholar] [CrossRef] [PubMed]
- Crowther, R.A.; Berriman, J.A.; Curran, W.L.; Allan, G.M.; Todd, D. Comparison of the structures of three circoviruses: Chicken anemia virus, porcine circovirus type 2, and beak and feather disease virus. J. Virol. 2003, 77, 13036–13041. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Reddy, K.; Bhattacharyya, D.; Chakraborty, S. Plant responses to geminivirus infection: Guardians of the plant immunity. Virol. J. 2021, 18, 143. [Google Scholar] [CrossRef] [PubMed]
- Fiallo-Olivé, E.; Lett, J.M.; Martin, D.P.; Roumagnac, P.; Varsani, A.; Zerbini, F.M.; Navas-Castillo, J. ICTV Virus Taxonomy Profile: Geminiviridae 2021. J. Gen. Virol. 2021, 102, 001696. [Google Scholar] [CrossRef]
- Hesketh, E.L.; Saunders, K.; Fisher, C.; Potze, J.; Stanley, J.; Lomonossoff, G.P.; Ranson, N.A. The 3.3 Å structure of a plant geminivirus using cryo-EM. Nat. Commun. 2018, 9, 2369. [Google Scholar] [CrossRef] [PubMed]
- Hipp, K.; Grimm, C.; Jeske, H.; Böttcher, B. Near-Atomic Resolution Structure of a Plant Geminivirus Determined by Electron Cryomicroscopy. Structure 2017, 25, 1303–1309.e3. [Google Scholar] [CrossRef]
- Varsani, A.; Krupovic, M. Establishment of 4 new genera, 13 new species and renaming 9 species in the family Bacilladnaviridae. ICTV 2022. Available online: https://ictv.global/system/files/proposals/approved/Fungal_and_Protist_viruses/2022.002F.A.Bacilladnaviridae_reorg.docx (accessed on 10 February 2025).
- Kimura, K.; Tomaru, Y. Discovery of two novel viruses expands the diversity of single-stranded DNA and single-stranded RNA viruses infecting a cosmopolitan marine diatom. Appl. Environ. Microbiol. 2015, 81, 1120–1131. [Google Scholar] [CrossRef] [PubMed]
- Kazlauskas, D.; Dayaram, A.; Kraberger, S.; Goldstien, S.; Varsani, A.; Krupovic, M. Evolutionary history of ssDNA bacilladnaviruses features horizontal acquisition of the capsid gene from ssRNA nodaviruses. Virology 2017, 504, 114–121. [Google Scholar] [CrossRef]
- Mäntynen, S.; Laanto, E.; Sundberg, L.R.; Poranen, M.M.; Oksanen, H.M.; Ictv Report Consortium. ICTV Virus Taxonomy Profile: Finnlakeviridae. J. Gen. Virol. 2020, 101, 894–895. [Google Scholar] [CrossRef] [PubMed]
- Liljas, L.; Unge, T.; Jones, T.A.; Fridborg, K.; Lövgren, S.; Skoglund, U.; Strandberg, B. Structure of satellite tobacco necrosis virus at 3.0 A resolution. J. Mol. Biol. 1982, 159, 93–108. [Google Scholar] [CrossRef]
- Rossmann, M.G.; Abad-Zapatero, C.; Murthy, M.R.; Liljas, L.; Jones, T.A.; Strandberg, B. Structural comparisons of some small spherical plant viruses. J. Mol. Biol. 1983, 165, 711–736. [Google Scholar] [CrossRef]
- Richardson, J.S. The anatomy and taxonomy of protein structure. Adv. Protein Chem. 1981, 34, 167–339. [Google Scholar] [PubMed]
- Dutta, S.; Akey, I.V.; Dingwall, C.; Hartman, K.L.; Laue, T.; Nolte, R.T.; Head, J.F.; Akey, C.W. The Crystal Structure of Nucleoplasmin-Core: Implications for Histone Binding and Nucleosome Assembly. Mol. Cell 2001, 8, 841–853. [Google Scholar] [CrossRef]
- Coulibaly, F.; Chiu, E.; Gutmann, S.; Rajendran, C.; Haebel, P.W.; Ikeda, K.; Mori, H.; Ward, V.K.; Schulze-Briese, C.; Metcalf, P. The atomic structure of baculovirus polyhedra reveals the independent emergence of infectious crystals in DNA and RNA viruses. Proc. Natl. Acad. Sci. USA 2009, 106, 22205–22210. [Google Scholar] [CrossRef]
- Chapman, M.S.; Agbandje-McKenna, M. Atomic structure of viral particles. In Parvoviruses; Bloom, M.E., Cotmore, S.F., Linden, R.M., Parrish, C.R., Kerr, J.R., Eds.; Edward Arnold, Ltd.: London, UK, 2006; pp. 109–123. [Google Scholar]
- Ferreira, M.A.; Teixeira, R.M.; Fontes, E.P.B. Geminivirus-Host Interactions: Action and Reaction in Receptor-Mediated Antiviral Immunity. Viruses 2021, 13, 840. [Google Scholar] [CrossRef]
- Pillay, S.; Meyer, N.L.; Puschnik, A.S.; Davulcu, O.; Diep, J.; Ishikawa, Y.; Jae, L.T.; Wosen, J.E.; Nagamine, C.M.; Chapman, M.S.; et al. An essential receptor for adeno-associated virus infection. Nature 2016, 530, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Misinzo, G.; Delputte, P.L.; Meerts, P.; Lefebvre, D.J.; Nauwynck, H.J. Porcine circovirus 2 uses heparan sulfate and chondroitin sulfate B glycosaminoglycans as receptors for its attachment to host cells. J. Virol. 2006, 80, 3487–3494. [Google Scholar] [CrossRef]
- Mietzsch, M.; Broecker, F.; Reinhardt, A.; Seeberger, P.H.; Heilbronn, R. Differential adeno-associated virus serotype-specific interaction patterns with synthetic heparins and other glycans. J. Virol. 2014, 88, 2991–3003. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Callaway, H.M.; Cifuente, J.O.; Bator, C.M.; Parrish, C.R.; Hafenstein, S.L. Transferrin receptor binds virus capsid with dynamic motion. Proc. Natl. Acad. Sci. USA 2019, 116, 20462–20471. [Google Scholar] [CrossRef]
- Bieri, J.; Ros, C. Globoside Is Dispensable for Parvovirus B19 Entry but Essential at a Postentry Step for Productive Infection. J. Virol. 2019, 93, e00972-19. [Google Scholar] [CrossRef] [PubMed]
- Mietzsch, M.; McKenna, R.; Vaisanen, E.; Yu, J.C.; Ilyas, M.; Hull, J.A.; Kurian, J.; Smith, J.K.; Chipman, P.; Lasanajak, Y.; et al. Structural Characterization of Cuta- and Tusavirus: Insight into Protoparvoviruses Capsid Morphology. Viruses 2020, 12, 653. [Google Scholar] [CrossRef] [PubMed]
- Meyer, N.L.; Chapman, M.S. Adeno-associated virus (AAV) cell entry: Structural insights. Trends Microbiol. 2021, 30, 432–451. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Xu, G.; Cao, L.; Sun, Z.; He, Y.; Cui, M.; Sun, Y.; Li, S.; Li, H.; Qin, L.; et al. Divergent engagements between adeno-associated viruses with their cellular receptor AAVR. Nat. Commun. 2019, 10, 3760. [Google Scholar] [CrossRef] [PubMed]
- Mietzsch, M.; Hull, J.A.; Makal, V.E.; Jimenez Ybargollin, A.; Yu, J.C.; McKissock, K.; Bennett, A.; Penzes, J.; Lins-Austin, B.; Yu, Q.; et al. Characterization of the Serpentine Adeno-Associated Virus (SAAV) Capsid Structure: Receptor Interactions and Antigenicity. J. Virol. 2022, 96, e0033522. [Google Scholar] [CrossRef]
- Dhindwal, S.; Avila, B.; Feng, S.; Khayat, R. Porcine Circovirus 2 Uses a Multitude of Weak Binding Sites To Interact with Heparan Sulfate, and the Interactions Do Not Follow the Symmetry of the Capsid. J. Virol. 2019, 93, e02222-18. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Sun, Z.; Xia, D.; Wei, Y.; Sun, E.; Liu, C.; Zhu, H.; Bian, H.; Wu, H.; Feng, L.; et al. Neutralization Mechanism of a Monoclonal Antibody Targeting a Porcine Circovirus Type 2 Cap Protein Conformational Epitope. J. Virol. 2020, 94, e01836-19. [Google Scholar] [CrossRef]
- Sun, S.; Rao, V.B.; Rossmann, M.G. Genome packaging in viruses. Curr. Opin. Struct. Biol. 2010, 20, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.; Agbandje-McKenna, M. Geminivirus structure and assembly. Adv. Virus Res. 2020, 108, 1–32. [Google Scholar]
- Ranjan, T.; Pal, A.K.; Prasad, B.D.; Kumar, R.R.; Kumar, M.; Shamim, M.; Jambhulkar, S. Reassessing the mechanism of genome packaging in plant viruses with lessons from ATPase fold. Australas. Plant Pathol. 2021, 50, 253–266. [Google Scholar] [CrossRef]
- King, J.A.; Dubielzig, R.; Grimm, D.; Kleinschmidt, J.A. DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids. EMBO J. 2001, 20, 3282–3291. [Google Scholar] [CrossRef]
- Bennett, A.; Mietzsch, M.; Agbandje-McKenna, M. Understanding capsid assembly and genome packaging for adeno-associated viruses. Future Virol. 2017, 12, 283–297. [Google Scholar] [CrossRef] [PubMed]
- Nath, B.K.; Das, S.; Roby, J.A.; Sarker, S.; Luque, D.; Raidal, S.R.; Forwood, J.K. Structural Perspectives of Beak and Feather Disease Virus and Porcine Circovirus Proteins. Viral Immunol. 2021, 34, 49–59. [Google Scholar] [CrossRef]
- Cao, Q.; Bachmann, M. DNA packaging in viral capsids with peptide arms. Soft Matter 2017, 13, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Belyi, V.A.; Muthukumar, M. Electrostatic origin of the genome packing in viruses. Proc. Natl. Acad. Sci. USA 2006, 103, 17174–17178. [Google Scholar] [CrossRef]
- Schildkraut, C.L.; Marmur, J.; Doty, P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol. 1962, 4, 430–443. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wang, S.; Zhang, L.; Qiu, D.; Zhou, X.; Guo, L. A tripartite ssDNA mycovirus from a plant pathogenic fungus is infectious as cloned DNA and purified virions. Sci. Adv. 2020, 6, eaay9634. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Kotta-Loizou, I.; Coutts, R.H.A.; Deng, H.; Han, Z.; Hong, N.; Shafik, K.; Wang, L.; Guo, Y.; Yang, M.; et al. A circular single-stranded DNA mycovirus infects plants and confers broad-spectrum fungal resistance. Mol. Plant 2024, 17, 955–971. [Google Scholar] [CrossRef] [PubMed]
- Krupovic, M.; Koonin, E.V. Evolution of eukaryotic single-stranded DNA viruses of the Bidnaviridae family from genes of four other groups of widely different viruses. Sci. Rep. 2014, 4, 5347. [Google Scholar] [CrossRef]
- Sonntag, F.; Bleker, S.; Leuchs, B.; Fischer, R.; Kleinschmidt, J.A. Adeno-associated virus type 2 capsids with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus. J. Virol. 2006, 80, 11040–11054. [Google Scholar] [CrossRef]
- Venkatakrishnan, B.; Yarbrough, J.; Domsic, J.; Bennett, A.; Bothner, B.; Kozyreva, O.G.; Samulski, R.J.; Muzyczka, N.; McKenna, R.; Agbandje-McKenna, M. Structure and dynamics of adeno-associated virus serotype 1 VP1-unique N-terminal domain and its role in capsid trafficking. J. Virol. 2013, 87, 4974–4984. [Google Scholar] [CrossRef]
- Lakshmanan, R.; Mietzsch, M.; Jimenez Ybargollin, A.; Chipman, P.; Fu, X.; Qiu, J.; Söderlund-Venermo, M.; McKenna, R. Capsid Structure of Aleutian Mink Disease Virus and Human Parvovirus 4: New Faces in the Parvovirus Family Portrait. Viruses 2022, 14, 2219. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Boulton, M.I.; Davies, J.W. Maize streak virus coat protein binds single- and double-stranded DNA in vitro. J. Gen. Virol. 1997, 78, 1265–1270. [Google Scholar] [CrossRef]
- Rahman, M.M.; Muhseen, Z.T.; Junaid, M.; Zhang, H. The aromatic stacking interactions between proteins and their macromolecular ligands. Curr. Protein Pept. Sci. 2015, 16, 502–512. [Google Scholar] [CrossRef] [PubMed]
- Dhindwal, S.; Feng, S.; Khayat, R. The Arginines in the N-Terminus of the Porcine Circovirus 2 Virus-like Particles Are Responsible for Disrupting the Membranes at Neutral and Acidic pH. J. Mol. Biol. 2019, 431, 3261–3274. [Google Scholar] [CrossRef]
- Hou, Q.; Hou, S.; Chen, Q.; Jia, H.; Xin, T.; Jiang, Y.; Guo, X.; Zhu, H. Nuclear localization signal regulates porcine circovirus type 2 capsid protein nuclear export through phosphorylation. Virus Res. 2018, 246, 12–22. [Google Scholar] [CrossRef]
- Marques, A.D.; Kummer, M.; Kondratov, O.; Banerjee, A.; Moskalenko, O.; Zolotukhin, S. Applying machine learning to predict viral assembly for adeno-associated virus capsid libraries. Mol. Ther. Methods Clin. Dev. 2021, 20, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kibler, R.D.; Ahn, G.; Hsia, Y.; Borst, A.J.; Philomin, A.; Kennedy, M.A.; Huang, B.; Stoddard, B.; Baker, D. Four-component protein nanocages designed by programmed symmetry breaking. Nature 2025, 638, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Luo, N.; Wang, F.; Cai, Y.; Yang, X.; Feng, W.; Zhu, Z.; Wang, J.; Wu, Y.; Ye, C.; et al. Computer-Aided Directed Evolution Generates Novel AAV Variants with High Transduction Efficiency. Viruses 2023, 15, 848. [Google Scholar] [CrossRef] [PubMed]
- Morales-Hernández, S.; Ugidos-Damboriena, N.; López-Sagaseta, J. Self-Assembling Protein Nanoparticles in the Design of Vaccines: 2022 Update. Vaccines 2022, 10, 1447. [Google Scholar] [CrossRef] [PubMed]
Loop | Nano- | Circo- | Gemini- | Anello- | Parvo- | Micro- | |
---|---|---|---|---|---|---|---|
number of amino acids location | FBNSV | PCV2 | MSV | ANV-Ly1 | CPV | φX174 | |
preB | 30 * | 43 * | 40 * | 58 * | 57 * | 9 * | |
BC | 4 5f | 9 5f | 12 5f | 26 5f | 37 3/5f | 5 5f | |
CD | 12 3f | 22 2f | 17 3f | 24 2f | 21 * | 2 * | |
DE | 4 5f | 9 5f | 9 5f | 5 5f | 26 5f | 10 5f | |
EF | 26 2f | 24 2f | 36 2f | 26 2/5f | 73 2/3f | 163 2/3f | |
FG | 8 5f | 4 * | 22 5f | 10 5f | 5 * | 20 5f | |
GH | 9 2f | 36 3f | 24 2f | 20 3f | 229 2/3f | 3 * | |
HI | 3 5f | 5 5f | 6 5f | 300 5f | 21 5f | 110 5f | |
postI | 2 3f | 8 2f | 4 * | 128 2/3f | 45 2f | 12 * | |
total aa | 172 | 230 | 244 | 672 | 584 | 426 | |
% loop | 38% | 47% | 52% | 61% | 71% | 73% |
Bacilladna- | Finnlake- | Ficleduo- | ||||
---|---|---|---|---|---|---|
Loop | CtenDNAV-II | FLiP | φCjT23 | |||
first | second | first | second | |||
number of amino acids | preB | 88 | 0 | 17 # | 0 | 7 # |
BC | 9 | 3 | 6 | 6 | 5 | |
CD | 48 | 7 | 6 | 4 | 4 | |
DE | 8 | 32 | 13 | 10 | 5 | |
EF | 54 | 2 | 4 | 5 | 2 | |
FG | 7 | 30 | 25 | 23 | 30 | |
GH | 53 | 18 | 7 | 12 | 4 | |
HI | 12 | 12 | 12 | 7 | 5 | |
postI | 42 | 17 # | 31 | 7 # | 1 | |
total aa | 390 | 311 | 239 | |||
% loop | 49% | 62% | 54% |
number of aa | virus family | Nenya- | Narya- | Kirko- | Draupnir- | Metaxy- | Amesu- | Mahapuna- | Vilya- | Genomo- | Ourobo- | |
virus | VVE CG171 | EACDV2 | DoKiV H46 | MCV B19 | CFDV | TFDaV | CapV36 | GACDV1 | HaGvV1 | DelV2 | ||
Accession # | YP_010784521 | YP_010800608 | UJP31654 | YP_009121933 | AVX29445 | AKR53201 | QDJ95278 | YP_010800614 | YP_009181995 | QSX73071 | ||
preB | 20 | 23 | 18 | 31 | 32 | 37 | 73 | 59 | 54 | 59 | ||
loop | BC | 11 | 5 | 15 | 10 | 7 | 4 | 10 | 14 | 4 | 4 | |
CD | 13 | 12 | 8 | 18 | 13 | 16 | 27 | 15 | 20 | 22 | ||
DE | 6 | 11 | 18 | 17 | 10 | 10 | 12 | 8 | 3 | 8 | ||
EF | 18 | 18 | 30 | 23 | 39 | 32 | 28 | 37 | 62 | 56 | ||
FG | 6 | 14 | 6 | 5 | 7 | 16 | 3 | 7 | 7 | 16 | ||
GH | 9 | 6 | 9 | 26 | 14 | 12 | 15 | 51 | 24 | 15 | ||
HI | 9 | 7 | 11 | 8 | 9 | 11 | 12 | 11 | 10 | 13 | ||
postI | 2 | 2 | 1 | 10 | 1 | 1 | 4 | 3 | 1 | 4 | ||
total aa | 171 | 180 | 188 | 206 | 217 | 237 | 268 | 268 | 284 | 284 | ||
%loop | 42% | 41% | 52% | 52% | 46% | 43% | 40% | 53% | 46% | 47% | ||
number of aa | virus family | Anicre- | Adama- | Endolina- | Geplana- | Peco- | Smaco- | Kanorau- | Redondo- | Gandr- | Bidna- | |
virus | DflaCV10 | DcDSV | ChiDV2 | RPfacDV10 | HPeCV | ChiSCV2 | BfV15 | HlaVV | M-ctdb796 | BmBDV2 | ||
Accession # | AHH31483 | AIY31262 | YP_009551343 | UBJ26226 | YP_009551325 | YP_009508861 | QCX35050 | QCD25321 | AXH76206 | BAA85361 | ||
preB | 80 | 31 | 43 | 110 | 51 | 22 | 122 | 65 | 90 | 74 | ||
loop | BC | 4 | 17 | 6 | 5 | 35 | 6 | 8 | 76 | 5 | 2 | |
CD | 20 | 16 | 31 | 48 | 68 | 18 | 52 | 20 | 65 | 27 | ||
DE | 15 | 6 | 13 | 5 | 11 | 28 | 5 | 69 | 9 | 20 | ||
EF | 23 | 63 | 21 | 48 | 58 | 66 | 57 | 63 | 52 | 146 | ||
FG | 5 | 37 | 6 | 2 | 6 | 4 | 2 | 4 | 6 | 5 | ||
GH | 37 | 3 | 43 | 17 | 61 | 173 | 18 | 84 | 96 | 87 | ||
HI | 6 | 24 | 8 | 17 | 23 | 8 | 31 | 54 | 14 | 12 | ||
postI | 29 | 1 | 54 | 38 | 14 | 29 | 56 | 30 | 57 | 37 | ||
total aa | 290 | 297 | 304 | 386 | 388 | 420 | 443 | 530 | 463 | 386 | ||
%loop | 38% | 56% | 42% | 37% | 68% | 72% | 39% | 70% | 53% | 77% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mietzsch, M.; Bennett, A.; McKenna, R. Structural Capsidomics of Single-Stranded DNA Viruses. Viruses 2025, 17, 333. https://doi.org/10.3390/v17030333
Mietzsch M, Bennett A, McKenna R. Structural Capsidomics of Single-Stranded DNA Viruses. Viruses. 2025; 17(3):333. https://doi.org/10.3390/v17030333
Chicago/Turabian StyleMietzsch, Mario, Antonette Bennett, and Robert McKenna. 2025. "Structural Capsidomics of Single-Stranded DNA Viruses" Viruses 17, no. 3: 333. https://doi.org/10.3390/v17030333
APA StyleMietzsch, M., Bennett, A., & McKenna, R. (2025). Structural Capsidomics of Single-Stranded DNA Viruses. Viruses, 17(3), 333. https://doi.org/10.3390/v17030333