The Application of DNA Viruses to Biotechnology
Abstract
:1. Introduction
2. Main
2.1. Vaccination
2.2. Gene Therapy
2.3. Oncolytic Virotherapy
2.4. Biomanufacturing
2.5. Mitigating Antibiotic Resistance
2.6. Editing Microbiomes
2.7. Agriculture
3. Discussion
3.1. Biosafety
3.2. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAV | Adeno-Associated Virus |
AdV | Adenovirus |
AI | Artificial Intelligence |
BeYDV | Bean Yellow Dwarf Virus |
BIOME | Berkeley Initiative for Optimized Microbiome Editing |
CaLCuV | Cabbage Leaf Curl Virus |
COVID-19 | Coronavirus Disease 2019 |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
DNA | Deoxyribonucleic Acid |
EC | European Commission |
EMA | European Medicines Agency |
EPA | Environmental Protection Agency |
EU | European Union |
FDA | Food and Drug Administration |
HLA | Human Leukocyte Antigen |
HSV | Herpes Simplex Virus |
MARA | Ministry of Agricultural and Rural Affairs |
MHC | Major Histocompatibility Complex |
MHPRA | Medicines and Healthcare Products Regulatory Agency |
MVA | Modified Vaccinia Ankara |
MYXV | Myxoma Virus |
NGS | Next-Generation Sequencing |
NMPA | National Medical Products Administration |
PEI | Paul Ehrlic Institut |
RNA | Ribonucleic Acid |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
SFDA | State Food and Drug Administration |
TALEN | transcription activator-like effector nucleases |
TXTL | cell-free transcription-translation |
UK | United Kingdom |
US | United States |
VACV | Vaccinia Virus |
VZV | Varicella Zoster Virus |
ZFN | Zinc finger nuclease |
References
- Wang, J.Y.; Doudna, J.A. CRISPR technology: A decade of genome editing is only the beginning. Science 2023, 379, eadd8643. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018, 8, 1069–1086. [Google Scholar] [CrossRef] [PubMed]
- Deckers, J.; Anbergen, T.; Hokke, A.M.; de Dreu, A.; Schrijver, D.P.; de Bruin, K.; Toner, Y.C.; Beldman, T.J.; Spangler, J.B.; de Greef, T.F.A.; et al. Engineering cytokine therapeutics. Nat. Rev. Bioeng. 2023, 1, 286–303. [Google Scholar] [CrossRef]
- Baxby, D. The surface antigens of orthopoxviruses detected by cross-neutralization tests on cross-absorbed antisera. J. Gen. Virol. 1982, 58, 251–262. [Google Scholar] [CrossRef]
- Gilchuk, I.; Gilchuk, P.; Sapparapu, G.; Lampley, R.; Singh, V.; Kose, N.; Blum, D.L.; Hughes, L.J.; Satheshkumar, P.S.; Townsend, M.B.; et al. Cross-Neutralizing and Protective Human Antibody Specificities to Poxvirus Infections. Cell 2016, 167, 684–694.e9. [Google Scholar] [CrossRef]
- Jacob-Dolan, C.; Ty, D.; Hope, D.; McMahan, K.; Liu, J.; Powers, O.C.; Cotter, C.A.; Sciacca, M.; Wu, C.; Borducchi, E.; et al. Comparison of the immunogenicity and protective efficacy of ACAM2000, MVA, and vectored subunit vaccines for Mpox in rhesus macaques. Sci. Transl. Med. 2024, 16, eadl4317. [Google Scholar] [CrossRef]
- Jacobs, B.L.; Langland, J.O.; Kibler, K.V.; Denzler, K.L.; White, S.D.; Holechek, S.A.; Wong, S.; Huynh, T.; Baskin, C.R. Vaccinia Virus Vaccines: Past, Present and Future. Antivir. Res. 2009, 84, 1–13. [Google Scholar] [CrossRef]
- History of Smallpox|Smallpox|CDC. 2021. Available online: https://www.cdc.gov/smallpox/about/history.html (accessed on 1 March 2025).
- Research, C. for B. E. and. ACAM2000. FDA 2022. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/acam2000 (accessed on 1 March 2025).
- Greenberg, R.N.; Kennedy, J.S. ACAM2000: A newly licensed cell culture-based live vaccinia smallpox vaccine. Expert Opin. Investig. Drugs 2008, 17, 555–564. [Google Scholar] [CrossRef]
- Research, C. for B. E. and. JYNNEOS. FDA 2023. Available online: https://www.fda.gov/vaccines-blood-biologics/jynneos (accessed on 1 March 2025).
- Priyamvada, L.; Carson, W.C.; Ortega, E.; Navarra, T.; Tran, S.; Smith, T.G.; Pukuta, E.; Muyamuna, E.; Kabamba, J.; Nguete, B.U.; et al. Serological responses to the MVA-based JYNNEOS monkeypox vaccine in a cohort of participants from the Democratic Republic of Congo. Vaccine 2022, 40, 7321–7327. [Google Scholar] [CrossRef]
- Ghosh, N.; Chacko, L.; Vallamkondu, J.; Banerjee, T.; Sarkar, C.; Singh, B.; Kalra, R.S.; Bhatti, J.S.; Kandimalla, R.; Dewanjee, S. Clinical Strategies and Therapeutics for Human Monkeypox Virus: A Revised Perspective on Recent Outbreaks. Viruses 2023, 15, 1533. [Google Scholar] [CrossRef]
- Howley, P.M.; Knipe, D.M.; Cohen, J.L.; Damania, B.A. Fields Virology: DNA Viruses; Wolters Kluwer: Philadelphia, PA, USA, 2021. [Google Scholar]
- White, C.J.; Kuter, B.J.; Hildebrand, C.S.; Isganitis, K.L.; Matthews, H.; Miller, W.J.; Provost, P.J.; Ellis, R.W.; Gerety, R.J.; Calandra, G.B. Varicella vaccine (VARIVAX) in healthy children and adolescents: Results from clinical trials, 1987 to 1989. Pediatrics 1991, 87, 604–610. [Google Scholar] [PubMed]
- Vázquez, M.; LaRussa, P.S.; Gershon, A.A.; Steinberg, S.P.; Freudigman, K.; Shapiro, E.D. The Effectiveness of the Varicella Vaccine in Clinical Practice. N. Engl. J. Med. 2001, 344, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Kimberlin, D.W.; Whitley, R.J. Varicella–Zoster Vaccine for the Prevention of Herpes Zoster. N. Engl. J. Med. 2007, 356, 1338–1343. [Google Scholar]
- Giaquinto, C.; Gabutti, G.; Baldo, V.; Villa, M.; Tramontan, L.; Raccanello, N.; Russo, F.; Poma, C.; Scamarcia, A.; Cantarutti, L.; et al. Impact of a vaccination programme in children vaccinated with ProQuad, and ProQuad-specific effectiveness against varicella in the Veneto region of Italy. BMC Infect Dis. 2018, 18, 103. [Google Scholar] [CrossRef]
- Oxman, M.; Levin, M.; Johnson, G.; Schmader, K.; Straus, S.; Gelb, L.; Arbeit, R.; Simberkoff, M.; Gershon, A.; Davis, L.; et al. A Vaccine to Prevent Herpes Zoster and Postherpetic Neuralgia in Older Adults. N. Engl. J. Med. 2005, 352, 2271–2284. [Google Scholar] [CrossRef]
- Tseng, H.F. Herpes Zoster Vaccine in Older Adults and the Risk of Subsequent Herpes Zoster Disease. JAMA 2011, 305, 160. [Google Scholar]
- Morrison, V.A.; Johnson, G.R.; Schmader, K.E.; Levin, M.J.; Zhang, J.H.; Looney, D.J.; Betts, R.; Gelb, L.; Guatelli, J.C.; Harbecke, R.; et al. Long-term Persistence of Zoster Vaccine Efficacy. Clin. Infect. Dis. 2015, 60, 900–909. [Google Scholar] [CrossRef]
- Impact of, U.S. Chickenpox Vaccination Program. 2024. Available online: https://www.cdc.gov/chickenpox/vaccination-impact/index.html#:~:text=The%20U.S.%20chickenpox%20vaccination%20program,%2423.4%20billion%20in%20healthcare%20costs (accessed on 1 March 2025).
- Kuschner, R.A.; Russell, K.L.; Abuja, M.; Bauer, K.M.; Faix, D.J.; Hait, H.; Henrick, J.; Jacobs, M.; Liss, A.; Lynch, J.A.; et al. A phase 3, randomized, double-blind, placebo-controlled study of the safety and efficacy of the live, oral adenovirus type 4 and type 7 vaccine, in U.S. military recruits. Vaccine 2013, 31, 2963–2971. [Google Scholar] [CrossRef]
- Maki, J.; Guiot, A.-L.; Aubert, M.; Brochier, B.; Cliquet, F.; Hanlon, C.A.; King, R.; Oertli, E.H.; Rupprecht, C.E.; Schumacher, C.; et al. Oral vaccination of wildlife using a vaccinia–rabies-glycoprotein recombinant virus vaccine (RABORAL V-RG®): A global review. Vet. Res. 2017, 48, 57. [Google Scholar]
- Falsey, A.R.; Sobieszczyk, M.E.; Hirsch, I.; Sproule, S.; Robb, M.L.; Corey, L.; Neuzil, K.M.; Hahn, W.; Hunt, J.; Mulligan, M.J.; et al. Phase 3 Safety and Efficacy of AZD1222 (ChAdOx1 nCoV-19) Covid-19 Vaccine. N. Engl. J. Med. 2021, 385, 2348–2360. [Google Scholar] [CrossRef]
- Benkeser, D.; Fong, Y.; Janes, H.E.; Kelly, E.J.; Hirsch, I.; Sproule, S.; Stanley, A.M.; Maaske, J.; Villafana, T.; Houchens, C.R.; et al. Immune correlates analysis of a phase 3 trial of the AZD1222 (ChAdOx1 nCoV-19) vaccine. npj Vaccines 2023, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Hardt, K.; Vandebosch, A.; Sadoff, J.; Le Gars, M.; Truyers, C.; Lowson, D.; Van Dromme, I.; Vingerhoets, J.; Kamphuis, T.; Scheper, G.; et al. Efficacy, safety, and immunogenicity of a booster regimen of Ad26.COV2.S vaccine against COVID-19 (ENSEMBLE2): Results of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Infect. Dis. 2022, 22, 1703–1715. [Google Scholar] [CrossRef] [PubMed]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Van Dromme, I.; Spiessens, B.; et al. Final Analysis of Efficacy and Safety of Single-Dose Ad26.COV2.S. N. Engl. J. Med. 2022, 386, 847–860. [Google Scholar] [CrossRef]
- Men, R.; Wyatt, L.; Tokimatsu, I.; Arakaki, S.; Shameem, G.; Elkins, R.; Chanock, R.; Moss, B.; Lai, C.-J. Immunization of rhesus monkeys with a recombinant of modified vaccinia virus Ankara expressing a truncated envelope glycoprotein of dengue type 2 virus induced resistance to dengue type 2 virus challenge. Vaccine 2000, 18, 3113–3122. [Google Scholar] [CrossRef] [PubMed]
- Larocca, R.A.; Mendes, E.A.; Peterson, P.A.; Peterson, R.L.; Martinot, A.J.; Iampietro, M.J.; Kang, Z.H.; Aid, M.; Kirilova, M.; Jacob-Dolan, C.; et al. Adenovirus Vector-Based Vaccines Confer Maternal-Fetal Protection against Zika Virus Challenge in Pregnant IFN-αβR−/− Mice. Cell Host Microbe 2019, 26, 591–600.e4. [Google Scholar] [CrossRef]
- Julander, J.G.; Testori, M.; Cheminay, C.; Volkmann, A. Immunogenicity and Protection After Vaccination with a Modified Vaccinia Virus Ankara-Vectored Yellow Fever Vaccine in the Hamster Model. Front. Immunol. 2018, 9, 1756. [Google Scholar] [CrossRef]
- Kennedy, E.; Dowall, S.; Salguero, F.; Yeates, P.; Aram, M.; Hewson, R. A vaccine based on recombinant modified Vaccinia Ankara containing the nucleoprotein from Lassa virus protects against disease progression in a guinea pig model. Vaccine 2019, 37, 5404–5413. [Google Scholar] [CrossRef]
- López-Gil, E.; Lorenzo, G.; Hevia, E.; Borrego, B.; Eiden, M.; Groschup, M.; Gilbert, S.C.; Brun, A. A single immunization with MVA expressing GnGc glycoproteins promotes epitope-specific CD8+-T cell activation and protects immune-competent mice against a lethal RVFV infection. PLoS Negl. Trop. Dis. 2013, 7, e2309. [Google Scholar] [CrossRef]
- Sakurai, F.; Tachibana, M.; Mizuguchi, H. Adenovirus vector-based vaccine for infectious diseases. Drug Metab. Pharmacokinet. 2022, 42, 100432. [Google Scholar] [CrossRef]
- Kaynarcalidan, O.; Moreno Mascaraque, S.; Drexler, I. Vaccinia Virus: From Crude Smallpox Vaccines to Elaborate Viral Vector Vaccine Design. Biomedicines 2021, 9, 1780. [Google Scholar] [CrossRef]
- Milligan, I.D.; Gibani, M.M.; Sewell, R.; Clutterbuck, E.A.; Campbell, D.; Plested, E.; Nuthall, E.; Voysey, M.; Silva-Reyes, L.; McElrath, M.J.; et al. Safety and Immunogenicity of Novel Adenovirus Type 26- and Modified Vaccinia Ankara-Vectored Ebola Vaccines: A Randomized Clinical Trial. JAMA 2016, 315, 1610–1623. [Google Scholar] [CrossRef] [PubMed]
- Tiono, A.B.; Nébié, I.; Anagnostou, N.; Coulibaly, A.S.; Bowyer, G.; Lam, E.; Bougouma, E.C.; Ouedraogo, A.; Yaro, J.B.B.; Barry, A.; et al. First field efficacy trial of the ChAd63 MVA ME-TRAP vectored malaria vaccine candidate in 5–17 months old infants and children. PLoS ONE 2018, 13, e0208328. [Google Scholar] [CrossRef] [PubMed]
- Tapia, M.D.; O Sow, S.; Mbaye, K.D.; Thiongane, A.; Ndiaye, B.P.; Ndour, C.T.; Mboup, S.; Keshinro, B.; Kinge, T.N.; Vernet, G.; et al. Safety, reactogenicity, and immunogenicity of a chimpanzee adenovirus vectored Ebola vaccine in children in Africa: A randomised, observer-blind, placebo-controlled, phase 2 trial. Lancet Infect. Dis. 2020, 20, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Gebre, M.S.; Brito, L.A.; Tostanoski, L.H.; Edwards, D.K.; Carfi, A.; Barouch, D.H. Novel approaches for vaccine development. Cell 2021, 184, 1589–1603. [Google Scholar] [CrossRef]
- Yusuf, Y.; Yoshii, T.; Iyori, M.; Yoshida, K.; Mizukami, H.; Fukumoto, S.; Yamamoto, D.S.; Alam, A.; Bin Emran, T.; Amelia, F.; et al. Adeno-Associated Virus as an Effective Malaria Booster Vaccine Following Adenovirus Priming. Front. Immunol. 2019, 10, 730. [Google Scholar] [CrossRef]
- Lin, A.; Balazs, A.B. Adeno-associated virus gene delivery of broadly neutralizing antibodies as prevention and therapy against HIV-1. Retrovirology 2018, 15, 66. [Google Scholar] [CrossRef]
- Demminger, D.E.; Walz, L.; Dietert, K.; Hoffmann, H.; Planz, O.; Gruber, A.D.; von Messling, V.; Wolff, T. Adeno-associated virus-vectored influenza vaccine elicits neutralizing and Fcγ receptor-activating antibodies. EMBO Mol. Med. 2020, 12, e10938. [Google Scholar] [CrossRef]
- Shi, C.; Tian, L.; Zheng, W.; Zhu, Y.; Sun, P.; Liu, L.; Liu, W.; Song, Y.; Xia, X.; Xue, X.; et al. Recombinant adeno-associated virus serotype 9 AAV-RABVG expressing a Rabies Virus G protein confers long-lasting immune responses in mice and non-human primates. Emerg. Microbes Infect. 2022, 11, 1439–1451. [Google Scholar] [CrossRef]
- Qin, X.; Li, S.; Li, X.; Pei, D.; Liu, Y.; Ding, Y.; Liu, L.; Bi, H.; Shi, X.; Guo, Y.; et al. Development of an Adeno-Associated Virus-Vectored SARS-CoV-2 Vaccine and Its Immunogenicity in Mice. Front. Cell Infect. Microbiol. 2022, 12, 802147. [Google Scholar] [CrossRef]
- Erasmus, J.H.; Auguste, A.J.; Kaelber, J.T.; Luo, H.; Rossi, S.L.; Fenton, K.; Leal, G.; Kim, D.Y.; Chiu, W.; Wang, T.; et al. A chikungunya fever vaccine utilizing an insect-specific virus platform. Nat. Med. 2017, 23, 192–199. [Google Scholar] [CrossRef]
- Hobson-Peters, J.; Harrison, J.J.; Watterson, D.; Hazlewood, J.E.; Vet, L.J.; Newton, N.D.; Warrilow, D.; Colmant, A.M.G.; Taylor, C.; Huang, B.; et al. A recombinant platform for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Sci. Transl. Med. 2019, 11, eaax7888. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-Y.; Chung, Y.-C.; Hu, Y.-C. Update on baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev. Vaccines 2014, 13, 1501–1521. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, M.; Iyori, M.; Blagborough, A.M.; Fukumoto, S.; Funatsu, T.; Sinden, R.E.; Yoshida, S. Baculovirus-vectored multistage Plasmodium vivax vaccine induces both protective and transmission-blocking immunities against transgenic rodent malaria parasites. Infect. Immun. 2014, 82, 4348–4357. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Chang, J. Recombinant baculovirus-based vaccine expressing M2 protein induces protective CD8+ T-cell immunity against respiratory syncytial virus infection. J. Microbiol. 2017, 55, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Chu, K.-B.; Kang, H.-J.; Kim, M.-J.; Lee, S.-H.; Yoon, K.-W.; Jin, H.; Suh, J.W.; Moon, E.-K.; Quan, F.-S. Orally administered recombinant baculovirus vaccine elicits partial protection against avian influenza virus infection in mice. Microb. Pathog. 2020, 149, 104495. [Google Scholar] [CrossRef]
- Iyori, M.; Yamamoto, D.S.; Sakaguchi, M.; Mizutani, M.; Ogata, S.; Nishiura, H.; Tamura, T.; Matsuoka, H.; Yoshida, S. DAF-shielded baculovirus-vectored vaccine enhances protection against malaria sporozoite challenge in mice. Malar. J. 2017, 16, 390. [Google Scholar] [CrossRef]
- Venkatraman, N.; Ndiaye, B.P.; Bowyer, G.; Wade, D.; Sridhar, S.; Wright, D.; Powlson, J.; Ndiaye, I.; Dièye, S.; Thompson, C.; et al. Safety and Immunogenicity of a Heterologous Prime-Boost Ebola Virus Vaccine Regimen in Healthy Adults in the United Kingdom and Senegal. J. Infect. Dis. 2019, 219, 1187–1197. [Google Scholar] [CrossRef]
- Vuola, J.M.; Keating, S.; Webster, D.P.; Berthoud, T.; Dunachie, S.; Gilbert, S.C.; Hill, A.V.S. Differential Immunogenicity of Various Heterologous Prime-Boost Vaccine Regimens Using DNA and Viral Vectors in Healthy Volunteers1. J. Immunol. 2005, 174, 449–455. [Google Scholar] [CrossRef]
- Arunachalam, P.S.; Charles, T.P.; Joag, V.; Bollimpelli, V.S.; Scott, M.K.D.; Wimmers, F.; Burton, S.L.; Labranche, C.C.; Petitdemange, C.; Gangadhara, S.; et al. T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nat. Med. 2020, 26, 932–940. [Google Scholar] [CrossRef]
- Chaudhary, N.; Weissman, D.; Whitehead, K.A. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation. Nat. Rev. Drug Discov. 2021, 20, 817–838. [Google Scholar] [CrossRef]
- Hansen, L.J.J.; Daoussi, R.; Vervaet, C.; Remon, J.-P.; De Beer, T.R.M. Freeze-drying of live virus vaccines: A review. Vaccine 2015, 33, 5507–5519. [Google Scholar] [CrossRef] [PubMed]
- Vogel, M.; Bachmann, M.F. Immunogenicity and Immunodominance in Antibody Responses. In Vaccination Strategies Against Highly Variable Pathogens. Current Topics in Microbiology and Immunology; Hangartner, L., Burton, D., Eds.; Springer: Cham, Switzerland, 2019; Volume 428. [Google Scholar] [CrossRef]
- Akram, A.; Inman, R.D. Immunodominance: A pivotal principle in host response to viral infections. Clin. Immunol. 2012, 143, 99–115. [Google Scholar] [CrossRef] [PubMed]
- Webb, M.J.; Sangsuwannukul, T.; van Vloten, J.; Evgin, L.; Kendall, B.; Tonne, J.; Thompson, J.; Metko, M.; Moore, M.; Yerovi, M.P.C.; et al. Expression of tumor antigens within an oncolytic virus enhances the anti-tumor T cell response. Nat. Commun. 2024, 15, 5442. [Google Scholar] [CrossRef]
- US Food & Drug Administration (FDA). Approved Cellular and Gene Therapy Products. 2023. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products (accessed on 20 January 2025).
- Home—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ (accessed on 20 January 2025).
- Zhu, D.; Schieferecke, A.J.; Lopez, P.A.; Schaffer, D.V. Adeno-Associated Virus Vector for Central Nervous System Gene Therapy. Trends Mol. Med. 2021, 27, 524–537. [Google Scholar] [CrossRef]
- Patel, A.; Zhao, J.; Duan, D.; Lai, Y. Design of AAV Vectors for Delivery of Large or Multiple Transgenes. Methods Mol. Biol. 2019, 1950, 19–33. [Google Scholar]
- Chamberlain, K.; Riyad, J.M.; Weber, T. Expressing Transgenes That Exceed the Packaging Capacity of Adeno-Associated Virus Capsids. Hum. Gene Ther. Methods 2016, 27, 1–12. [Google Scholar] [CrossRef]
- Gurevich, I.; Agarwal, P.; Zhang, P.; Dolorito, J.A.; Oliver, S.; Liu, H.; Reitze, N.; Sarma, N.; Bagci, I.S.; Sridhar, K.; et al. In Vivo topical gene therapy for recessive dystrophic epidermolysis bullosa: A phase 1 and 2 trial. Nat. Med. 2022, 28, 780–788. [Google Scholar] [CrossRef]
- Package Insert—VYJUVEK. 2023. Available online: https://www.fda.gov/media/168350/download (accessed on 20 January 2025).
- Data visualization tools for exploring the global cancer burden in 2022. 2022. Available online: https://gco.iarc.fr/today/en (accessed on 20 January 2025).
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef]
- Shalhout, S.Z.; Miller, D.M.; Emerick, K.S.; Kaufman, H.L. Therapy with oncolytic viruses: Progress and challenges. Nat. Rev. Clin. Oncol. 2023, 20, 160–177. [Google Scholar] [CrossRef]
- Macedo, N.; Miller, D.M.; Haq, R.; Kaufman, H.L. Clinical landscape of oncolytic virus research in 2020. J. Immunother. Cancer 2020, 8, e001486. [Google Scholar] [CrossRef]
- Matsunaga, W.; Gotoh, A. Adenovirus as a Vector and Oncolytic Virus. Curr. Issues Mol. Biol. 2023, 45, 4826–4840. [Google Scholar] [CrossRef] [PubMed]
- Aldrak, N.; Alsaab, S.; Algethami, A.; Bhere, D.; Wakimoto, H.; Shah, K.; Alomary, M.N.; Zaidan, N. Oncolytic Herpes Simplex Virus-Based Therapies for Cancer. Cells 2021, 10, 1541. [Google Scholar] [CrossRef]
- Guo, Z.S.; Lu, B.; Giehl, E.; Feist, M.; Dai, E.; Liu, W.; Storkus, W.J.; He, Y.; Liu, Z.; Bartlett, D.L. Vaccinia virus-mediated cancer immunotherapy: Cancer vaccines and oncolytics. J. Immunother. Cancer 2019, 7, 6. [Google Scholar] [CrossRef]
- Dock, G. The Influence of Complicating Diseases Upon Leukaemia: Cases of Tuberculosis and Leukoemia. Miscellaneous Infections. Changes in the Red Blood Corpuscles. Qualitative Changes in the Blood, Especially in the Leukocytes. When Does the Change Occur? The Effects of Various Processes Other than Infection on Leukoemia. Am. J. Med. Sci. 1827–1924 1904, 127, 563. [Google Scholar]
- Li, R.; Shah, P.H.; Stewart, T.F.; Kil Nam, J.; Bivalacqua, T.J.; Lamm, D.L.; Uchio, E.M.; Geynisman, D.M.; Jacob, J.M.; Meeks, J.J.; et al. Oncolytic adenoviral therapy plus pembrolizumab in BCG-unresponsive non-muscle-invasive bladder cancer: The phase 2 CORE-001 trial. Nat. Med. 2024, 30, 2216–2223. [Google Scholar] [CrossRef]
- Ling, A.L.; Solomon, I.H.; Landivar, A.M.; Nakashima, H.; Woods, J.K.; Santos, A.; Masud, N.; Fell, G.; Mo, X.; Yilmaz, A.S.; et al. Clinical trial links oncolytic immunoactivation to survival in glioblastoma. Nature 2023, 623, 157–166. [Google Scholar] [CrossRef]
- Nichols, W.G. Neoadjuvant CAN-2409+Prodrug Plus Chemoradiation for Borderline Resectable or Locally Advanced Non-Metastatic Pancreatic Adenocarcinoma (PDAC); 2023; Volume 11, Supplement 1 Abstract 653 (Journal for Immuno Therapy of Cancer (JITC)). Available online: https://jitc.bmj.com/content/11/Suppl_1/A744 (accessed on 20 January 2025).
- Paul, A.; Jardin, B.A.; Kulamarva, A.; Malhotra, M.; Elias, C.B.; Prakash, S. Recombinant baculovirus as a highly potent vector for gene therapy of human colorectal carcinoma: Molecular cloning, expression, and in vitro characterization. Mol. Biotechnol. 2010, 45, 129–139. [Google Scholar] [CrossRef]
- Ang, W.X.; Zhao, Y.; Kwang, T.; Wu, C.; Chen, C.; Toh, H.C.; Mahendran, R.; Esuvaranathan, K.; Wang, S. Local Immune Stimulation by Intravesical Instillation of Baculovirus to Enable Bladder Cancer Therapy. Sci. Rep. 2016, 6, 27455. [Google Scholar] [CrossRef]
- Cao, B.; Xu, H.; Yang, M.; Mao, C. Virus-Based Cancer Therapeutics for Targeted Photodynamic Therapy. In Virus-Derived Nanoparticles for Advanced Technologies: Methods and Protocols; Wege, C., Lomonossoff, G.P., Eds.; Springer: New York, NY, USA, 2018; pp. 643–652. [Google Scholar] [CrossRef]
- Rahman, M.M.; McFadden, G. Oncolytic Virotherapy with Myxoma Virus. JCM 2020, 9, 171. [Google Scholar] [CrossRef]
- Irons, S.L.; Chambers, A.C.; Lissina, O.; King, L.A.; Possee, R.D. Protein Production Using the Baculovirus Expression System. Curr. Protoc. Protein Sci. 2018, 91, 5.5.1–5.5.22. [Google Scholar] [CrossRef]
- Chambers, A.C.; Aksular, M.; Graves, L.P.; Irons, S.L.; Possee, R.D.; King, L.A. Overview of the Baculovirus Expression System. Curr. Protoc. Protein Sci. 2018, 91, 5.4.1–5.4.6. [Google Scholar] [CrossRef] [PubMed]
- Felberbaum, R.S. The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol. J. 2015, 10, 702–714. [Google Scholar] [CrossRef] [PubMed]
- ExpiSf Baculovirus Expression System—US. Available online: https://www.thermofisher.com/us/en/home/life-science/protein-biology/protein-expression/insect-protein-expression/expisf-expression-system.html (accessed on 20 January 2025).
- BaculoDirectTM Baculovirus Expression System—US. Available online: https://www.thermofisher.com/us/en/home/life-science/protein-biology/protein-expression/insect-protein-expression/baculodirect-baculovirus-expression-system.html (accessed on 20 January 2025).
- Kotin, R.M.; Snyder, R.O. Manufacturing Clinical Grade Recombinant Adeno-Associated Virus Using Invertebrate Cell Lines. Hum. Gene Ther. 2017, 28, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Rangarajan, S.; Walsh, L.; Lester, W.; Perry, D.; Madan, B.; Laffan, M.; Yu, H.; Vettermann, C.; Pierce, G.F.; Wong, W.Y.; et al. AAV5–Factor VIII Gene Transfer in Severe Hemophilia A. N. Engl. J. Med. 2017, 377, 2519–2530. [Google Scholar] [CrossRef]
- Wang, F.; Sun, J.; Guo, W.; Wu, Y. Application of the Insect Cell-Baculovirus Expression Vector System in Adeno-Associated Viral Production. Appl. Sci. 2024, 14, 10948. [Google Scholar] [CrossRef]
- Mortola, E.; Roy, P. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett. 2004, 576, 174–178. [Google Scholar] [CrossRef]
- Sullivan, E.; Sung, P.-Y.; Wu, W.; Berry, N.; Kempster, S.; Ferguson, D.; Almond, N.; Jones, I.M.; Roy, P. SARS-CoV-2 Virus-like Particles Produced by a Single Recombinant Baculovirus Generate Anti-S Antibody and Protect against Variant Challenge. Viruses 2022, 14, 914. [Google Scholar] [CrossRef]
- Malla, A.; Rosales-Mendoza, S.; Phoolcharoen, W.; Vimolmangkang, S. Efficient Transient Expression of Recombinant Proteins Using DNA Viral Vectors in Freshwater Microalgal Species. Front. Plant Sci. 2021, 12, 650820. [Google Scholar] [CrossRef]
- Lee, J.M.; Hammarén, H.M.; Savitski, M.M.; Baek, S.H. Control of protein stability by post-translational modifications. Nat. Commun. 2023, 14, 201. [Google Scholar] [CrossRef]
- Tokmakov, A.A.; Kurotani, A.; Takagi, T.; Toyama, M.; Shirouzu, M.; Fukami, Y.; Yokoyama, S. Multiple Post-translational Modifications Affect Heterologous Protein Synthesis. J. Biol. Chem. 2012, 287, 27106–27116. [Google Scholar] [CrossRef]
- Giles, A.; Lock, M.; Chen, S.-J.; Turner, K.B.; Wesolowski, G.; Prongay, A.; Petkov, B.N.; Olagbegi, K.; Yan, H.; Wilson, J.M. Significant Differences in Capsid Properties and Potency Between Adeno-Associated Virus Vectors Produced in Sf9 and HEK293 Cells. Hum. Gene Ther. 2023, 34, 1003–1021. [Google Scholar] [CrossRef] [PubMed]
- Rumachik, N.G.; Malaker, S.A.; Poweleit, N.; Maynard, L.H.; Adams, C.M.; Leib, R.D.; Cirolia, G.; Thomas, D.; Stamnes, S.; Holt, K.; et al. Methods Matter: Standard Production Platforms for Recombinant AAV Produce Chemically and Functionally Distinct Vectors. Mol. Ther. Methods Clin. Dev. 2020, 18, 98–118. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.T.; Lecomte, E.; Saleun, S.; Namkung, S.; Robin, C.; Weber, K.; Devine, E.; Blouin, V.; Adjali, O.; Ayuso, E.; et al. Human and Insect Cell-Produced Recombinant Adeno-Associated Viruses Show Differences in Genome Heterogeneity. Hum. Gene Ther. 2022, 33, 371–388. [Google Scholar] [CrossRef]
- Conrad, T.; Plumbom, I.; Alcobendas, M.; Vidal, R.; Sauer, S. Maximizing transcription of nucleic acids with efficient T7 promoters. Commun. Biol. 2020, 3, 1–8. [Google Scholar] [CrossRef]
- Tabor, S. Expression using the T7 RNA polymerase/promoter system. Curr. Protoc. Mol. Biol. 2001, 16, Unit16.2. [Google Scholar] [CrossRef]
- Stinski, M.F.; Roehr, T.J. Activation of the major immediate early gene of human cytomegalovirus by cis-acting elements in the promoter-regulatory sequence and by virus-specific trans-acting components. J. Virol. 1985, 55, 431–441. [Google Scholar] [CrossRef]
- Benoist, C.; Chambon, P. In vivo sequence requirements of the SV40 early promoter region. Nature 1981, 290, 304–310. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (U.S.). Antibiotic Resistance Threats in the United States, 2019. Available online: https://stacks.cdc.gov/view/cdc/82532 (accessed on 20 January 2025).
- Salmond GP, C.; Fineran, P.C. A century of the phage: Past, present and future. Nat. Rev. Microbiol. 2015, 13, 777–786. [Google Scholar] [CrossRef]
- Pennazio, S. The origin of phage virology. Riv. Biol. 2006, 99, 103–129. [Google Scholar]
- Lobanovska, M.; Pilla, G. Penicillin’s Discovery and Antibiotic Resistance: Lessons for the Future? Yale J. Biol. Med. 2017, 90, 135–145. [Google Scholar]
- Hatfull, G.F.; Dedrick, R.M.; Schooley, R.T. Phage Therapy for Antibiotic-Resistant Bacterial Infections. Annu. Rev. Med. 2022, 73, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Kortright, K.E.; Chan, B.K.; Koff, J.L.; Turner, P.E. Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe 2019, 25, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Lenneman, B.R.; Fernbach, J.; Loessner, M.J.; Lu, T.K.; Kilcher, S. Enhancing phage therapy through synthetic biology and genome engineering. Curr. Opin. Biotechnol. 2021, 68, 151–159. [Google Scholar] [CrossRef]
- Strathdee, S.A.; Hatfull, G.F.; Mutalik, V.K.; Schooley, R.T. Phage therapy: From biological mechanisms to future directions. Cell 2023, 186, 17–31. [Google Scholar] [CrossRef]
- Schooley, R.T.; Biswas, B.; Gill, J.J.; Hernandez-Morales, A.; Lancaster, J.; Lessor, L.; Barr, J.J.; Reed, S.L.; Rohwer, F.; Benler, S.; et al. Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection. Antimicrob. Agents Chemother. 2017, 61, e00954-17. [Google Scholar] [CrossRef]
- Fabijan, A.P.; Lin, R.C.; Ho, J.; Maddocks, S.; Zakour, N.L.b.; Iredell, J.R. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat. Microbiol. 2020, 5, 465–472. [Google Scholar] [CrossRef]
- Chan, B.K.; Turner, P.E.; Kim, S.; Mojibian, H.R.; Elefteriades, J.A.; Narayan, D. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol. Med. Public Health 2018, 2018, 60–66. [Google Scholar] [CrossRef]
- Phage Therapy of Mycobacterium Infections: Compassionate Use of Phages in 20 Patients with Drug-Resistant Mycobacterial Disease—UQ eSpace. Available online: https://espace.library.uq.edu.au/view/UQ:acdeb1c (accessed on 20 January 2025).
- Nath, A.; Bhattacharjee, R.; Nandi, A.; Sinha, A.; Kar, S.; Manoharan, N.; Mitra, S.; Mojumdar, A.; Panda, P.K.; Patro, S.; et al. Phage delivered CRISPR-Cas system to combat multidrug-resistant pathogens in gut microbiome. Biomed. Pharmacother. 2022, 151, 113122. [Google Scholar] [CrossRef]
- Center at Yale for Phage Therapy. Available online: http://www.yalephagecenter.com/ (accessed on 20 January 2025).
- Center for Innovative Phage Applications and Therapeutics. UC San Diego School of Medicine. Available online: https://medschool.ucsd.edu:443/som/medicine/divisions/idgph/research/center-innovative-phage-applications-and-therapeutics/Pages/default.aspx (accessed on 20 January 2025).
- Center for Phage Technology—Phages for Health, Industry, and Agriculture. Available online: https://cpt.tamu.edu/ (accessed on 20 January 2025).
- Phage Therapy Unit. Hirszfeld Institute of Immunology and Experimental Therapy. Available online: https://hirszfeld.pl/en/structure/iitd-pan-medical-center/phage-therapy-unit/ (accessed on 20 January 2025).
- NIH Awards Grants to Support Bacteriophage Therapy Research. National Institutes of Health (NIH). 2021. Available online: https://www.nih.gov/news-events/news-releases/nih-awards-grants-support-bacteriophage-therapy-research (accessed on 20 January 2025).
- Fishman, C.B.; Crawford, K.D.; Bhattarai-Kline, S.; Poola, D.; Zhang, K.; González-Delgado, A.; Rojas-Montero, M.; Shipman, S.L. Continuous multiplexed phage genome editing using recombitrons. Nat. Biotechnol. 2024, 122, 1–12. [Google Scholar] [CrossRef]
- Doman, J.L.; Pandey, S.; Neugebauer, M.E.; An, M.; Davis, J.R.; Randolph, P.B.; McElroy, A.; Gao, X.D.; Raguram, A.; Richter, M.F.; et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell 2023, 186, 3983–4002.e26. [Google Scholar] [CrossRef]
- Elinav, E.; Garrett, W.S.; Trinchieri, G.; Wargo, J. The cancer microbiome. Nat. Rev. Cancer 2019, 19, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Sepich-Poore, G.D.; Zitvogel, L.; Straussman, R.; Hasty, J.; Wargo, J.A.; Knight, R. The microbiome and human cancer. Science 2021, 371, eabc4552. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, V.; Helmink, B.A.; Spencer, C.N.; Reuben, A.; Wargo, J.A. The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy. Cancer Cell 2018, 33, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Thaiss, C.A.; Zmora, N.; Levy, M.; Elinav, E. The microbiome and innate immunity. Nature 2016, 535, 65–74. [Google Scholar] [CrossRef]
- De Luca, F.; Shoenfeld, Y. The microbiome in autoimmune diseases. Clin. Exp. Immunol. 2019, 195, 74–85. [Google Scholar] [CrossRef]
- Horai, R.; Caspi, R.R. Microbiome and Autoimmune Uveitis. Front. Immunol. 2019, 10, 232. [Google Scholar] [CrossRef]
- Shaheen, W.A.; Quraishi, M.N.; Iqbal, T.H. Gut microbiome and autoimmune disorders. Clin. Exp. Immunol. 2022, 209, 161–174. [Google Scholar] [CrossRef]
- Zimmermann, P.; Curtis, N. Factors That Influence the Immune Response to Vaccination. Clin. Microbiol. Rev. 2019, 32, e00084-18. [Google Scholar] [CrossRef]
- Lambring, C.B.; Siraj, S.; Patel, K.; Sankpal, U.T.; Mathew, S.; Basha, R. Impact of the Microbiome on the Immune System. Crit. Rev. Immunol. 2019, 39, 313–328. [Google Scholar] [CrossRef]
- Shi, N.; Li, N.; Duan, X.; Niu, H. Interaction between the gut microbiome and mucosal immune system. Mil. Med. Res. 2017, 4, 14. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Maruvada, P.; Leone, V.; Kaplan, L.M.; Chang, E.B. The Human Microbiome and Obesity: Moving beyond Associations. Cell Host Microbe 2017, 22, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, A.; Lumngwena, E.N.; Ntusi NA, B. The oral microbiome in the pathophysiology of cardiovascular disease. Nat. Rev. Cardiol. 2023, 20, 386–403. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Islam, F.; -Or-Rashid, H.; Al Mamun, A.; Rahaman, S.; Islam, M.; Meem, A.F.K.; Sutradhar, P.R.; Mitra, S.; Mimi, A.A.; et al. The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Front. Cell Infect. Microbiol. 2022, 12, 903570. [Google Scholar] [CrossRef]
- Dahlin, M.; Prast-Nielsen, S. The gut microbiome and epilepsy. EBioMedicine 2019, 44, 741–746. [Google Scholar] [CrossRef]
- Jiang, C.; Li, G.; Huang, P.; Liu, Z.; Zhao, B. The Gut Microbiota and Alzheimer’s Disease. J. Alzheimers. Dis. 2017, 58, 1–15. [Google Scholar] [CrossRef]
- Rutsch, A.; Kantsjö, J.B.; Ronchi, F. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front. Immunol. 2020, 11, 604179. [Google Scholar] [CrossRef]
- Margolis, K.G.; Cryan, J.F.; Mayer, E.A. The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology 2021, 160, 1486–1501. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Sandhu, K.; Peterson, V.; Dinan, T.G. The gut microbiome in neurological disorders. Lancet Neurol. 2020, 19, 179–194. [Google Scholar] [CrossRef]
- Murdock, A. IGI’s ‘Audacious’ New Frontier for CRISPR: Editing Microbiomes for Climate and Health; University of California: Berkeley, CA, USA, 2023. [Google Scholar]
- Rubin, B.E.; Diamond, S.; Cress, B.F.; Crits-Christoph, A.; Lou, Y.C.; Borges, A.L.; Shivram, H.; He, C.; Xu, M.; Zhou, Z.; et al. Species- and site-specific genome editing in complex bacterial communities. Nat. Microbiol. 2022, 7, 34–47. [Google Scholar] [CrossRef]
- Pukall, R.; Tschäpe, H.; Smalla, K. Monitoring the spread of broad host and narrow host range plasmids in soil microcosms. FEMS Microbiol. Ecol. 1996, 20, 53–66. [Google Scholar] [CrossRef]
- Vo, P.L.H.; Ronda, C.; Klompe, S.E.; Chen, E.E.; Acree, C.; Wang, H.H.; Sternberg, S.H. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. Nat. Biotechnol. 2021, 39, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Farzadfard, F.; Gharaei, N.; Citorik, R.J.; Lu, T.K. Efficient retroelement-mediated DNA writing in bacteria. Cell Syst. 2021, 12, 860–872.e5. [Google Scholar] [CrossRef] [PubMed]
- Ronda, C.; Chen, S.P.; Cabral, V.; Yaung, S.J.; Wang, H.H. Metagenomic engineering of the mammalian gut microbiome in situ. Nat. Methods 2019, 16, 167–170. [Google Scholar] [CrossRef]
- Hsu, B.B.; Plant, I.N.; Lyon, L.; Anastassacos, F.M.; Way, J.C.; Silver, P.A. In Situ reprogramming of gut bacteria by oral delivery. Nat. Commun. 2020, 11, 5030. [Google Scholar] [CrossRef]
- Hsu, B.B.; Way, J.C.; Silver, P.A. Stable Neutralization of a Virulence Factor in Bacteria Using Temperate Phage in the Mammalian Gut. mSystems 2020, 5, e00013-20. [Google Scholar] [CrossRef]
- Lam, K.N.; Spanogiannopoulos, P.; Soto-Perez, P.; Alexander, M.; Nalley, M.J.; Bisanz, J.E.; Nayak, R.R.; Weakley, A.M.; Yu, F.B.; Turnbaugh, P.J. Phage-delivered CRISPR-Cas9 for strain-specific depletion and genomic deletions in the gut microbiome. Cell Rep. 2021, 37, 109930. [Google Scholar] [CrossRef]
- Nethery, M.A.; Hidalgo-Cantabrana, C.; Roberts, A.; Barrangou, R. CRISPR-based engineering of phages for In Situ bacterial base editing. Proc. Natl. Acad. Sci. USA 2022, 119, e2206744119. [Google Scholar] [CrossRef]
- Duan, Y.; Llorente, C.; Lang, S.; Brandl, K.; Chu, H.; Jiang, L.; White, R.C.; Clarke, T.H.; Nguyen, K.; Torralba, M.; et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature 2019, 575, 505–511. [Google Scholar] [CrossRef]
- Brödel, A.K.; Charpenay, L.H.; Galtier, M.; Fuche, F.J.; Terrasse, R.; Poquet, C.; Havránek, J.; Pignotti, S.; Krawczyk, A.; Arraou, M.; et al. In situ targeted base editing of bacteria in the mouse gut. Nature 2024, 632, 877–884. [Google Scholar] [CrossRef]
- Emslander, Q.; Vogele, K.; Braun, P.; Stender, J.; Willy, C.; Joppich, M.; Hammerl, J.A.; Abele, M.; Meng, C.; Pichlmair, A.; et al. Cell-free production of personalized therapeutic phages targeting multidrug-resistant bacteria. Cell Chem. Biol. 2022, 29, 1434–1445.e7. [Google Scholar] [CrossRef]
- Fenner, F.J. The Florey Lecture, 1983—Biological control, as exemplified by smallpox eradication and myxomatosis. Proc. R. Soc. London. Ser. B Biol. Sci. 1997, 218, 259–285. [Google Scholar]
- Kerr, P.J.; Cattadori, I.; Liu, J.; Sim, D.G.; Dodds, J.W.; Brooks, J.W.; Kennett, M.J.; Holmes, E.C.; Read, A.F. Next step in the ongoing arms race between myxoma virus and wild rabbits in Australia is a novel disease phenotype. Proc. Natl. Acad. Sci. USA 2017, 114, 9397–9402. [Google Scholar] [CrossRef] [PubMed]
- Kerr, P.; McFadden, G. Immune responses to myxoma virus. Viral Immunol. 2002, 15, 229–246. [Google Scholar] [CrossRef]
- Nash, P.; Barrett, J.; Cao, J.; Hota-Mitchell, S.; Lalani, A.S.; Everett, H.; Xu, X.; Robichaud, J.; Hnatiuk, S.; Ainslie, C.; et al. Immunomodulation by viruses: The myxoma virus story. Immunol. Rev. 1999, 168, 103–120. [Google Scholar] [CrossRef]
- Fenner, F.; Fantini, B. Biological Control of Vertebrate Pests: The History of Myxomatosis, an Experiment in Evolution; CABI Publishing: Wallingford, UK, 1999. [Google Scholar]
- Podgwaite, J.D. Natural Disease within Dense Gypsy Moth Populations. In The Gypsy Moth: Research Towards Integrated Pest Management; Doane, C.C., McManus, M.L., Eds.; U.S. Department of Agriculture: Washington, DC, USA, 1981. [Google Scholar]
- Myers, J.H.; Cory, J.S. Ecology and evolution of pathogens in natural populations of Lepidoptera. Evol. Appl. 2015, 9, 231–247. [Google Scholar] [CrossRef]
- Bonsall, M.B. The impact of diseases and pathogens on insect population dynamics. Physiol. Entomol. 2004, 29, 223–236. [Google Scholar] [CrossRef]
- Entomopoxvirus—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/entomopoxvirus (accessed on 20 January 2025).
- Blissard, G.W.; Rohrmann, G.F. Baculovirus Diversity and Molecular Biology. Annu. Rev. Entomol. 1990, 35, 127–155. [Google Scholar] [CrossRef]
- Copping, L.G.; Menn, J.J. Biopesticides: A review of their action, applications and efficacy. Pest Manag. Sci. 2000, 56, 651–676. [Google Scholar] [CrossRef]
- Szewczyk, B.; Hoyos-Carvajal, L.; Paluszek, M.; Skrzecz, I.; Lobo de Souza, M. Baculoviruses–Re-emerging biopesticides. Biotechnol. Adv. 2006, 24, 143–160. [Google Scholar] [CrossRef]
- Rohrmann, G.F. Baculoviruses as insecticides: Four examples. In Baculovirus Molecular Biology [Internet], 4th ed.; National Center for Biotechnology Information (US): Bethesda, MD, US, 2019. [Google Scholar]
- Moscardi, F. Assessment of the application of baculoviruses for control of Lepidoptera. Annu. Rev. Entomol. 1999, 44, 257–289. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, B.; De Souza, M.L.; De Castro ME, B.; Lara, M.; Moscardi, F. Baculovirus Biopesticides. In Pesticides—Formulations, Effects, Fate; Stoytcheva, M., Ed.; InTech: London, UK, 2011. [Google Scholar] [CrossRef]
- Gu, J.; Liu, M.; Deng, Y.; Peng, H.; Chen, X. Development of an Efficient Recombinant Mosquito Densovirus-Mediated RNA Interference System and Its Preliminary Application in Mosquito Control. PLoS ONE 2011, 6, e21329. [Google Scholar] [CrossRef] [PubMed]
- Perrin, A.; Gosselin-Grenet, A.-S.; Rossignol, M.; Ginibre, C.; Scheid, B.; Lagneau, C.; Chandre, F.; Baldet, T.; Ogliastro, M.; Bouyer, J. Variation in the susceptibility of urban Aedes mosquitoes infected with a densovirus. Sci. Rep. 2020, 10, 18654. [Google Scholar] [CrossRef]
- Batool, K.; Alam, I.; Liu, P.; Shu, Z.; Zhao, S.; Yang, W.; Jie, X.; Gu, J.; Chen, X.G. Recombinant Mosquito Densovirus with Bti Toxins Significantly Improves Pathogenicity against Aedes albopictus. Toxins 2022, 14, 147. [Google Scholar] [CrossRef]
- Li, J.; Dong, Y.; Sun, Y.; Lai, Z.; Zhao, Y.; Liu, P.; Gao, Y.; Chen, X.; Gu, J. A Novel Densovirus Isolated from the Asian Tiger Mosquito Displays Varied Pathogenicity Depending on Its Host Species. Front. Microbiol. 2019, 10, 1549. [Google Scholar] [CrossRef]
- Batool, K.; Xiao, J.; Xu, Y.; Yang, T.; Tao, P.; Zhao, S.; Chen, J.; Alam, I.; Xie, Y.; Gu, J.; et al. Densovirus Oil Suspension Significantly Improves the Efficacy and Duration of Larvicidal Activity against Aedes albopictus. Viruses 2022, 14, 475. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Biopesticide Active Ingredients. 2020. Available online: https://www.epa.gov/ingredients-used-pesticide-products/biopesticide-active-ingredients (accessed on 20 January 2025).
- Steigerwald, R.; Brake, D.A.; Barrera, J.; Schutta, C.J.; Kalla, M.; Wennier, S.T.; Volkmann, A.; Hurtle, W.; Clark, B.A.; Zurita, M.; et al. Evaluation of modified Vaccinia Ankara-based vaccines against foot-and-mouth disease serotype A24 in cattle. Vaccine 2020, 38, 769–778. [Google Scholar] [CrossRef]
- Farnós, O.; Martins Fernandes Paes, B.C.; Getachew, B.; Rourou, S.; Chaabene, A.; Gelaye, E.; Tefera, T.A.; Kamen, A.A. Intranasally Delivered Adenoviral Vector Protects Chickens against Newcastle Disease Virus: Vaccine Manufacturing and Stability Assessments for Liquid and Lyophilized Formulations. Vaccines 2023, 12, 41. [Google Scholar] [CrossRef]
- Darpel, K.E.; Corla, A.; Stedman, A.; Bellamy, F.; Flannery, J.; Rajko-Nenow, P.; Powers, C.; Wilson, S.; Charleston, B.; Baron, M.D.; et al. Long-term trial of protection provided by adenovirus-vectored vaccine expressing the PPRV H protein. npj Vaccines 2024, 9, 98. [Google Scholar] [CrossRef]
- Williams, L.B.A.; Fry, L.M.; Herndon, D.R.; Franceschi, V.; Schneider, D.A.; Donofrio, G.; Knowles, D.P. A recombinant bovine herpesvirus-4 vectored vaccine delivered via intranasal nebulization elicits viral neutralizing antibody titers in cattle. PLoS ONE 2019, 14, e0215605. [Google Scholar] [CrossRef]
- Rodríguez-Martín, D.; Rojas, J.M.; Macchi, F.; Franceschi, V.; Russo, L.; Sevilla, N.; Donofrío, G.; Martín, V. Immunization with Bovine Herpesvirus-4-Based Vector Delivering PPRV-H Protein Protects Sheep from PPRV Challenge. Front. Immunol. 2021, 12, 705539. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-F.; Shang, K.; Kim, S.-W.; Park, J.-Y.; Wei, B.; Jang, H.-K.; Kang, M.; Cha, S.-Y. Simultaneous construction strategy using two types of fluorescent markers for HVT vector vaccine against infectious bursal disease and H9N2 avian influenza virus by NHEJ-CRISPR/Cas9. Front. Vet. Sci. 2024, 11, 1385958. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, D.-H.; Karolak, M.C.; Shin, S.; Lee, K. Generation of genome-edited chicken and duck lines by adenovirus-mediated in vivo genome editing. Proc. Natl. Acad. Sci. USA 2022, 119, e2214344119. [Google Scholar] [CrossRef]
- Qin, C.; Jiang, S.; Xu, K.; Zhu, J.; Wang, L.; Yang, W.; Xiao, F.; Yang, K.; Huang, Q.; Meng, H. One-Step Genetic Modification by Embryonic Doral Aorta Injection of Adenoviral CRISPR/Cas9 Vector in Chicken. IJMS 2024, 25, 8692. [Google Scholar] [CrossRef] [PubMed]
- Baltes, N.J.; Gil-Humanes, J.; Cermak, T.; Atkins, P.A.; Voytas, D.F. DNA replicons for plant genome engineering. Plant Cell 2014, 26, 151–163. [Google Scholar] [CrossRef]
- Čermák, T.; Baltes, N.J.; Čegan, R.; Zhang, Y.; Voytas, D.F. High-frequency, precise modification of the tomato genome. Genome Biol. 2015, 16, 232. [Google Scholar] [CrossRef]
- Butler, N.M.; Baltes, N.J.; Voytas, D.F.; Douches, D.S. Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases. Front. Plant Sci. 2016, 7, 1045. [Google Scholar] [CrossRef]
- Dahan-Meir, T.; Filler-Hayut, S.; Melamed-Bessudo, C.; Bocobza, S.; Czosnek, H.; Aharoni, A.; Levy, A.A. Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system. Plant J. 2018, 95, 5–16. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef]
- Gil-Humanes, J.; Wang, Y.; Liang, Z.; Shan, Q.; Ozuna, C.V.; Sánchez-León, S.; Baltes, N.J.; Starker, C.; Barro, F.; Gao, C.; et al. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J. 2017, 89, 1251–1262. [Google Scholar] [CrossRef]
- A Geminivirus-Based Guide RNA Delivery System for CRISPR/Cas9 Mediated Plant Genome Editing—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/26450012/ (accessed on 1 March 2025).
- O’Callaghan, K.P.; Blatz, A.M.; Offit, P.A. Developing a SARS-CoV-2 Vaccine at Warp Speed. JAMA 2020, 324, 437. [Google Scholar] [CrossRef] [PubMed]
- Krammer, F. SARS-CoV-2 vaccines in development. Nature 2020, 586, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Goodrum, F.; Lowen, A.C.; Lakdawala, S.; Alwine, J.; Casadevall, A.; Imperiale, M.J.; Atwood, W.; Avgousti, D.; Baines, J.; Banfield, B.; et al. Virology under the Microscope—A Call for Rational Discourse. J. Virol. 2023, 97, e00089-23. [Google Scholar] [CrossRef] [PubMed]
- Lowen, A.C.; Casadevall, A.; Alwine, J.C.; Enquist, L.W.; Goodrum, F.D.; Imperiale, M.J.; Lakdawala, S.S. Oversight of Pathogen Research Must Be Carefully Calibrated and Clearly Defined. J. Virol. 2023, 97, e00176-23. [Google Scholar] [CrossRef]
Name | DNA Virus | Indication(s) | First Approval |
---|---|---|---|
VARIVAX (Varicella Virus Vaccine, Live) | 7 VZV | Chickenpox/shingles | 17 March 1995 (2 US FDA) |
PROQUAD (Measles, Mumps, Rubella and Varicella Virus Vaccine Live) | 7 VZV (+RNA Viruses) | Chickenpox/shingles | 6 September 2005 (2 US FDA) |
ACAM2000 (Smallpox and Mpox Vaccine, Live) | 8 VACV | Smallpox and mpox | 31 August 2007 (2 US FDA) |
ZOSTAVAX (Zoster Vaccine, Live) | 7 VZV | Singles | 25 May 2006 (2 US FDA) |
Adenovirus Type 4 and Type 7 Vaccine, Live, Oral | 9 AdV | Febrile acute respiratory disease caused by Adenovirus Type 4 and Type 7 | 16 March 2011 (2 US FDA) |
PRUIORIX TETRA (monovalent and multivalent measles, mumps, rubella and varicella vaccines) | 7 VZV | Chickenpox/shingles | 27 June 2013 (3 Germany PEI) |
IMVANEX (smallpox and monkeypox vaccine) | 10 MVA | Smallpox and mpox | 31 July 2013 (4 EMA) |
JYNNEOS (Smallpox and Mpox Vaccine, Live, Non-replicating) | 10 MVA | Smallpox and mpox | 24 September 2019 (2 US FDA) |
PROVARIX (varicella vaccine, live) | 7 VZV | Chickenpox/shingles | 18 December 2019 (5 China NMPA) |
1 AstraZeneca COVID-19 Vaccine (ChAdOx1 nCoV-19/AZD1222) | 9 AdV | 11 COVID-19 | 20 December 2020 (6 UK MHRA) |
1 Janssen COVID-19 Vaccine (Ad26.COV2.S) | 9 AdV | 11 COVID-19 | 27 February 2021 (2 US FDA) |
Name | Vector | Indication(s) | First Approval |
---|---|---|---|
1 alipogene tiparvovec (GLYBERA) | 4 AAV1 | familial lipoprotein lipase deficiency (LPLD) | 2 November 2012 (3 EMA) |
voretigene neparvovec-rzyl (LUXTURNA) | 4 AAV2 | Biallelic RPE65 mutation-association retinal dystrophy | 18 December 2017 (2 US FDA) |
onasemnogene abeparvovec-xioi (ZOLGENSMA) | 4 AAV9 | Spinal muscular atrophy | 24 May 2019 (2 US FDA) |
eladocagene exuparvovec-tneq (KEBILIDI/ UPSTAZA) | 4 AAV2 | Aromatic L amino acid decarboxylase (AADC) deficiency | 18 July 2022 (3 EMA) |
valoctocogene roxaparvovec-rvox (ROCTAVIAN) | 4 AAV5 | Hemophilia A | 24 August 2022 (3 EMA) |
etranacogene dezaparvovec-drlb (HEMGENIX) | 4 AAV5 | Hemophilia B | 22 November 2022 (2 US FDA) |
beremagene geperpavec (VYJUVEK) | 5 HSV-1 | Dystrophic epidermolysis bullosa | 19 May 2023 (2 US FDA) |
delandistrogene moxeparvovec-rokl (ELEVIDYS) | 6 AAVRh74 | Duchenne muscular dystrophy | 21 June 2023 (2 US FDA) |
fidanacogene elaparvovec-dzkt (BEQVEZ) | 7 AAVRh74var | Hemophilia B | 25 April 2024 (2 US FDA) |
Name | Vector | Indication(s) | First Approval |
---|---|---|---|
1 rAd-p53 (GENDICINE) | 5 AdV | Head and neck squamous cell carcinoma (HNSCC) | October 2003 (China 2 SFDA) |
H101 (ONCORINE) | 5 AdV | Head and neck and esophagus cancer, Nasopharyngeal cancer | 1 November 2005 (China 2 SFDA) |
talimogene laherparepvec (T-VEC, IMLYGIC) | 6 HSV | Melanoma | 27 October 2015 (3 US FDA) |
Teserpaturev (DELYTACT) | 6 HSV | Malignant glioma | June 2021 (Japan 4 PMDA) |
1 nadofaragene firadenovec-vncg (ADSTILADRIN) | 5 AdV | Bacillus Calmette-Guérin (BCG)-unresponsive non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) | 16 December 2022 (3 US FDA) |
Name | Active Ingredient | First Approval |
---|---|---|
Multiple Products | 6 AcMNPV | Unspecified (3 EC) |
Multiple Products | 7 SeMNPV | 17 May 2007 (3 EC) |
Multiple Products | 8 CpGV | 1 May 2009 (3 EC) |
VIROSOFT™CP4 | 8 CpGV | 16 July 2010 (4 US EPA) |
CYD-X® PLUS/CYD-X® HP | 8 CpGV | 21 July 2011 (4 US EPA) |
Multiple Products (e.g., HELICOVEX®) | 9 HearNPV | 22 April 2013 (3 EC) |
Heligen/Armigen/ Armigen Vivus/Vivus Max | 10 HzNPV strain ABA-NPV-U | 5 March 2014 (4 US EPA) |
SPEXIT® | 7 SeMNPV strain BV-0004 | 2 December 2015 (4 US EPA) |
SURTIVO®/ Surtivo Soy | 10 HzNPV strain ABA-NPV-U | 20 March 2020 (4 US EPA) |
5 PD20230095 | 11 AfMNPV Kew1 | 23 March 2023 (2 China MARA) |
Multiple Products (e.g., PD20230100) | 12 SfMNPV Hub1 | 23 March 2023 (2 China MARA) |
5 PD20230093 | 11 AfMNPV Kew1 | 23 March 2023 (2 China MARA) |
Multiple Products | Betabaculovirus phoperculellae | 22 January 2025 (3 EC) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schieferecke, A.J.; Kuxhausen Ralph, N.; Schaffer, D.V. The Application of DNA Viruses to Biotechnology. Viruses 2025, 17, 414. https://doi.org/10.3390/v17030414
Schieferecke AJ, Kuxhausen Ralph N, Schaffer DV. The Application of DNA Viruses to Biotechnology. Viruses. 2025; 17(3):414. https://doi.org/10.3390/v17030414
Chicago/Turabian StyleSchieferecke, Adam J., Nadia Kuxhausen Ralph, and David V. Schaffer. 2025. "The Application of DNA Viruses to Biotechnology" Viruses 17, no. 3: 414. https://doi.org/10.3390/v17030414
APA StyleSchieferecke, A. J., Kuxhausen Ralph, N., & Schaffer, D. V. (2025). The Application of DNA Viruses to Biotechnology. Viruses, 17(3), 414. https://doi.org/10.3390/v17030414