Predictors of Unfavorable Outcomes in COVID-19-Related Sepsis: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. General Characteristics of Study Population
3.2. Univariate Analysis of Factors Associated with Unfavorable Outcomes
3.3. Multivariable Analysis of Predictors of Unfavorable Outcomes
4. Discussion
Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCI | Charleson Comorbidity Index |
BMI | Body Mass Index |
COPD | Chronic Obstructive Pulmonary Disease |
NLR | Neutrophil-to-Lymphocyte Ratio |
ESR | Erythrocyte Sedimentation Rate |
CRP | C-Reactive Protein |
IL-6 | Interleukin 6 |
PCT | Procalcitonin |
LAC | Lactate |
CT | Computer Tomography |
References
- Arina, P.; Singer, M. Pathophysiology of sepsis. Curr. Opin. Anaesthesiol. 2021, 34, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Font, M.D.; Thyagarajan, B.; Khanna, A.K. Sepsis and Septic Shock–Basics of diagnosis, pathophysiology and clinical decision making. Med. Clin. N. Am. 2020, 104, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gauer, R.; Forbes, D.; Boyer, N. Sepsis: Diagnosis and Management. Am. Fam. Physician 2020, 101, 409–418. [Google Scholar] [PubMed]
- Chousterman, B.G.; Swirski, F.K.; Weber, G.F. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 2017, 39, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Giannakopoulos, K.; Hoffmann, U.; Ansari, U.; Bertsch, T.; Borggrefe, M.; Akin, I.; Behnes, M. The Use of Biomarkers in Sepsis: A Systematic Review. Curr Pharm Biotechnol. 2017, 18, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Schupp, T.; Weidner, K.; Rusnak, J.; Jawhar, S.; Forner, J.; Dulatahu, F.; Dudda, J.; Brück, L.M.; Hoffmann, U.; Bertsch, T.; et al. C-reactive protein and procalcitonin during course of sepsis and septic shock. Ir. J. Med. Sci. 2024, 193, 457–468. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Varga, N.I.; Benea, A.T.; Suba, M.I.; Bota, A.V.; Avram, C.R.; Boru, C.; Dragomir, T.L.; Prisca, M.; Sonia, T.; Susan, M.; et al. Predicting Mortality in Sepsis: The Role of Dynamic Biomarker Changes and Clinical Scores-A Retrospective Cohort Study. Diagnostics 2024, 14, 1973. [Google Scholar] [CrossRef]
- Schupp, T.; Weidner, K.; Rusnak, J.; Jawhar, S.; Forner, J.; Dulatahu, F.; Brück, L.M.; Hoffmann, U.; Kittel, M.; Bertsch, T.; et al. D-Dimer Levels and the Disseminated Intravascular Coagulation Score to Predict Severity and Outcomes in Sepsis or Septic Shock. Clin. Lab. 2023, 69, 985. [Google Scholar] [CrossRef] [PubMed]
- Gregoriano, C.; Heilmann, E.; Molitor, A.; Schuetz, P. Role of procalcitonin use in the management of sepsis. J. Thorac. Dis. 2020, 12, S5–S15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chiu, C.; Legrand, M. Epidemiology of sepsis and septic shock. Curr. Opin. Anaesthesiol. 2021, 34, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.J.; Bright, R.A.; Ahuja, A.; McCarthy, M.W.; Marfuggi, R.A.; Simpson, S.Q. Meeting the Challenges of Sepsis in Severe Coronavirus Disease 2019: A Call to Arms. Open Forum Infect. Dis. 2022, 10, ofac645. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koçak Tufan, Z.; Kayaaslan, B.; Mer, M. COVID-19 and Sepsis. Turk. J. Med. Sci. 2021, 51, 3301–3311. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mangalmurti, N.S.; Reilly, J.P.; Cines, D.B.; Meyer, N.J.; Hunter, C.A.; Vaughan, A.E. COVID-19-associated Acute Respiratory Distress Syndrome Clarified: A Vascular Endotype? Am. J. Respir. Crit. Care Med. 2020, 202, 750–753. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leligdowicz, A.; Harhay, M.O.; Calfee, C.S. Immune Modulation in Sepsis, ARDS, and COVID-19—The Road Traveled and the Road Ahead. NEJM Evid. 2022, 1, EVIDra2200118. [Google Scholar] [CrossRef] [PubMed]
- Karakike, E.; Giamarellos-Bourboulis, E.J.; Kyprianou, M.; Fleischmann-Struzek, C.; Pletz, M.W.; Netea, M.G.; Reinhart, K.; Kyriazopoulou, E. Coronavirus Disease 2019 as Cause of Viral Sepsis: A Systematic Review and Meta-Analysis. Crit. Care Med. 2021, 49, 2042–2057. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Becker, R.C. COVID-19-associated vasculitis and vasculopathy. J. Thromb. Thrombolysis 2020, 50, 499–511. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bernheim, A.; Mei, X.; Huang, M.; Yang, Y.; Fayad, Z.A.; Zhang, N.; Diao, K.; Lin, B.; Zhu, X.; Li, K.; et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology 2020, 295, 200463. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fu, F.; Lou, J.; Xi, D.; Bai, Y.; Ma, G.; Zhao, B.; Liu, D.; Bao, G.; Lei, Z.; Wang, M. Chest computed tomography findings of coronavirus disease 2019 (COVID-19) pneumonia. Eur. Radiol. 2020, 30, 5489–5498. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Romero Starke, K.; Reissig, D.; Petereit-Haack, G.; Schmauder, S.; Nienhaus, A.; Seidler, A. The isolated effect of age on the risk of COVID-19 severe outcomes: A systematic review with meta-analysis. BMJ Glob. Health 2021, 6, e006434. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tiruneh, S.A.; Tesema, Z.T.; Azanaw, M.M.; Angaw, D.A. The effect of age on the incidence of COVID-19 complications: A systematic review and meta-analysis. Syst. Rev. 2021, 10, 80. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marushchak, M.; Krynytska, I.; Homeliuk, T.; Vayda, A.; Kostiv, S.; Blikhar, V. Charlson comorbidity index and the severity of community-acquired pneumonia caused by SARS-CoV-2: A retrospective analysis. Dent. Med. Probl. 2024, 61, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Comoglu, S.; Kant, A. Does the Charlson comorbidity index help predict the risk of death in COVID-19 patients? N. Clin. Istanb. 2022, 9, 117–121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, D.H.; Park, H.C.; Cho, A.; Kim, J.; Yun, K.S.; Kim, J.; Lee, Y.K. Age-adjusted Charlson comorbidity index score is the best predictor for severe clinical outcome in the hospitalized patients with COVID-19 infection. Medicine 2021, 100, e25900. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cavuşoğlu Türker, B.; Türker, F.; Ahbab, S.; Hoca, E.; Urvasızoğlu, A.O.; Cetin, S.I.; Ataoğlu, H.E. Evaluation of the Charlson Comorbidity Index and Laboratory Parameters as Independent Early Mortality Predictors in COVID 19 Patients. Int. J. Gen. Med. 2022, 15, 6301–6307. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yao, Y.; Cao, J.; Wang, Q.; Shi, Q.; Liu, K.; Luo, Z.; Chen, X.; Chen, S.; Yu, K.; Huang, Z.; et al. D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: A case control study. J. Intensive Care 2020, 8, 49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, I.; Pranata, R.; Lim, M.A.; Oehadian, A.; Alisjahbana, B. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: A meta-analysis. Ther. Adv. Respir. Dis. 2020, 14, 1753466620937175. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gallo Marin, B.; Aghagoli, G.; Lavine, K.; Yang, L.; Siff, E.J.; Chiang, S.S.; Salazar-Mather, T.P.; Dumenco, L.; Savaria, M.C.; Aung, S.N.; et al. Predictors of COVID-19 severity: A literature review. Rev. Med. Virol. 2021, 31, 1–10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ji, P.; Zhu, J.; Zhong, Z.; Li, H.; Pang, J.; Li, B.; Zhang, J. Association of elevated inflammatory markers and severe COVID-19: A meta-analysis. Medicine 2020, 99, e23315. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elshazli, R.M.; Toraih, E.A.; Elgaml, A.; El-Mowafy, M.; El-Mesery, M.; Amin, M.N.; Hussein, M.H.; Killackey, M.T.; Fawzy, M.S.; Kandil, E. Diagnostic and prognostic value of hematological and immunological markers in COVID-19 infection: A meta-analysis of 6320 patients. PLoS ONE 2020, 15, e0238160. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Francone, M.; Iafrate, F.; Masci, G.M.; Coco, S.; Cilia, F.; Manganaro, L.; Panebianco, V.; Andreoli, C.; Colaiacomo, M.C.; Zingaropoli, M.A.; et al. Chest CT score in COVID-19 patients: Correlation with disease severity and short-term prognosis. Eur. Radiol. 2020, 30, 6808–6817. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alilou, S.; Zangiabadian, M.; Pouramini, A.; Jaberinezhad, M.; Shobeiri, P.; Ghozy, S.; Haseli, S.; Beizavi, Z. Radiological Findings as Predictors of COVID-19 Lung Sequelae: A Systematic Review and Meta-analysis. Acad. Radiol. 2023, 30, 3076–3085. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Incerti, D.; Rizzo, S.; Li, X.; Lindsay, L.; Yau, V.; Keebler, D.; Chia, J.; Tsai, L. Prognostic model to identify and quantify risk factors for mortality among hospitalised patients with COVID-19 in the USA. BMJ Open 2021, 11, e047121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jaskolowska, J.; Balcerzyk-Barzdo, E.; Jozwik, A.; Gaszynski, T.; Ratajczyk, P. Selected Predictors of COVID-19 Mortality in the Hospitalised Patient Population in a Single-Centre Study in Poland. Healthcare 2023, 11, 719. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, C.; Wang, L.; Ye, J.; Gu, Z.; Wang, S.; Xia, J.; Xie, Y.; Li, Q.; Xu, R.; Lin, N. Predictors of mortality in patients with coronavirus disease 2019: A systematic review and meta-analysis. BMC Infect. Dis. 2021, 21, 663. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Forsblom, E.; Silén, S.; Kortela, E.; Ahava, M.; Kreivi, H.R.; Holmberg, V.; Järvinen, A.; Hästbacka, J.; Kivivuori, S.M.; Meretoja, A. Male predominance in disease severity and mortality in a low COVID-19 epidemic and low case-fatality area—A population-based registry study. Infect. Dis. 2021, 53, 789–799. [Google Scholar] [CrossRef]
- Levy, M.M.; Fink, M.P.; Marshall, J.C.; Abraham, E.; Angus, D.; Cook, D.; Cohen, J.; Opal, S.M.; Vincent, J.L.; Ramsay, G.; et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med. 2003, 31, 1250–1256. [Google Scholar] [CrossRef]
- Engoren, M.; Seelhammer, T.; Freundlich, R.E.; Maile, M.D.; Sigakis, M.J.G.; Schwann, T.A. A Comparison of Sepsis-2 (Systemic Inflammatory Response Syndrome Based) to Sepsis-3 (Sequential Organ Failure Assessment Based) Definitions-A Multicenter Retrospective Study. Crit. Care Med. 2020, 48, 1258–1264. [Google Scholar] [CrossRef]
Characteristic | Overall (n = 163) |
---|---|
Age (years), Mean (SD) | 72.33 (10.42) |
Male Sex, n (%) | 92 (56.4) |
Vaccination Status | |
Unvaccinated, n (%) | 159 (97.5) |
Vaccinated—Pfizer, n (%) | 1 (0.6) |
Vaccinated—Johnson&Johnson, n (%) | 3 (1.8) |
Days to Admission | 3.87 (1.4) |
Smoking, n (%) | 50 (30.7) |
Frequent Alcohol Consumption, n (%) | 62 (38.0) |
BMI, Mean (SD) | 28.80 (5.06) |
Normal Weight, n (%) | 49 (30.1) |
Overweight, n (%) | 47 (28.8) |
Obesity Class I, n (%) | 28 (17.2) |
Obesity Class II, n (%) | 23 (14.1) |
Obesity Class III, n (%) | 16 (9.8) |
Comorbidities | |
CCI Score, Mean (SD) | 5.01 (1.6) |
Hypertension, n (%) | 137 (84.0) |
Diabetes, n (%) | 59 (36.2) |
Stroke/Dementia, n (%) | 38 (23.3) |
Coronary Artery Disease, n (%) | 35 (21.5) |
Cardiac Insufficiency, n (%) | 28 (17.2) |
COPD, n (%) | 20 (12.3) |
Chronic Hepatitis/Cirrhosis, n (%) | 14 (8.6) |
History of Tuberculosis, n (%) | 8 (4.9) |
CT Severity Score | |
<25% Lung Involvement, n (%) | 41 (25.2) |
25–50% Lung Involvement, n (%) | 58 (35.6) |
>50% Lung Involvement, n (%) | 64 (39.3) |
Oxygen Saturation at Baseline, Mean (SD) | 90.61 (6.35) |
Oxygen Flow > 15 L/min at Baseline, n (%) | 111 (68.1) |
SOFA Score, Mean (SD) | 6.65 (2.3) |
Baseline Biomarkers, Mean (SD) | |
Leukocytes (×109/L) | 15.10 (5.47) |
NLR | 9.61 (2.97) |
ESR (mm/hr) | 79.61 (35.18) |
CRP (mg/L) | 126.15 (52.13) |
IL-6 (pg/mL) | 30.68 (14.93) |
PCT (ng/mL) | 2.19 (1.13) |
LAC (mmol/L) | 2.02 (0.63) |
D-Dimers | 1.16 (0.89) |
Treatment | |
Antiviral (Remdesivir), n (%) | 153 (93.9) |
Antibiotics, n (%) | 142 (87.1) |
Corticosteroids, n (%) | 162 (99.4) |
Length of Stay (days), Mean (SD) | 13.91 (7.87) |
Characteristic | Favorable Outcome (n = 119) | Unfavorable Outcome (n = 44) | p-Value |
---|---|---|---|
Age (years), Mean (SD) | 69.69 (9.26) | 79.45 (10.13) | <0.001 |
Male Sex, n (%) | 66 (55.46) | 26 (59.09) | 0.812 |
Vaccination Status | 0.381 | ||
Unvaccinated, n (%) | 115 (96.63) | 44 (100) | |
Vaccinated—Pfizer, n (%) | 1 (0.84) | 0 (0) | |
Vaccinated—Johnson&Johnson, n (%) | 3 (2.52) | 0 (0) | |
Days to Admission | 3.43 (1.22) | 4.58 (1.94) | 0.449 |
Smoking, n (%) | 36 (30.25) | 14 (31.81) | 0.617 |
Frequent Alcohol Consumption, n (%) | 40 (33.61) | 22 (50) | 0.104 |
BMI, Mean (SD) | 28.11 (5.1) | 29.42 (5.01) | 0.502 |
CCI, Mean (SD) | 4.57 (1.31) | 6.20 (1.69) | <0.001 |
CT Severity, n (%) | 0.033 | ||
<25% Lung Involvement | 33 (27.73) | 8 (18.18) | |
25–50% Lung Involvement | 40 (33.61) | 18 (40.90) | |
>50% Lung Involvement | 37 (31.09) | 27 (61.36) | |
Baseline Oxygen Saturation, Mean (SD) | 91.27 (4.83) | 88.36 (7.92) | 0.188 |
Oxygen Flow > 15 L/min at Baseline, n (%) | 72 (60.50) | 39 (88.63) | 0.066 |
SOFA Score, Mean (SD) | 5.86 (2.14) | 8.21 (2.67) | 0.020 |
Baseline Biomarkers, Mean (SD) | |||
Leukocytes (×109/L) | 14.93 (4.98) | 15.58 (6.65) | 0.383 |
NLR | 8.96 (3.61) | 10.11 (4.84) | 0.092 |
ESR (mm/hr) | 77.02 (35.41) | 86.57 (41.46) | 0.145 |
CRP (mg/L) | 120.83 (48.69) | 140.58 (86.66) | 0.018 |
IL-6 (pg/mL) | 25.35 (39.61) | 51.39 (80.21) | 0.849 |
PCT (ng/mL) | 1.67 (1.39) | 2.76 (3.15) | 0.074 |
LAC (mmol/L) | 1.96 (0.56) | 2.2 (0.8) | 0.110 |
D-Dimers | 1.04 (0.87) | 1.48 (1.04) | 0.021 |
Treatment | |||
Antiviral (Remdesivir), n (%) | 110 (92.43) | 43 (97.72) | 0.284 |
Antibiotics, n (%) | 98 (82.35) | 44 (100) | 0.142 |
Corticosteroids, n (%) | 119 (100) | 43 (97.72) | 0.627 |
Length of Stay (days), Mean (SD) | 13.92 (8.23) | 13.86 (6.92) | 0.673 |
Variable | OR | 95% CI | p-Value |
---|---|---|---|
Age | 1.080 | 0.994–1.174 | 0.071 |
CCI | 1.579 | 0.0972–2.564 | 0.060 |
D-dimers | 1.417 | 1.056–1.903 | 0.020 |
Lung Involvement | 1.774 | 1.138–3.856 | 0.025 |
CRP | 1.010 | 1.010–1.018 | 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateescu, D.-M.; Cotet, I.; Guse, C.; Prodan-Barbulescu, C.; Varga, N.-I.; Iurciuc, S.; Craciun, M.-L.; Ilie, A.-C.; Enache, A. Predictors of Unfavorable Outcomes in COVID-19-Related Sepsis: A Prospective Cohort Study. Viruses 2025, 17, 455. https://doi.org/10.3390/v17040455
Mateescu D-M, Cotet I, Guse C, Prodan-Barbulescu C, Varga N-I, Iurciuc S, Craciun M-L, Ilie A-C, Enache A. Predictors of Unfavorable Outcomes in COVID-19-Related Sepsis: A Prospective Cohort Study. Viruses. 2025; 17(4):455. https://doi.org/10.3390/v17040455
Chicago/Turabian StyleMateescu, Diana-Maria, Ioana Cotet, Cristina Guse, Catalin Prodan-Barbulescu, Norberth-Istvan Varga, Stela Iurciuc, Maria-Laura Craciun, Adrian-Cosmin Ilie, and Alexandra Enache. 2025. "Predictors of Unfavorable Outcomes in COVID-19-Related Sepsis: A Prospective Cohort Study" Viruses 17, no. 4: 455. https://doi.org/10.3390/v17040455
APA StyleMateescu, D.-M., Cotet, I., Guse, C., Prodan-Barbulescu, C., Varga, N.-I., Iurciuc, S., Craciun, M.-L., Ilie, A.-C., & Enache, A. (2025). Predictors of Unfavorable Outcomes in COVID-19-Related Sepsis: A Prospective Cohort Study. Viruses, 17(4), 455. https://doi.org/10.3390/v17040455