Modulation of the Inflammatory Response by Adenovirus 36 in Patients with Obesity and Type 2 Diabetes: A Nested Case-Control Study Within a Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Biochemical Analysis
2.4. Anthropometric Assessment
2.5. Ethical Considerations
2.6. Statistical Analysis
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dhurandhar, N.V.; Kulkarni, P.R.; Ajinkya, S.M.; Sherikar, A.A.; Atkinson, R.L. Association of Adenovirus Infection with Human Obesity. Obes. Res. 1997, 5, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Dhurandhar, N.; Israel, B.; Kolesar, J.; Mayhew, G.; Cook, M.; Atkinson, R. Increased Adiposity in Animals Due to a Human Virus. Int. J. Obes. 2000, 24, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Dhurandhar, N.V.; Whigham, L.D.; Abbott, D.H.; Schultz-Darken, N.J.; Israel, B.A.; Bradley, S.M.; Kemnitz, J.W.; Allison, D.B.; Atkinson, R.L. Human Adenovirus Ad-36 Promotes Weight Gain in Male Rhesus and Marmoset Monkeys. J. Nutr. 2002, 132, 3155–3160. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-Y.; Dubuisson, O.; Rubicz, R.; Liu, N.; Allison, D.B.; Curran, J.E.; Comuzzie, A.G.; Blangero, J.; Leach, C.T.; Göring, H.; et al. Long-Term Changes in Adiposity and Glycemic Control Are Associated with Past Adenovirus Infection. Diabetes Care 2013, 36, 701–707. [Google Scholar] [CrossRef]
- Dhurandhar, N.; Israel, B.; Kolesar, J.; Mayhew, G.; Cook, M.; Atkinson, R. Transmissibility of Adenovirus-Induced Adiposity in a Chicken Model. Int. J. Obes. 2001, 25, 990–996. [Google Scholar] [CrossRef]
- Ponterio, E.; Gnessi, L. Adenovirus 36 and Obesity: An Overview. Viruses 2015, 7, 3719–3740. [Google Scholar] [CrossRef]
- Trovato, G.M.; Castro, A.; Tonzuso, A.; Garozzo, A.; Martines, G.F.; Pirri, C.; Trovato, F.; Catalano, D. Human Obesity Relationship with Ad36 Adenovirus and Insulin Resistance. Int. J. Obes. 2009, 33, 1402–1409. [Google Scholar] [CrossRef]
- Laing, E.M.; Tripp, R.A.; Pollock, N.K.; Baile, C.A.; Della-Fera, M.A.; Rayalam, S.; Tompkins, S.M.; Keys, D.A.; Lewis, R.D. Adenovirus 36, Adiposity, and Bone Strength in Late-Adolescent Females. J. Bone Min. Res. 2013, 28, 489–496. [Google Scholar] [CrossRef]
- Castro-Juarez, A.A.; Serna-Gutiérrez, A.; Alemán-Mateo, H.; Gallegos-Aguilar, A.C.; Dórame-López, N.A.; Valenzuela-Sánchez, A.; Valenzuela-Guzmán, D.M.; Díaz-Zavala, R.G.; Urquidez-Romero, R.; Esparza-Romero, J. Effectiveness of a Lifestyle Change Program on Insulin Resistance in Yaquis Indigenous Populations in Sonora, Mexico: PREVISY. Nutrients 2023, 15, 597. [Google Scholar] [CrossRef]
- Ros Pérez, M.; Medina-Gómez, G. Obesidad, adipogénesis y resistencia a la insulina. Endocrinol. Nutr. 2011, 58, 360–369. [Google Scholar] [CrossRef]
- Jakubiak, G.K.; Osadnik, K.; Lejawa, M.; Osadnik, T.; Goławski, M.; Lewandowski, P.; Pawlas, N. “Obesity and Insulin Resistance” Is the Component of the Metabolic Syndrome Most Strongly Associated with Oxidative Stress. Antioxidants 2021, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Matia-Garcia, I.; Ocampo-Galeana, J.A.; Muñoz-Valle, J.F.; Soñanez-Organis, J.G.; González, R.A.; Guzmán-Guzmán, I.P.; Marino-Ortega, L.A.; Parra-Rojas, I. An Observational Study Suggests That Natural HAdV-36 Infection Decreases Blood Glucose Levels without Affecting Insulin Levels in Obese Young Subjects. Viruses 2024, 16, 922. [Google Scholar] [CrossRef] [PubMed]
- Lessan, N.; Saradalekshmi, K.R.; Alkaf, B.; Majeed, M.; Barakat, M.T.; Lee, Z.P.L.; Atkinson, R.L. Obesity and Diabetes in an Arab Population: Role of Adenovirus 36 Infection. Sci. Rep. 2020, 10, 8107. [Google Scholar] [CrossRef] [PubMed]
- Shirani, F.; Teimoori, A.; McAinch, A.J.; Rashno, M.; Latifi, S.M.; Karandish, M. Human Adenovirus 36 Improves Insulin Sensitivity and Lipid Profiles and Increases Inflammatory Markers in Wistar Rats. J. Investig. Med. 2020, 68, 980–984. [Google Scholar] [CrossRef]
- Manríquez, V.; Brito, R.; Pavez, M.; Sapunar, J.; Fonseca, L.; Molina, V.; Ortiz, E.; Baeza, R.; Reimer, C.; Charles, M.; et al. Adenovirus 36 Seropositivity Is Related to the Expression of Anti-Adipogenic lncRNAs GAS5 and MEG3 in Adipose Tissue Obtained from Subjects with Obesity. Int. J. Obes. 2024, 48, 1414–1420. [Google Scholar] [CrossRef]
- Pasarica, M.; Mashtalir, N.; McAllister, E.J.; Kilroy, G.E.; Koska, J.; Permana, P.; De Courten, B.; Yu, M.; Ravussin, E.; Gimble, J.M.; et al. Adipogenic Human Adenovirus Ad-36 Induces Commitment, Differentiation, and Lipid Accumulation in Human Adipose-Derived Stem Cells. Stem Cells 2008, 26, 969–978. [Google Scholar] [CrossRef]
- Okuno, A.; Tamemoto, H.; Tobe, K.; Ueki, K.; Mori, Y.; Iwamoto, K.; Umesono, K.; Akanuma, Y.; Fujiwara, T.; Horikoshi, H.; et al. Troglitazone Increases the Number of Small Adipocytes without the Change of White Adipose Tissue Mass in Obese Zucker Rats. J. Clin. Investig. 1998, 101, 1354–1361. [Google Scholar] [CrossRef]
- Esteve Ràfols, M. Tejido adiposo: Heterogeneidad celular y diversidad funcional. Endocrinol. Nutr. 2014, 61, 100–112. [Google Scholar] [CrossRef]
- Upadhyaya, S.; Kadamkode, V.; Mahammed, R.; Doraiswami, C.; Banerjee, G. Adiponectin and IL-6: Mediators of Inflammation in Progression of Healthy to Type 2 Diabetes in Indian Population. Adipocyte 2014, 3, 39–45. [Google Scholar] [CrossRef]
- Tapia-Rivera, J.C.; Mendoza-Jaramillo, H.E.; González-Villaseñor, C.O.; Ramirez-Flores, M.; Aguilar-Velazquez, J.A.; López-Quintero, A.; Pérez-Guerrero, E.E.; Vargas-Rodriguez, M.D.L.Á.; Gutiérrez-Hurtado, I.A.; Martínez-López, E. Effect of Human Adenovirus 36 on Response to Metformin Monotherapy in Obese Mexican Patients with Type 2 Diabetes: A Prospective Cohort Study. Viruses 2023, 15, 1514. [Google Scholar] [CrossRef]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Q.; Cefalu, W.T.; Zhang, X.H.; Yu, Y.; Qin, J.; Son, L.; Rogers, P.M.; Mashtalir, N.; Bordelon, J.R.; Ye, J.; et al. Human Adenovirus Type 36 Enhances Glucose Uptake in Diabetic and Nondiabetic Human Skeletal Muscle Cells Independent of Insulin Signaling. Diabetes 2008, 57, 1805–1813. [Google Scholar] [CrossRef] [PubMed]
- McMurphy, T.B.; Huang, W.; Xiao, R.; Liu, X.; Dhurandhar, N.V.; Cao, L. Hepatic Expression of Adenovirus 36 E4ORF1 Improves Glycemic Control and Promotes Glucose Metabolism Through AKT Activation. Diabetes 2017, 66, 358–371. [Google Scholar] [CrossRef]
- Peddibhotla, S.; Hegde, V.; Akheruzzaman, M.; Dhurandhar, N.V. E4orf1 Protein Reduces the Need for Endogenous Insulin. Nutr. Diabetes 2019, 9, 17. [Google Scholar] [CrossRef]
- Almgren, M.; Atkinson, R.L.; Hilding, A.; He, J.; Brismar, K.; Schalling, M.; Östenson, C.-G.; Lavebratt, C. Human Adenovirus-36 Is Uncommon in Type 2 Diabetes and Is Associated with Increased Insulin Sensitivity in Adults in Sweden. Ann. Med. 2014, 46, 539–546. [Google Scholar] [CrossRef]
- Afruza, R.; Dhurandhar, N.V.; Hegde, V. E4orf1 Prevents Progression of Fatty Liver Disease in Mice on High Fat Diet. Int. J. Mol. Sci. 2022, 23, 9286. [Google Scholar] [CrossRef]
- Dhurandhar, E.J.; Dubuisson, O.; Mashtalir, N.; Krishnapuram, R.; Hegde, V.; Dhurandhar, N.V. E4orf1: A Novel Ligand That Improves Glucose Disposal in Cell Culture. PLoS ONE 2011, 6, e23394. [Google Scholar] [CrossRef]
- Na, H.-N.; Dubuisson, O.; Hegde, V.; Nam, J.-H.; Dhurandhar, N.V. Human Adenovirus Ad36 and Its E4orf1 Gene Enhance Cellular Glucose Uptake Even in the Presence of Inflammatory Cytokines. Biochimie 2016, 124, 3–10. [Google Scholar] [CrossRef]
- Thai, M.; Graham, N.A.; Braas, D.; Nehil, M.; Komisopoulou, E.; Kurdistani, S.K.; McCormick, F.; Graeber, T.G.; Christofk, H.R. Adenovirus E4ORF1-Induced MYC Activation Promotes Host Cell Anabolic Glucose Metabolism and Virus Replication. Cell Metab. 2014, 19, 694–701. [Google Scholar] [CrossRef]
- Li, M.; Xie, Z.; Wang, P.; Li, J.; Liu, W.; Tang, S.; Liu, Z.; Wu, X.; Wu, Y.; Shen, H. The Long Noncoding RNA GAS5 Negatively Regulates the Adipogenic Differentiation of MSCs by Modulating the miR-18a/CTGF Axis as a ceRNA. Cell Death Dis. 2018, 9, 554. [Google Scholar] [CrossRef]
- Jiao, Y.; Aisa, Y.; Liang, X.; Nuermaimaiti, N.; Gong, X.; Zhang, Z.; Guan, Y. Regulation of PPARγ and CIDEC Expression by Adenovirus 36 in Adipocyte Differentiation. Mol. Cell Biochem. 2017, 428, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Liang, X.; Hou, J.; Aisa, Y.; Wu, H.; Zhang, Z.; Nuermaimaiti, N.; Zhao, Y.; Jiang, S.; Guan, Y. Adenovirus Type 36 Regulates Adipose Stem Cell Differentiation and Glucolipid Metabolism through the PI3K/Akt/FoxO1/PPARγ Signaling Pathway. Lipids Health Dis. 2019, 18, 70. [Google Scholar] [CrossRef]
- Barrera-Alcocer, J.; García-Benavides, L.; Muñoz-Valle, J.F.; De La Cruz-Mosso, U.; González, R.A.; Luquín, S.; Alarcón-Romero, L.D.C.; Marino-Ortega, L.A.; Matia-Garcia, I.; Parra-Rojas, I. Presence of Adenovirus-36 DNA in Adipose Tissue of Women: Relationship with Adipocyte Morphology and the Expression of C/EBPβ and HIF-1α. DMSO 2021, 14, 477–486. [Google Scholar] [CrossRef]
- Sundararaj, K.P.; Samuvel, D.J.; Li, Y.; Sanders, J.J.; Lopes-Virella, M.F.; Huang, Y. Interleukin-6 Released from Fibroblasts Is Essential for Up-Regulation of Matrix Metalloproteinase-1 Expression by U937 Macrophages in Coculture. J. Biol. Chem. 2009, 284, 13714–13724. [Google Scholar] [CrossRef]
- Sanches, M.D.; Goldberg, T.B.L.; Rizzo, A.D.C.B.; Da Silva, V.N.; Mosca, L.N.; Romagnoli, G.G.; Gorgulho, C.M.; Araujo Junior, J.P.; De Lima, G.R.; Betti, I.R.; et al. Inflammatory Cytokines and Chemokines in Obese Adolescents with Antibody against to Adenovirus 36. Sci. Rep. 2023, 13, 9918. [Google Scholar] [CrossRef]
- Li, Y.; Samuvel, D.J.; Sundararaj, K.P.; Lopes-Virella, M.F.; Huang, Y. IL-6 and High Glucose Synergistically Upregulate MMP-1 Expression by U937 Mononuclear Phagocytes via ERK1/2 and JNK Pathways and c-Jun. J. Cell. Biochem. 2010, 110, 248–259. [Google Scholar] [CrossRef]
- Dotson, S.; Freeman, R.; Failing, H.J.; Adler, G.K. Hypoglycemia Increases Serum Interleukin-6 Levels in Healthy Men and Women. Diabetes Care 2008, 31, 1222–1223. [Google Scholar] [CrossRef]
- Berger, P.K.; Pollock, N.K.; Laing, E.M.; Warden, S.J.; Hill Gallant, K.M.; Hausman, D.B.; Tripp, R.A.; McCabe, L.D.; McCabe, G.P.; Weaver, C.M.; et al. Association of Adenovirus 36 Infection with Adiposity and Inflammatory-Related Markers in Children. J. Clin. Endocrinol. Metab. 2014, 99, 3240–3246. [Google Scholar] [CrossRef]
- Bruun, J.; Verdich, C.; Toubro, S.; Astrup, A.; Richelsen, B. Association between Measures of Insulin Sensitivity and Circulating Levels of Interleukin-8, Interleukin-6 and Tumor Necrosis Factor-Alpha. Effect of Weight Loss in Obese Men. Eur. J. Endocrinol. 2003, 148, 535–542. [Google Scholar] [CrossRef]
- Makiel, K.; Suder, A.; Targosz, A.; Maciejczyk, M.; Haim, A. Exercise-Induced Alternations of Adiponectin, Interleukin-8 and Indicators of Carbohydrate Metabolism in Males with Metabolic Syndrome. Biomolecules 2023, 13, 852. [Google Scholar] [CrossRef]
HAdV-36 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Total (n = 76) | Negative (n = 37) | Positive (n = 39) | p | |||||||
Median | 25th Percentile | 75th Percentile | Median | 25th Percentile | 75th Percentile | Median | 25th Percentile | 75th Percentile | ||
Age (years) | 49.5 | 39.0 | 55.0 | 51.0 | 44.0 | 58.0 | 48.0 | 37.0 | 55.0 | 0.154 |
Height (cm) | 162.0 | 156.0 | 170.0 | 159.0 | 154.0 | 165.0 | 165.0 | 157.0 | 171.0 | 0.117 |
Weight (kg) | 92.3 | 83.2 | 100.4 | 89.6 | 82.7 | 96.5 | 95.3 | 83.9 | 101.7 | 0.308 |
BMI (kg/m2) | 34.5 | 31.4 | 38.4 | 34.0 | 31.8 | 38.7 | 34.5 | 31.2 | 38.2 | 0.743 |
Body fat (%) | 35.2 | 31.7 | 40.1 | 35.5 | 32.9 | 40.2 | 33.0 | 30.2 | 40.0 | 0.266 |
Waist (cm) | 102.0 | 95.5 | 114.5 | 102.0 | 94.0 | 114.0 | 103.0 | 96.0 | 117.0 | 0.336 |
Hip (cm) | 103.0 | 92.5 | 120.0 | 101.0 | 92.0 | 113.0 | 104.5 | 93.0 | 121.0 | 0.436 |
Waist-to-hip ratio | 1.0 | 0.9 | 1.1 | 1.0 | 0.9 | 1.1 | 1.0 | 0.9 | 1.1 | 0.666 |
Glucose (mg/dL) | 114.0 | 93.0 | 162.0 | 123.0 | 111.0 | 186.0 | 100.0 | 89.0 | 138.0 | 0.007 * |
Cholesterol (mg/dL) | 172.0 | 144.0 | 195.0 | 177.2 | 144.0 | 195.0 | 171.0 | 144.0 | 195.0 | 0.938 |
Triglycerides (mg/dL) | 175.0 | 112.9 | 234.5 | 169.2 | 95.0 | 235.0 | 181.0 | 122.0 | 234.0 | 0.647 |
HAdV-36 | |||
---|---|---|---|
Negative (n = 26, 50%) | Positive (n = 26, 50%) | p | |
IL-10 (pg/mL) | 0.54 (0.32, 2.17) | 0.74 (0.32, 0.99) | 0.825 |
IL-2 (pg/mL) | 0.97 (0.81, 2.41) | 0.93 (0.71, 1.12) | 0.273 |
IL-6 (pg/mL) | 0.85 (0.61, 1.21) | 0.39 (0.23, 0.78) | 0.001 * |
IL-8 (pg/mL) | 5.36 (2.92, 9.11) | 17.30 (5.57, 53.37) | 0.002 * |
TNF-α (pg/mL) | 5.53 (4.25, 6.99) | 6.31 (4.70, 7.09) | 0.441 |
Inflammatory score based on IL-2, IL-6, IL-8, TNF-α (P50) | 6.00 (5.00, 7.00) | 6.00 (5.00, 7.00) | 0.977 |
Corrected inflammatory score (P50) | 5.00 (4.00, 5.00) | 4.00 (4.00, 5.25) | 0.788 |
Unadjusted Model | Adjusted Model | |||
---|---|---|---|---|
β | 95% CI | β | 95% CI | |
IL-10 | 4.50 | −4.78, 13.79 | 3.27 | −6.23, 12.78 |
IL-2 | −0.20 | −0.79, 0.38 | −0.19 | −0.80, 0.42 |
IL-6 | −1.97 | −5.08, 1.13 | −1.81 | −4.99, 1.36 |
IL-8 | 41.21 | −1.84, 84.25 | 45.03 | 0.80, 89.27 * |
TNF-α | −0.19 | −1.24, 0.86 | 0.03 | −0.99, 1.04 |
Squared Euclidean Distance | ||||||
---|---|---|---|---|---|---|
Cluster 1 (n = 28) | Cluster 2 (n = 24) | p | ||||
n | % | n | % | |||
IL-10 (pg/mL) | ≤0.54 | 23 | 82.1 | 3 | 12.5 | <0.001 * |
≥0.55 | 5 | 17.9 | 21 | 87.5 | ||
IL-2 (pg/mL) | ≤0.81 | 20 | 71.4 | 2 | 8.3 | <0.001 * |
≥0.82 | 8 | 28.6 | 22 | 91.7 | ||
IL-6 (pg/mL) | ≤0.61 | 13 | 46.4 | 13 | 54.2 | 0.781 |
≥0.62 | 15 | 53.6 | 11 | 45.8 | ||
IL-8 (pg/mL) | ≤7.14 | 20 | 71.4 | 6 | 25.0 | 0.001 * |
≥7.15 | 8 | 28.6 | 18 | 75.0 | ||
TNF-α (pg/mL) | ≤5.53 | 19 | 67.9 | 4 | 16.7 | <0.001 * |
≥5.54 | 9 | 32.1 | 20 | 83.3 |
Squared Euclidean Distance, 2 Cat | ||||||
---|---|---|---|---|---|---|
Cluster 1 | Cluster 2 | p | ||||
n | % | n | % | |||
HAdV-36 | Negative | 16 | 57.1 | 10 | 41.7 | 0.404 |
Positive | 12 | 42.9 | 14 | 58.3 |
Squared Euclidean Distance | |||||||
---|---|---|---|---|---|---|---|
Cluster 1 | Cluster 2 | ||||||
Median | 25th Percentile | 75th Percentile | Median | 25th Percentile | 75th Percentile | p | |
Age (years) | 51.0 | 43.0 | 58.5 | 49.0 | 46.5 | 55.0 | 0.639 |
Height (cm) | 162.0 | 159.0 | 175.5 | 161.0 | 155.5 | 167.5 | 0.177 |
Weight (kg) | 96.3 | 88.3 | 107.4 | 91.1 | 80.7 | 98.3 | 0.074 |
BMI (kg/m2) | 35.3 | 31.5 | 39.5 | 34.3 | 31.6 | 36.6 | 0.485 |
Body fat (%) | 35.2 | 32.2 | 41.5 | 37.7 | 32.1 | 43.9 | 0.576 |
Waist (cm) | 104.5 | 94.5 | 117.5 | 100.0 | 97.0 | 111.0 | 0.514 |
Hip (cm) | 107.0 | 96.3 | 123.5 | 100.5 | 87.8 | 116.5 | 0.195 |
Waist-to-hip ratio | 1.0 | 0.9 | 1.1 | 1.0 | 0.9 | 1.1 | 0.368 |
Glucose (mg/dL) | 99.8 | 86.4 | 170.6 | 112.0 | 99.5 | 149.5 | 0.326 |
Cholesterol (mg/dL) | 175.1 | 135.5 | 204.4 | 167.5 | 144.0 | 199.0 | 0.601 |
Triglycerides (mg/dL) | 170.6 | 114.0 | 254.5 | 184.5 | 102.5 | 241.0 | 0.847 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Hurtado, I.A.; Martínez-López, E.; Rico-Méndez, M.A.; Bravo-Villagra, K.M.; Mendoza-Jaramillo, H.E.; Sánchez-Rolón, M.d.P.; Betancourt-Núñez, A.; Gallegos-Arreola, M.P.; Tapia-Rivera, J.C.; López-Quintero, A. Modulation of the Inflammatory Response by Adenovirus 36 in Patients with Obesity and Type 2 Diabetes: A Nested Case-Control Study Within a Cohort. Viruses 2025, 17, 552. https://doi.org/10.3390/v17040552
Gutiérrez-Hurtado IA, Martínez-López E, Rico-Méndez MA, Bravo-Villagra KM, Mendoza-Jaramillo HE, Sánchez-Rolón MdP, Betancourt-Núñez A, Gallegos-Arreola MP, Tapia-Rivera JC, López-Quintero A. Modulation of the Inflammatory Response by Adenovirus 36 in Patients with Obesity and Type 2 Diabetes: A Nested Case-Control Study Within a Cohort. Viruses. 2025; 17(4):552. https://doi.org/10.3390/v17040552
Chicago/Turabian StyleGutiérrez-Hurtado, Itzae Adonai, Erika Martínez-López, Manuel Alejandro Rico-Méndez, Karla Mayela Bravo-Villagra, Héctor Eduardo Mendoza-Jaramillo, María del Pilar Sánchez-Rolón, Alejandra Betancourt-Núñez, Martha Patricia Gallegos-Arreola, José Carlos Tapia-Rivera, and Andres López-Quintero. 2025. "Modulation of the Inflammatory Response by Adenovirus 36 in Patients with Obesity and Type 2 Diabetes: A Nested Case-Control Study Within a Cohort" Viruses 17, no. 4: 552. https://doi.org/10.3390/v17040552
APA StyleGutiérrez-Hurtado, I. A., Martínez-López, E., Rico-Méndez, M. A., Bravo-Villagra, K. M., Mendoza-Jaramillo, H. E., Sánchez-Rolón, M. d. P., Betancourt-Núñez, A., Gallegos-Arreola, M. P., Tapia-Rivera, J. C., & López-Quintero, A. (2025). Modulation of the Inflammatory Response by Adenovirus 36 in Patients with Obesity and Type 2 Diabetes: A Nested Case-Control Study Within a Cohort. Viruses, 17(4), 552. https://doi.org/10.3390/v17040552