Evaluation of Different Machine Learning Approaches to Predict Antigenic Distance Among Newcastle Disease Virus (NDV) Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viruses
2.2. Preparation of Hyperimmune Sera in SPF Chickens
2.3. Haemagglutination Inhibition Assay
2.4. Microneutralization Assay
2.5. Antigenic Cartography
2.6. Sequencing and Phylogenetic Analysis
2.7. Database Preparation
2.8. Protection Prediction
2.8.1. Bagging Trees (BT)
2.8.2. Random Forest (RF)
2.8.3. Artificial Neural Network (ANN)
2.8.4. Supporting Vector Machines (SVM)
2.9. Performance Criteria
2.10. K-Fold Cross-Validation
2.11. Model Comparison
2.12. Best Model Evaluation on the Test Dataset
3. Results
3.1. Genetic and Antigenic Relatedness by Antigenic Cartography
3.2. Dataset and Algorithms Development and Validation
3.3. Final Model Testing on the Test Dataset
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plotkin, S. History of Vaccination. Proc. Natl. Acad. Sci. USA 2014, 111, 12283–12287. [Google Scholar] [CrossRef] [PubMed]
- Lombard, M.; Pastoret, P.P.; Moulin, A.M. A Brief History of Vaccines and Vaccination. Rev. Sci. Tech. 2007, 26, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Read, A.F.; Mackinnon, M.J. Pathogen Evolution in a Vaccinated World. Evol. Health Dis. 2010, 2, 139–152. [Google Scholar] [CrossRef]
- Tannous, L.K.; Barlow, G.; Metcalfe, N.H. A Short Clinical Review of Vaccination against Measles. JRSM Open 2014, 5, 2054270414523408. [Google Scholar] [CrossRef]
- Hegerle, N.; Guiso, N. Bordetella Pertussis and Pertactin-Deficient Clinical Isolates: Lessons for Pertussis Vaccines. Expert Rev. Vaccines 2014, 13, 1135–1146. [Google Scholar] [CrossRef]
- Cobey, S. Pathogen Evolution and the Immunological Niche. Ann. N. Y. Acad. Sci. 2014, 1320, 1–15. [Google Scholar] [CrossRef]
- López-Valiñas, Á.; Baioni, L.; Córdoba, L.; Darji, A.; Chiapponi, C.; Segalés, J.; Ganges, L.; Núñez, J.I. Evolution of Swine Influenza Virus H3N2 in Vaccinated and Nonvaccinated Pigs after Previous Natural H1N1 Infection. Viruses 2022, 14, 2008. [Google Scholar] [CrossRef]
- Domingo, E.; Perales, C. Quasispecies and Virus. Eur. Biophys. J. 2018, 47, 443–457. [Google Scholar] [CrossRef]
- Soema, P.C.; Van Riet, E.; Kersten, G.; Amorij, J.P. Development of Cross-Protective Influenza A Vaccines Based on Cellular Responses. Front. Immunol. 2015, 6, 237. [Google Scholar] [CrossRef]
- García-Sastre, A.; Mena, I. Novel Vaccine Strategies against Emerging Viruses. Curr. Opin. Virol. 2013, 3, 210–216. [Google Scholar] [CrossRef]
- Legnardi, M.; Franzo, G.; Koutoulis, K.C.; Wiśniewski, M.; Catelli, E.; Tucciarone, C.M.; Cecchinato, M. Vaccine or Field Strains: The Jigsaw Pattern of Infectious Bronchitis Virus Molecular Epidemiology in Poland. Poult. Sci. 2019, 98, 6388–6392. [Google Scholar] [CrossRef] [PubMed]
- Franzo, G.; Tucciarone, C.M.; Blanco, A.; Nofrarías, M.; Biarnés, M.; Cortey, M.; Majó, N.; Catelli, E.; Cecchinato, M. Effect of Different Vaccination Strategies on IBV QX Population Dynamics and Clinical Outbreaks. Vaccine 2016, 34, 5670–5676. [Google Scholar] [CrossRef] [PubMed]
- Franzo, G.; Faustini, G.; Tucciarone, C.M.; Poletto, F.; Tonellato, F.; Cecchinato, M.; Legnardi, M. The Effect of Global Spread, Epidemiology, and Control Strategies on the Evolution of the GI-19 Lineage of Infectious Bronchitis Virus. Viruses 2024, 16, 481. [Google Scholar] [CrossRef]
- Knight-Jones, T.J.D.; Edmond, K.; Gubbins, S.; Paton, D.J. Veterinary and Human Vaccine Evaluation Methods. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132839. [Google Scholar] [CrossRef]
- Alexander, D.J. Newcastle Disease and Other Avian Paramyxovirus. OIE Rev. Sci. Tech. 2000, 19, 443–462. [Google Scholar] [CrossRef]
- Suarez, D.L.; Miller, P.J.; Koch, G.; Mundt, E.; Rautenschlein, S. Newcastle Disease, Other Avian Paramyxoviruses, and Avian Metapneumovirus Infections. In Diseases of Poultry; John Wiley & Sons Ltd.: Chichester, UK, 2017; pp. 87–138. [Google Scholar]
- Ramey, A.M.; Goraichuk, I.V.; Hicks, J.T.; Dimitrov, K.M.; Poulson, R.L.; Stallknecht, D.E.; Bahl, J.; Afonso, C.L. Assessment of Contemporary Genetic Diversity and Inter-Taxa/Inter-Region Exchange of Avian Paramyxovirus Serotype 1 in Wild Birds Sampled in North America. Virol. J. 2017, 14, 43. [Google Scholar] [CrossRef]
- Dimitrov, K.M.; Abolnik, C.; Afonso, C.L.; Albina, E.; Bahl, J.; Berg, M.; Briand, F.X.; Brown, I.H.; Choi, K.S.; Chvala, I.; et al. Updated Unified Phylogenetic Classification System and Revised Nomenclature for Newcastle Disease Virus. Infect. Genet. Evol. 2019, 74, 103917. [Google Scholar] [CrossRef]
- McMullin, P.F. Diseases of Poultry, 14th ed.; Swayne, D.E., Boulianne, M., Logue, C.M., McDougald, L.R., Nair, V., Suarez, D.L., de Wit, S., Grimes, T., Johnson, D., Kromm, M., et al., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2020. [Google Scholar]
- Mayers, J.; Mansfield, K.L.; Brown, I.H. The Role of Vaccination in Risk Mitigation and Control of Newcastle Disease in Poultry. Vaccine 2017, 35, 5974–5980. [Google Scholar] [CrossRef]
- Dimitrov, K.M.; Afonso, C.L.; Yu, Q.; Miller, P.J. Newcastle Disease Vaccines—A Solved Problem or a Continuous Challenge? Vet. Microbiol. 2017, 206, 126–136. [Google Scholar] [CrossRef]
- Hu, Z.; He, X.; Deng, J.; Hu, J.; Liu, X. Current Situation and Future Direction of Newcastle Disease Vaccines. Vet. Res. 2022, 53, 99. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, S.; Hu, B.; Xu, C.; Gao, D.; Zhu, M.; Huang, Q.; Zhang, L.; Wu, J.; Zhang, X.; et al. Genetic, Pathogenic and Antigenic Diversity of Newcastle Disease Viruses in Shandong Province, China. Vet. Microbiol. 2015, 180, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, K.M.; Ramey, A.M.; Qiu, X.; Bahl, J.; Afonso, C.L. Temporal, Geographic, and Host Distribution of Avian Paramyxovirus 1 (Newcastle Disease Virus). Infect. Genet. Evol. 2016, 39, 22–34. [Google Scholar] [CrossRef] [PubMed]
- van Hulten, M.C.W.; Cruz-Coy, J.; Gergen, L.; Pouwels, H.; ten Dam, G.B.; Verstegen, I.; de Groof, A.; Morsey, M.; Tarpey, I. Efficacy of a Turkey Herpesvirus Double Construct Vaccine (HVT-ND-IBD) against Challenge with Different Strains of Newcastle Disease, Infectious Bursal Disease and Marek’s Disease Viruses. Avian Pathol. 2021, 50, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortázar, C.; Herskin, M.; et al. Vaccination of Poultry against Highly Pathogenic Avian Influenza—Part 1. Available Vaccines and Vaccination Strategies. EFSA J. 2023, 21, e08271. [Google Scholar] [CrossRef]
- Miller, P.J.; King, D.J.; Afonso, C.L.; Suarez, D.L. Antigenic Differences among Newcastle Disease Virus Strains of Different Genotypes Used in Vaccine Formulation Affect Viral Shedding after a Virulent Challenge. Vaccine 2007, 25, 7238–7246. [Google Scholar] [CrossRef]
- Palya, V.; Kiss, I.; Tatár-Kis, T.; Mató, T.; Felföldi, B.; Gardin, Y. Advancement in Vaccination Against Newcastle Disease: Recombinant HVT NDV Provides High Clinical Protection and Reduces Challenge Virus Shedding with the Absence of Vaccine Reactions. Avian Dis. 2012, 56, 282–287. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, S.; Xu, H.; Liu, J.; Zhao, Z.; Wang, X.; Liu, X. Characterization of Virulent Newcastle Disease Viruses from Vaccinated Chicken Flocks in Eastern China. BMC Vet. Res. 2016, 12, 113. [Google Scholar] [CrossRef]
- Roohani, K.; Tan, S.W.; Yeap, S.K.; Ideris, A.; Bejo, M.H.; Omar, A.R. Characterisation of Genotype VII Newcastle Disease Virus (NDV) Isolated from NDV Vaccinated Chickens, and the Efficacy of LaSota and Recombinant Genotype VII Vaccines against Challenge with Velogenic NDV. J. Vet. Sci. 2015, 16, 447–457. [Google Scholar] [CrossRef]
- Jin, Z.; Wei, Q.; Bi, Y.; Li, Y.; Huo, N.; Mou, S.; Wang, W.; Liu, H.; Yang, Z.; Chen, H.; et al. Identification of a Potential Neutralizing Linear Epitope of Hemagglutinin-Neuraminidase in Newcastle Disease Virus. Virol. J. 2021, 18, 8. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Kolyani, K.A.; Tabatabaei, R.R.; Goudarzi, H.; Sepahi, A.A.; Salemi, M. In Silico Prediction of B and T Cell Epitopes Based on NDV Fusion Protein for Vaccine Development against Newcastle Disease Virus. Vet. Res. Forum 2021, 12, 157–165. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, J.; Xu, H.; Li, J.; Hu, Z.; Hu, S.; Wang, X.; Liu, X. Effects of the HN Antigenic Difference between the Vaccine Strain and the Challenge Strain of Newcastle Disease Virus on Virus Shedding and Transmission. Viruses 2017, 9, 225. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.J.; Afonso, C.L.; El Attrache, J.; Dorsey, K.M.; Courtney, S.C.; Guo, Z.; Kapczynski, D.R. Effects of Newcastle Disease Virus Vaccine Antibodies on the Shedding and Transmission of Challenge Viruses. Dev. Comp. Immunol. 2013, 41, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Fonville, J.M.; Fraaij, P.L.A.; de Mutsert, G.; Wilks, S.H.; van Beek, R.; Fouchier, R.A.M.; Rimmelzwaan, G.F. Antigenic Maps of Influenza A(H3N2) Produced with Human Antisera Obtained After Primary Infection. J. Infect. Dis. 2016, 213, 31–38. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, J.; Xue, J.; Yang, Y.; Zhang, G. Antigenic Variation of LaSota and Genotype VII Newcastle Disease Virus (NDV) and Their Efficacy against Challenge with Velogenic NDV. Vaccine 2017, 35, 27–32. [Google Scholar] [CrossRef]
- Li, Y.; Rehman, Z.U.; Li, M.; Manzoor, Z.; Liu, W.; Qiu, X.; Sun, Y.; Liao, Y.; Tan, L.; Song, C.; et al. Comparison of the Protective Antigen Variabilities of Prevalent Newcastle Disease Viruses in Response to Homologous/Heterologous Genotype Vaccines. Poult. Sci. 2021, 100, 101267. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A Simple Method of Estimating Fifty per Cent Endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- WOAH. Newcastle Disease (Infection with Newcastle Disease Virus). Chapter 3.3.14. 2021. Available online: https://www.woah.org/fileadmin/Home/fr/Health_standards/tahm/3.03.14_NEWCASTLE_DIS.pdf (accessed on 1 March 2025).
- Lone, N.A.; Spackman, E.; Kapczynski, D. Immunologic evaluation of 10 different adjuvants for use in vaccines for chickens against highly pathogenic avian influenza virus. Vaccine 2017, 35, 3401–3408. [Google Scholar] [CrossRef]
- Keiner, B.; Maenz, B.; Wagner, R.; Cattoli, G.; Capua, I.; Klenk, H.-D. Intracellular Distribution of NS1 Correlates with the Infectivity and Interferon Antagonism of an Avian Influenza Virus (H7N1). J. Virol. 2010, 84, 11858–11865. [Google Scholar] [CrossRef]
- World Health Organization. Manual for the Laboratory Diagnosis and Virological Surveillance of Influenza; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Wilks, S. Racmacs: R Antigenic Cartography Macros; 2022. Available online: https://cran.r-project.org/web/packages/Racmacs/index.html (accessed on 1 March 2025).
- Cubas-Gaona, L.L.; Courtillon, C.; Briand, F.X.; Cotta, H.; Bougeard, S.; Hirchaud, E.; Leroux, A.; Blanchard, Y.; Keita, A.; Amelot, M.; et al. High Antigenic Diversity of Serotype 1 Infectious Bursal Disease Virus Revealed by Antigenic Cartography. Virus Res. 2023, 323, 198999. [Google Scholar] [CrossRef]
- Standley, K. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. (Outlines Version 7). Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Abascal, F.; Zardoya, R.; Telford, M.J. TranslatorX: Multiple Alignment of Nucleotide Sequences Guided by Amino Acid Translations. Nucleic Acids Res. 2010, 38, W7–W13. [Google Scholar] [CrossRef] [PubMed]
- Atchley, W.R.; Zhao, J.; Fernandes, A.D.; Drüke, T. Solving the Protein Sequence Metric Problem. Proc. Natl. Acad. Sci. USA 2005, 102, 6395–6400. [Google Scholar] [CrossRef] [PubMed]
- de Wit, J.J.; Cook, J.K.A.; van der Heijden, H.M.J.F. Infectious Bronchitis Virus in Asia, Africa, Australia and Latin America—History, Current Situation and Control Measures. Braz. J. Poult. Sci. 2010, 12, 97–106. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Paradis, E.; Bolker, B.; Claude, J.; Cuong, H.S.; Desper, R.; Durand, B.; Dutheil, J.; Gascuel, O.; Heibl, C.; Lawson, D.; et al. Ape: Analyses of Phylogenetics and Evolution. Bioinformatics 2014, 20, 289–290. [Google Scholar] [CrossRef]
- Charif, D.; Lobry, J.R. SeqinR 1.0-2: A Contributed Package to the R Project for Statistical Computing Devoted to Biological Sequences Retrieval and Analysis. In Structural Approaches to Sequence Evolution; Springer: Berlin/Heidelberger, Germany, 2007; pp. 207–232. [Google Scholar]
- Heibl, C.; Cusimano, N.; Krah, F.-S.; Heibl, M.C. Package ‘ips’: Interfaces to Phylogenetic Software in R, version 0.0.12. 2019.
- Ginestet, C. Ggplot2: Elegant Graphics for Data Analysis. J. R. Stat. Soc. 2011, 174, 245–246. [Google Scholar] [CrossRef]
- Sarkar, D.; Sarkar, M.D.; KernSmooth, S. Package ‘Lattice’, version 0.20. 2015.
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Fritsch, S.; Guenther, F.; Guenther, M.F. Package ‘Neuralnet.’ Training of Neural Networks. R J. 2019, 2, 30–38. [Google Scholar]
- Karatzoglou, A.; Smola, A.; Hornik, K.; Karatzoglou, M.A. Package ‘Kernlab’, CRAN R Project. 2019.
- Hothorn, T.; Buehlmann, P.; Kneib, T.; Schmid, M.; Hofner, B.; Sobotka, F.; Scheipl, F. Package ‘Mboost’, 2013.
- James, G.M.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin/Heidelberger, Germany, 2013; Volume 112. [Google Scholar]
- Johnson, K.; Kuhn, M. Applied Predictive Modeling; Springer: Berlin/Heidelberger, Germany, 2013; Volume 26. [Google Scholar]
- Dangeti, P. Statistics for Machine Learning; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Kononenko, I. Machine Learning for Medical Diagnosis: History, State of the Art and Perspective. Artif. Intell. Med. 2001, 23, 89–109. [Google Scholar] [CrossRef]
- Li, M.; Zhou, Z.H. Improve Computer-Aided Diagnosis with Machine Learning Techniques Using Undiagnosed Samples. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2007, 37, 1088–1098. [Google Scholar] [CrossRef]
- Haug, C.J.; Drazen, J.M. Artificial Intelligence and Machine Learning in Clinical Medicine, 2023. N. Engl. J. Med. 2023, 388, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Gomes, B.; Ashley, E.A. Artificial Intelligence in Molecular Medicine. N. Engl. J. Med. 2023, 388, 2456–2465. [Google Scholar] [CrossRef] [PubMed]
- Kufel, J.; Bargieł-Łączek, K.; Kocot, S.; Koźlik, M.; Bartnikowska, W.; Janik, M.; Czogalik, Ł.; Dudek, P.; Magiera, M.; Lis, A.; et al. What Is Machine Learning, Artificial Neural Networks and Deep Learning?—Examples of Practical Applications in Medicine. Diagnostics 2023, 13, 2582. [Google Scholar] [CrossRef]
- Bhat, M.; Rabindranath, M.; Chara, B.S.; Simonetto, D.A. Artificial Intelligence, Machine Learning, and Deep Learning in Liver Transplantation. J. Hepatol. 2023, 78, 1216–1233. [Google Scholar] [CrossRef]
- Sailunaz, K.; Özyer, T.; Rokne, J.; Alhajj, R. A Survey of Machine Learning-Based Methods for COVID-19 Medical Image Analysis. Med. Biol. Eng. Comput. 2023, 61, 1257–1297. [Google Scholar] [CrossRef]
- Brownstein, J.S.; Rader, B.; Astley, C.M.; Tian, H. Advances in Artificial Intelligence for Infectious-Disease Surveillance. N. Engl. J. Med. 2023, 388, 1597–1607. [Google Scholar] [CrossRef]
- Sedeik, M.E.; Elbestawy, A.R.; El-Shall, N.A.; Abd El-Hack, M.E.; Saadeldin, I.M.; Swelum, A.A. Comparative Efficacy of Commercial Inactivated Newcastle Disease Virus Vaccines against Newcastle Disease Virus Genotype VII in Broiler Chickens. Poult. Sci. 2019, 98, 2000–2007. [Google Scholar] [CrossRef]
- Sultan, H.A.; Elfeil, W.K.; Nour, A.A.; Tantawy, L.; Kamel, E.G.; Eed, E.M.; El Askary, A.; Talaat, S. Efficacy of the Newcastle Disease Virus Genotype Vii.1.1-Matched Vaccines in Commercial Broilers. Vaccines 2022, 10, 29. [Google Scholar] [CrossRef]
- Sitaras, I. Antigenic Cartography: Overview and Current Developments. In Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2020; pp. 61–68. [Google Scholar]
- Choi, K.-S.; Kye, S.-J.; Jeon, W.-J.; Park, M.-J.; Kim, S.; Seul, H.-J.; Kwon, J.-H. Preparation and Diagnostic Utility of a Hemagglutination Inhibition Test Antigen Derived from the Baculovirus-Expressed Hemagglutinin-Neuraminidase Protein Gene of Newcastle Disease Virus. J. Vet. Sci. 2013, 14, 291–297. [Google Scholar] [CrossRef]
- Guseva, N.A.; Kolosov, S.N.; Zinyakov, N.G.; Andriyasov, A.V.; Yin, R.; Scherbakova, L.O.; Ovchinnikova, E.V.; Nikonova, Z.B.; Andreychuk, D.B.; Sprygin, A.V.; et al. Analysis of Avian Orthoavulavirus 1 Detected in the Russian Federation between 2017 and 2021. Vaccines 2023, 11, 1032. [Google Scholar] [CrossRef]
- Qiu, X.; Sun, Q.; Yao, C.; Dong, L.; Wu, Y.; Hu, S.; Liu, X. Full-Length Genome Analysis of Two Genotype III Velogenic Newcastle Diseases Virus Strains Reveals Their Close Relationship with Vaccine Mukteswar. Wei Sheng Wu Xue Bao 2009, 49, 302–308. [Google Scholar]
Strain | Genotype (Dimitrov 2019 [18]) | Pathotype 1 | HA Titer | Titer (EID50/100 µL) | |
---|---|---|---|---|---|
Vaccine | VG/GA-AVINEW | I.1.1 | Avirulent | 1:256 | 108.83 |
V4-like | I.1.2 | Avirulent | 1:128 | 108.5 | |
NDV I2 | I.1.1 | Avirulent | 1:128 | 108.83 | |
Ulster | I.2 | Avirulent | 1:512 | 108.5 | |
B1 | II | Avirulent | 1:512 | 108.5 | |
LaSota | II | Avirulent | 1:256 | 108.83 | |
Field virus | APMV-1/Herts_21VIR2596/33 | IV | Virulent | 1:128 | 108.625 |
APMV-1/chicken/California/18016505-1_19VIR4338/2018 | V | Virulent | 1:256 | 108.625 | |
APMV-1/pigeon/Italy/19VIR8321/2019 | VI | Virulent | 1:64 | 108 | |
APMV-1/chicken/Krasnodar/91_21VIR4521/19 | VII.1.1 | Virulent | 1:128 | 108.5 | |
APMV-1/chicken/Romania/19VIR9275-1/2019 | VII.1.1 | Virulent | 1:256 | 109.625 | |
APMV-1/broiler/Spain/22VIR7253-24/2022 | VII.2 | Virulent | 1:128 | 108.625 | |
APMV-1/chicken/Macedonia/20VIR1984-1/2020 | VII.2 | Virulent | 1:128 | 108.5 | |
APMV-1/chicken/Belgium/4096_19RS1-M/2018 | VII.2 | Virulent | 1:64 | 108.625 | |
APMV-1/avian/Nigeria/21RS744-46/2021 | XIV.2 | Virulent | 1:64 | 108.625 | |
APMV-1/avian/Nigeria/21RS2367-12/2021 | XIV.2 | Virulent | 1:64 | 108.625 | |
APMV-1/avian/Nigeria/21RS736-11/2021 | XIV.2 | Virulent | 1:64 | 108.375 | |
APMV-1/avian/Nigeria/21RS2368-1/2021 | XIV.2 | Virulent | 1:32 | 108.375 | |
APMV-1/avian/Nigeria/21RS2368-6/2021 | XIV.2 | Virulent | 1:32 | 108.375 | |
APMV-1/chicken/Cameroon/3490-168_21VIR2562/2008 | XVII | Virulent | 1:128 | 108.83 | |
APMV-1/pigeon/Luxembourg/18175752_18VIR10959/2018 | XXI.1.1 | Virulent | 1:64 | 108.625 | |
APMV-1/pigeon/Cyprus/20VIR3543-36_26364-1/2020 | XXI.2 | Virulent | Not viable | Not viable |
Virus | Genotype | AA Differences to Vaccines HN Gene Level | AA Differences to Vaccines F Gene Level |
---|---|---|---|
APMV-1/Herts_21VIR2596/33 | IV | 34–47 | 28–48 |
APMV-1/chicken/California/18016505-1_19VIR4338/2018 | V.1 | 59–70 | 57–72 |
APMV-1/pigeon/Italy/19VIR8321/2019 | VI.2.1 | 60–74 | 49–62 |
APMV-1/chicken/Krasnodar/91_21VIR4521/19 | VII.1.1 | 56–69 | 60–74 |
APMV-1/chicken/Romania/19VIR9275-1/2019 | VII.1.1 | 61-71 | 48–63 |
APMV-1/broiler/Spain/22VIR7253-24/2022 | VII.2 | 60–72 | 44–65 |
APMV-1/chicken/Macedonia/20VIR1984-1/2020 | VII.2 | 63–75 | 44–65 |
APMV-1/chicken/Belgium/4096_19RS1-M/2018 | VII.2 | 60–72 | 44–64 |
APMV-1/avian/Nigeria/21RS744-46/2021 | XIV.2 | 68–81 | 61–78 |
APMV-1/avian/Nigeria/21RS2367-12/2021 | XIV.2 | 72–84 | 61–78 |
APMV-1/avian/Nigeria/21RS736-11/2021 | XIV.2 | 64–75 | 62–79 |
APMV-1/avian/Nigeria/21RS2368-1/2021 | XIV.2 | 66–79 | 59–76 |
APMV-1/avian/Nigeria/21RS2368-6/2021 | XIV.2 | 66–79 | 62–79 |
APMV-1/chicken/Cameroon/3490-168_21VIR2562/2008 | XVII | 64–74 | 48–69 |
APMV-1/pigeon/Luxembourg/18175752_18VIR10959/2018 | XXI.1.1 | 61–73 | 53–66 |
APMV-1/pigeon/Cyprus/20VIR3543-36_26364-1/2020 | XXI.2 | 54–70 | 58–77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franzo, G.; Fusaro, A.; Snoeck, C.J.; Dodovski, A.; Van Borm, S.; Steensels, M.; Christodoulou, V.; Onita, I.; Burlacu, R.; Sánchez, A.S.; et al. Evaluation of Different Machine Learning Approaches to Predict Antigenic Distance Among Newcastle Disease Virus (NDV) Strains. Viruses 2025, 17, 567. https://doi.org/10.3390/v17040567
Franzo G, Fusaro A, Snoeck CJ, Dodovski A, Van Borm S, Steensels M, Christodoulou V, Onita I, Burlacu R, Sánchez AS, et al. Evaluation of Different Machine Learning Approaches to Predict Antigenic Distance Among Newcastle Disease Virus (NDV) Strains. Viruses. 2025; 17(4):567. https://doi.org/10.3390/v17040567
Chicago/Turabian StyleFranzo, Giovanni, Alice Fusaro, Chantal J. Snoeck, Aleksandar Dodovski, Steven Van Borm, Mieke Steensels, Vasiliki Christodoulou, Iuliana Onita, Raluca Burlacu, Azucena Sánchez Sánchez, and et al. 2025. "Evaluation of Different Machine Learning Approaches to Predict Antigenic Distance Among Newcastle Disease Virus (NDV) Strains" Viruses 17, no. 4: 567. https://doi.org/10.3390/v17040567
APA StyleFranzo, G., Fusaro, A., Snoeck, C. J., Dodovski, A., Van Borm, S., Steensels, M., Christodoulou, V., Onita, I., Burlacu, R., Sánchez, A. S., Chvala, I. A., Torchetti, M. K., Shittu, I., Olabode, M., Pastori, A., Schivo, A., Salomoni, A., Maniero, S., Zambon, I., ... Bortolami, A. (2025). Evaluation of Different Machine Learning Approaches to Predict Antigenic Distance Among Newcastle Disease Virus (NDV) Strains. Viruses, 17(4), 567. https://doi.org/10.3390/v17040567