Overexpression of Interleukin-17 Modulates Responses to Marek’s Disease Virus Infection and Tumor Formation in Chickens
Abstract
1. Introduction
2. Materials and Methods
2.1. Plasmid Preparation
2.2. Virus Preparation
2.3. Experimental Design and Sampling
2.4. Spleen Mononuclear Cell Preparation and Stimulation
2.5. RNA Extraction and Reverse Transcription
2.6. Real-Time Polymerase Chain Reaction (RT-PCR)
2.7. Flow Cytometry
2.8. Statistical Analysis
3. Results
3.1. IL-17 Treatment at 4-Dpi Decreases Disease Severity but Not Tumor Incidence
3.2. IL-17 Treatment Increases RB1B Meq Expression in the Spleen, Lung, and Skin Tissues
3.3. IL-17 Treatment at 4-Dpi Increases the Frequency of CD8 T-Cells in the Spleen
3.4. Treatment with IL-17 at 10-dpi Increases the Frequency of CD8+ T Cells in the Spleen of MDV-Infected Chickens
3.5. Changes in Gene Expression Profile Following IL-17 Treatment in MDV-Infected Chickens
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cua, D.J.; Tato, C.M. Innate IL-17-producing cells: The sentinels of the immune system. Nat. Rev. Immunol. 2010, 10, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Korn, T.; Bettelli, E.; Oukka, M.; Kuchroo, V.K. IL-17 and Th17 Cells. Annu. Rev. Immunol. 2009, 27, 485–517. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.H.G. IL-17 and IL-17-producing cells in protection versus pathology. Nat. Rev. Immunol. 2023, 23, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Moseley, T.A.; Haudenschild, D.R.; Rose, L.; Reddi, A.H. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 2003, 14, 155–174. [Google Scholar] [CrossRef] [PubMed]
- Boari, J.T.; Araujo Furlan, C.L.; Vernengo, F.F.; Rodriguez, C.; Ramello, M.C.; Amezcua Vesely, M.C.; Serrán, M.G.; Nuñez, N.G.; Richer, W.; Piaggio, E.; et al. IL-17RA-Signaling Modulates CD8+ T Cell Survival and Exhaustion During Trypanosoma cruzi Infection. Front. Immunol. 2018, 9, 2347. [Google Scholar] [CrossRef]
- Vernengo, F.F.; Beccaria, C.G.; Araujo Furlan, C.L.; Boari, J.T.; Almada, L.; Serrán, M.G.; Gazzoni, Y.; Montes, C.L.; Acosta Rodríguez, E.V.; Gruppi, A. CD8+T Cell Immunity Is Compromised by Anti-CD20 Treatment and Rescued by Interleukin-17A. mBio 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama-Kato, A.; Shojadoost, B.; Boodhoo, N.; Raj, S.; Alizadeh, M.; Fazel, F.; Fletcher, C.; Zheng, J.; Gupta, B.; Abdul-Careem, M.F.; et al. Activated Chicken Gamma Delta T Cells Are Involved in Protective Immunity against Marek’s Disease. Viruses 2023, 15, 285. [Google Scholar] [CrossRef] [PubMed]
- Boodhoo, N.; Matsuyama-Kato, A.; Raj, S.; Fazel, F.; St-Denis, M.; Sharif, S. Effect of Pre-Treatment with a Recombinant Chicken Interleukin-17A on Vaccine Induced Immunity against a Very Virulent Marek’s Disease Virus. Viruses 2023, 15, 1633. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama-Kato, A.; Boodhoo, N.; Raj, S.; Abdul-Careem, M.F.; Plattner, B.L.; Behboudi, S.; Sharif, S. The tumor microenvironment generated by Marek’s disease virus suppresses interferon-gamma-producing gamma delta T cells. Veter- Microbiol. 2023, 285, 109874. [Google Scholar] [CrossRef] [PubMed]
- Haq, K.; Elawadli, I.; Parvizi, P.; Mallick, A.I.; Behboudi, S.; Sharif, S. Interferon-γ influences immunity elicited by vaccines against very virulent Marek’s disease virus. Antivir. Res. 2011, 90, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Boodhoo, N.; Gurung, A.; Sharif, S.; Behboudi, S. Marek’s disease in chickens: A review with focus on immunology. Veter- Res. 2016, 47, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Calnek, B.W. Pathogenesis of Marek’s Disease Virus Infection. In Marek’s Disease; Hirai, K., Ed.; Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2001; Volume 255, pp. 25–55. [Google Scholar] [CrossRef]
- Osterrieder, N.; Kamil, J.P.; Schumacher, D.; Tischer, B.K.; Trapp, S. Marek’s disease virus: From miasma to model. Nat. Rev. Microbiol. 2006, 4, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Engel, A.T.; Selvaraj, R.K.; Kamil, J.P.; Osterrieder, N.; Kaufer, B.B. Marek’s Disease Viral Interleukin-8 Promotes Lymphoma Formation through Targeted Recruitment of B Cells and CD4 + CD25 + T Cells. J. Virol. 2012, 86, 8536–8545. [Google Scholar] [CrossRef] [PubMed]
- Boodhoo, N.; Kamble, N.; Kaufer, B.B.; Behboudi, S.; Longnecker, R.M. Replication of Marek’s Disease Virus Is Dependent on Synthesis of De Novo Fatty Acid and Prostaglandin E 2. J. Virol. 2019, 93, e00352-19. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Hunt, H.D.; Parcells, M.S.; van Santen, V.; Ewald, S.J. Two class I genes of the chicken MHC have different functions: BF1 is recognized by NK cells while BF2 is recognized by CTLs. Immunogenetics 2018, 70, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Boodhoo, N.; Behboudi, S. Differential Virus-Specific IFN-Gamma Producing T Cell Responses to Marek’s Disease Virus in Chickens With B19 and B21 MHC Haplotypes. Front. Immunol. 2022, 12, 784359. [Google Scholar] [CrossRef] [PubMed]
- Omar, A.R.; Schat, K.A. Syngeneic Marek’s Disease Virus (MDV)-Specific Cell-Mediated Immune Responses against Immediate Early, Late, and Unique MDV Proteins. Virology 1996, 222, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Acharya, D.; Wang, P.; Paul, A.M.; Dai, J.; Gate, D.; Lowery, J.E.; Stokic, D.S.; Leis, A.A.; Flavell, R.A.; Town, T.; et al. Interleukin-17A Promotes CD8+T Cell Cytotoxicity to Facilitate West Nile Virus Clearance. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [PubMed]
- Schat, K.A.; Calnek, B.W.; Fabricant, J. Characterisation of two highly oncogenic strains of Marek’s disease virus12. Avian Pathol. 1982, 11, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Careem, M.F.; Javaheri-Vayeghan, A.; Shanmuganathan, S.; Haghighi, H.R.; Read, L.R.; Haq, K.; Hunter, D.B.; Schat, K.A.; Heidari, M.; Sharif, S. Establishment of an Aerosol-Based Marek’s Disease Virus Infection Model. Avian Dis. Dig. 2009, 4, e9. [Google Scholar] [CrossRef]
- Boodhoo, N.; St-Denis, M.; Zheng, J.; Gupta, B.; Sharif, S. In vivo overexpression of the avian interleukin-17 in a necrotic enteritis disease model modulates the expression of antimicrobial peptides in the small intestine of broilers. Cytokine 2024, 183, 156749. [Google Scholar] [CrossRef] [PubMed]
- Boodhoo, N.; Sharif, S.; Behboudi, S.; Ahlenstiel, G. 1α,25(OH)2 Vitamin D3 Modulates Avian T Lymphocyte Functions without Inducing CTL Unresponsiveness. PLOS ONE 2016, 11, e0150134. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Careem, M.F.; Haq, K.; Shanmuganathan, S.; Read, L.R.; Schat, K.A.; Heidari, M.; Sharif, S. Induction of innate host responses in the lungs of chickens following infection with a very virulent strain of Marek’s disease virus. Virology 2009, 393, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Walliser, I.; Göbel, T.W. Chicken IL-17A is expressed in αβ and γδ T cell subsets and binds to a receptor present on macrophages, and T cells. Dev. Comp. Immunol. 2018, 81, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yi, T.; Kortylewski, M.; Pardoll, D.M.; Zeng, D.; Yu, H. IL-17 can promote tumor growth through an IL-6–Stat3 signaling pathway. J. Exp. Med. 2009, 206, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Gurung, A.; Kamble, N.; Kaufer, B.B.; Pathan, A.; Behboudi, S.; Cheng, H.H. Association of Marek’s Disease induced immunosuppression with activation of a novel regulatory T cells in chickens. PLOS Pathog. 2017, 13, e1006745. [Google Scholar] [CrossRef] [PubMed]
- Kamble, N.; Gurung, A.; Kaufer, B.B.; Pathan, A.A.; Behboudi, S. Marek’s Disease Virus Modulates T Cell Proliferation via Activation of Cyclooxygenase 2-Dependent Prostaglandin E2. Front. Immunol. 2021, 12, 801781. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhu, J.; He, M.; Luo, Q.; Liu, F.; Chen, R. Marek’s Disease Virus Activates the PI3K/Akt Pathway Through Interaction of Its Protein Meq with the P85 Subunit of PI3K to Promote Viral Replication. Front. Microbiol. 2018, 9, 2547. [Google Scholar] [CrossRef] [PubMed]
- Lupiani, B.; Lee, L.F.; Cui, X.; Gimeno, I.; Anderson, A.; Morgan, R.W.; Silva, R.F.; Witter, R.L.; Kung, H.-J.; Reddy, S.M. Marek’s disease virus-encoded Meq gene is involved in transformation of lymphocytes but is dispensable for replication. Proc. Natl. Acad. Sci. USA 2004, 101, 11815–11820. [Google Scholar] [CrossRef] [PubMed]
- Sahu, U.; Biswas, D.; Prajapati, V.K.; Singh, A.K.; Samant, M.; Khare, P. Interleukin-17—A multifaceted cytokine in viral infections. J. Cell. Physiol. 2021, 236, 8000–8019. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, A.; Bhowmick, S.; Sharif, S.; Mallick, A.I. Pre-treatment with chicken IL-17A secreted by bioengineered LAB vector protects chicken embryo fibroblasts against Influenza Type A Virus (IAV) infection. Mol. Immunol. 2021, 140, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Jondle, C.N.; Johnson, K.E.; Aurubin, C.; Sylvester, P.; Xin, G.; Cui, W.; Huppler, A.R.; Tarakanova, V.L.; Krug, L.T.; Damania, B. Gammaherpesvirus Usurps Host IL-17 Signaling To Support the Establishment of Chronic Infection. mBio 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Baaten, B.J.G.; Staines, K.A.; Smith, L.P.; Skinner, H.; Davison, T.F.; Butter, C. Early Replication in Pulmonary B Cells after Infection with Marek’s Disease Herpesvirus by the Respiratory Route. Viral Immunol. 2009, 22, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Gimeno, I.M.; Witter, R.L.; Hunt, H.D.; Reddy, S.M.; Lee, L.F.; Silva, R.F. The pp38 Gene of Marek’s Disease Virus (MDV) Is Necessary for Cytolytic Infection of B Cells and Maintenance of the Transformed State but Not for Cytolytic Infection of the Feather Follicle Epithelium and Horizontal Spread of MDV. J. Virol. 2005, 79, 4545–4549. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Lee, L.F.; Reed, W.M.; Kung, H.-J.; Reddy, S.M. Marek’s Disease Virus-Encoded vIL-8 Gene Is Involved in Early Cytolytic Infection but Dispensable for Establishment of Latency. J. Virol. 2004, 78, 4753–4760. [Google Scholar] [CrossRef] [PubMed]
- Gimeno, I.M.; Schat, K.A. Virus-Induced Immunosuppression in Chickens. Avian Dis. 2018, 62, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Parcells, M.S.; Lin, S.-F.; Dienglewicz, R.L.; Majerciak, V.; Robinson, D.R.; Chen, H.-C.; Wu, Z.; Dubyak, G.R.; Brunovskis, P.; Hunt, H.D.; et al. Marek’s Disease Virus (MDV) Encodes an Interleukin-8 Homolog (vIL-8): Characterization of the vIL-8 Protein and a vIL-8 Deletion Mutant MDV. J. Virol. 2001, 75, 5159–5173. [Google Scholar] [CrossRef] [PubMed]
- Mitsdoerffer, M.; Lee, Y.; Jäger, A.; Kim, H.-J.; Korn, T.; Kolls, J.K.; Cantor, H.; Bettelli, E.; Kuchroo, V.K. Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc. Natl. Acad. Sci. USA 2010, 107, 14292–14297. [Google Scholar] [CrossRef] [PubMed]
- Gaffen, S.L. Structure and signalling in the IL-17 receptor family. Nat. Rev. Immunol. 2009, 9, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Jin, Y.-H.; Kang, H.S.; Kim, B.S.; Perlman, S. Interleukin-6 (IL-6) and IL-17 Synergistically Promote Viral Persistence by Inhibiting Cellular Apoptosis and Cytotoxic T Cell Function. J. Virol. 2014, 88, 8479–8489. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Kwok, S.-K.; Son, H.-J.; Ryu, J.-G.; Kim, E.-K.; Oh, H.-J.; Cho, M.-L.; Ju, J.H.; Park, S.-H.; Kim, H.-Y. IL-17-mediated Bcl-2 expression regulates survival of fibroblast-like synoviocytes in rheumatoid arthritis through STAT3 activation. Arthritis Res. Ther. 2013, 15, R31. [Google Scholar] [CrossRef] [PubMed]
- Bagri, P.; Anipindi, V.C.; Nguyen, P.V.; Vitali, D.; Stämpfli, M.R.; Kaushic, C.; Jung, J.U. Novel Role for Interleukin-17 in Enhancing Type 1 Helper T Cell Immunity in the Female Genital Tract following Mucosal Herpes Simplex Virus 2 Vaccination. J. Virol. 2017, 91, e01234-17. [Google Scholar] [CrossRef] [PubMed]
- Boodhoo, N.; Behboudi, S. Marek’s disease virus-specific T cells proliferate, express antiviral cytokines but have impaired degranulation response. Front. Immunol. 2022, 13, 973762. [Google Scholar] [CrossRef]
- Matsuyama-Kato, A.; Iseki, H.; Boodhoo, N.; Bavananthasivam, J.; Alqazlan, N.; Abdul-Careem, M.F.; Plattner, B.L.; Behboudi, S.; Sharif, S. Phenotypic characterization of gamma delta (γδ) T cells in chickens infected with or vaccinated against Marek’s disease virus. Virology 2022, 568, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Turner, H.; Maynard, C.L.; Oliver, J.R.; Chen, D.; Elson, C.O.; Weaver, C.T. Late Developmental Plasticity in the T Helper 17 Lineage. Immunity 2009, 30, 92–107. [Google Scholar] [CrossRef] [PubMed]
Target Gene | Primer Sequence | Annealing Temp | Accession Number | |
---|---|---|---|---|
β-actin | FWD | 5′-CAACACAGTGCTGTCTGGTGGTA-3′ | 58 °C | X00182 |
REV | 5′-ATCGTACTCCTGCTTGCTGATCC-3′ | |||
meq | FWD | 5′-GTCCCCCCTCGATCTTTCTC-3′ | 64 °C | AY571783 |
REV | 5′-CGTCTGCTTCCTGCGTCTTC-3′ | |||
IFN-γ | FWD | 5′-ACACTGACAAGTCAAAGCCGCACA-3′ | 60 °C | X99774 |
REV | 5′-AGTCGTTCATCGGGAGCTTGGC-3′ | |||
IL-2 | FWD | 5′-TGCAGTGTTACCTGGGAGAAGTGGT-3′ | 58 °C | NM_204153.2 |
REV | 5′-ACTTCCGGTGTGATTTAGACCCGT-3′ | |||
granzyme A | FWD | 5′-TGGGTGTTAACAGCTGCTCATTGC-3′ | 55 °C | NM_204457.2 |
REV | 5′-CACCTGAATCCCCTCGACATGAGT-3′ | |||
perforin | FWD | 5′-ATGGCGCAGGTGACAGTGA-3′ | 64 °C | XM_046929135.1 |
REV | 5′-TGGCCTGCACCGGTAATTC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boodhoo, N.; Blake, K.; Fazel, F.; Shoja Doost, J.; Sharif, S. Overexpression of Interleukin-17 Modulates Responses to Marek’s Disease Virus Infection and Tumor Formation in Chickens. Viruses 2025, 17, 1009. https://doi.org/10.3390/v17071009
Boodhoo N, Blake K, Fazel F, Shoja Doost J, Sharif S. Overexpression of Interleukin-17 Modulates Responses to Marek’s Disease Virus Infection and Tumor Formation in Chickens. Viruses. 2025; 17(7):1009. https://doi.org/10.3390/v17071009
Chicago/Turabian StyleBoodhoo, Nitish, Katherine Blake, Fatemeh Fazel, Janan Shoja Doost, and Shayan Sharif. 2025. "Overexpression of Interleukin-17 Modulates Responses to Marek’s Disease Virus Infection and Tumor Formation in Chickens" Viruses 17, no. 7: 1009. https://doi.org/10.3390/v17071009
APA StyleBoodhoo, N., Blake, K., Fazel, F., Shoja Doost, J., & Sharif, S. (2025). Overexpression of Interleukin-17 Modulates Responses to Marek’s Disease Virus Infection and Tumor Formation in Chickens. Viruses, 17(7), 1009. https://doi.org/10.3390/v17071009