Importance of Target Gene Locus on the Stability of Recombinant Viruses in the Baculovirus Expression System
Abstract
1. Introduction
2. Materials and Methods
2.1. Cells and Bacmid
2.2. λ-Red Recombination
2.3. Construction of Bacmids Lacking attTn7 Site
2.4. Relocation of the attTn7 Site
2.5. Generation of Recombinant Viruses
2.6. Serial Undiluted Virus Passage
2.7. Fluorescence Intensity Measurement
2.8. Virus Titration
2.9. Quantitative PCR (qPCR)
2.10. Statistical Analysis
3. Results
3.1. Generation of Recombinant Bacmids with Alternative Transposition Sites
3.2. Expression Stability of Recombinant Viruses During Serial Undiluted Passages
3.3. Genetic Stability of Recombinant Viruses After Serial Passaging
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, N.; Kong, X.; Zhao, S.; Wu, X. Post-translational modification of baculovirus-encoded proteins. Virus Res. 2020, 279, 197865. [Google Scholar] [CrossRef]
- Hitchman, R.B.; Possee, R.D.; King, L.A. Baculovirus expression systems for recombinant protein production in insect cells. Recent. Pat. Biotechnol. 2009, 3, 46–54. [Google Scholar] [CrossRef]
- Possee, R.D.; Chambers, A.C.; Graves, L.P.; Aksular, M.; King, L.A. Recent developments in the use of baculovirus expression vectors. Curr. Issues Mol. Biol. 2020, 34, 215–230. [Google Scholar] [CrossRef]
- Chambers, A.C.; Aksular, M.; Graves, L.P.; Irons, S.L.; Possee, R.D.; King, L.A. Overview of the Baculovirus Expression System. Curr. Protoc. Protein Sci. 2018, 91, 5.4.1–5.4.6. [Google Scholar] [CrossRef]
- Garretson, T.A.; Shang, H.; Schulz, A.K.; Donohue, B.V.; Cheng, X.W. Expression- and genomic-level changes during passage of four baculoviruses derived from bacmids in permissive insect cell lines. Virus Res. 2018, 256, 117–124. [Google Scholar] [CrossRef]
- Mehalko, J.L.; Esposito, D. Engineering the transposition-based baculovirus expression vector system for higher efficiency protein production from insect cells. J. Biotechnol. 2016, 238, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pijlman, G.P.; Grose, C.; Hick, T.A.H.; Breukink, H.E.; van den Braak, R.; Abbo, S.R.; Geertsema, C.; van Oers, M.M.; Martens, D.E.; Esposito, D. Relocation of the attTn7 transgene insertion site in bacmid DNA enhances baculovirus genome stability and recombinant protein expression in insect cells. Viruses 2020, 12, 1448. [Google Scholar] [CrossRef]
- Hong, M.; Li, T.; Xue, W.; Zhang, S.; Cui, L.; Wang, H.; Zhang, Y.; Zhou, L.; Gu, Y.; Xia, N.; et al. Genetic engineering of baculovirus-insect cell system to improve protein production. Front. Bioeng. Biotechnol. 2022, 10, 994743. [Google Scholar] [CrossRef] [PubMed]
- Pijlman, G.P.; van den Born, E.; Martens, D.E.; Vlak, J.M. Autographa californica baculoviruses with large genomic deletions are rapidly generated in infected insect cells. Virology 2001, 283, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Pijlman, G.P.; van Schijndel, J.E.; Vlak, J.M. Spontaneous excision of BAC vector sequences from bacmid-derived baculovirus expression vectors upon passage in insect cells. J. Gen. Virol. 2003, 84, 2669–2678. [Google Scholar] [CrossRef]
- Mayr, C. What are 3′ UTRs doing? Cold Spring Harb. Perspect. Biol. 2019, 11, a034728. [Google Scholar] [CrossRef] [PubMed]
- Ryczek, N.; Łyś, A.; Makałowska, I. The Functional meaning of 5′UTR in protein-coding genes. Int. J. Mol. Sci. 2023, 24, 2976. [Google Scholar] [CrossRef] [PubMed]
- Chaabihi, H.; Ogliastro, M.H.; Martin, M.; Giraud, C.; Devauchelle, G.; Cerutti, M. Competition between baculovirus polyhedrin and p10 gene expression during infection of insect cells. J. Virol. 1993, 67, 2664–2671. [Google Scholar] [CrossRef]
- Hitchman, R.B.; Possee, R.D.; Crombie, A.T.; Chambers, A.; Ho, K.; Siaterli, E.; Lissina, O.; Sternard, H.; Novy, R.; Loomis, K.; et al. Genetic modification of a baculovirus vector for increased expression in insect cells. Cell Biol. Toxicol. 2010, 26, 57–68. [Google Scholar] [CrossRef]
- Kelly, B.J.; King, L.A.; Possee, R.D. Introduction to baculovirus molecular biology. Methods Mol. Biol. 2016, 1350, 25–50. [Google Scholar] [CrossRef]
- Bieniossek, C.; Richmond, T.J.; Berger, I. MultiBac: Multigene baculovirus-based eukaryotic protein complex production. Curr. Protoc. Protein Sci. 2008, 51, 5.20.1–5.20.26. [Google Scholar] [CrossRef]
- Hitchman, R.B.; Possee, R.D.; Siaterli, E.; Richards, K.S.; Clayton, A.J.; Bird, L.E.; Owens, R.J.; Carpentier, D.C.; King, F.L.; Danquah, J.O.; et al. Improved expression of secreted and membrane-targeted proteins in insect cells. Biotechnol. Appl. Biochem. 2010, 56, 85–93. [Google Scholar] [CrossRef]
- Kim, K.S.; Bae, J.S.; Moon, H.J.; Kim, D.Y.; Woo, S.D. A novel transgenic Sf9 cell line for quick and easy virus quantification. Insects 2024, 15, 686. [Google Scholar] [CrossRef]
- Hitchman, R.B.; Locanto, E.; Possee, R.D.; King, L.A. Optimizing the baculovirus expression vector system. Methods 2011, 55, 52–57. [Google Scholar] [CrossRef]
- O’Reilly, D.R.; Miller, L.K.; Luckow, V.A. Baculovirus Expression Vectors: A Laboratory Manual; Oxford University Press: New York, NY, USA, 1992. [Google Scholar]
- Murphy, K.C. λ Recombination and recombineering. EcoSal Plus 2016, 7, e0011-2015. [Google Scholar] [CrossRef]
- Lynn, C.T.; James, A.S.; Xintian, L.; Nina, C.; Donald, L.C. Recombineering: Genetic engineering in bacteria using homologous recombination. Curr. Protoc. Mol. Biol. 2014, 106, 1.16.1–1.16.39. [Google Scholar] [CrossRef]
- Mosberg, J.A.; Lajoie, M.J.; Church, G.M. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 2010, 186, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Gwak, W.S.; Kim, H.S.; Bae, J.S.; Kim, T.H.; Bae, S.M.; Woo, S.D. Development of a novel enhanced baculovirus expression vector via promoter combination. J. Asia-Pac. Entomol. 2020, 23, 909–914. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, T.; Lu, D.; Wang, J.; Xu, Z.; Zhang, Y.; Liu, Q. Genome-wide nonessential gene identification of Autographa californica multiple nucleopolyhedrovirus. Gene 2023, 863, 147239. [Google Scholar] [CrossRef]
- Chen, C.J.; Thiem, S.M. Differential infectivity of two Autographa californica nucleopolyhedrovirus mutants on three permissive cell lines is the result of lef-7 deletion. Virology 1997, 227, 88–95. [Google Scholar] [CrossRef]
- Zwart, M.P.; Sardanyés, J.; Duarte, J.; Januário, C.; Elena, S.F.; Pijlman, G.P. Complex dynamics of defective interfering baculoviruses during serial passage in insect cells. J. Biol. Phys. 2013, 39, 327–342. [Google Scholar] [CrossRef]
- Giri, L.; Li, H.; Sandgren, D.; Feiss, M.G.; Roller, R.; Bonning, B.C.; Murhammer, D.W. Removal of transposon target sites from the Autographa californica multiple nucleopolyhedrovirus fp25k gene delays, but does not prevent, accumulation of the few polyhedra phenotype. J. Gen. Virol. 2010, 91, 3053–3064. [Google Scholar] [CrossRef]
- Giri, L.; Feiss, M.G.; Bonning, B.C.; Murhammer, D.W. Production of baculovirus defective interfering particles during serial passage is delayed by removing transposon target sites in fp25k. J. Gen. Virol. 2012, 93, 389–399. [Google Scholar] [CrossRef]
- Li, S.; Wang, M.; Shen, S.; Hu, Z.; Wang, H.; Deng, F. The fp25k acts as a negative factor for the infectivity of AcMNPV budded virus. PLoS ONE 2015, 10, e0128471. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.H.; Lee, D.-H.; Moon, H.-J.; Woo, S.D. Importance of Target Gene Locus on the Stability of Recombinant Viruses in the Baculovirus Expression System. Viruses 2025, 17, 902. https://doi.org/10.3390/v17070902
Lee JH, Lee D-H, Moon H-J, Woo SD. Importance of Target Gene Locus on the Stability of Recombinant Viruses in the Baculovirus Expression System. Viruses. 2025; 17(7):902. https://doi.org/10.3390/v17070902
Chicago/Turabian StyleLee, Jong Ho, Dong-Hyun Lee, Hyuk-Jin Moon, and Soo Dong Woo. 2025. "Importance of Target Gene Locus on the Stability of Recombinant Viruses in the Baculovirus Expression System" Viruses 17, no. 7: 902. https://doi.org/10.3390/v17070902
APA StyleLee, J. H., Lee, D.-H., Moon, H.-J., & Woo, S. D. (2025). Importance of Target Gene Locus on the Stability of Recombinant Viruses in the Baculovirus Expression System. Viruses, 17(7), 902. https://doi.org/10.3390/v17070902