Optimization of a High-Throughput Human Papillomavirus Neutralizing Antibody Assay Based on Pseudotyped Viruses for the 15-Valent Human Papillomavirus Vaccine Types
Abstract
1. Introduction
2. Materials and Methods
2.1. Cells, Serum, and Plasmids
2.2. Preparation and Titration of HPV Pseudotyped Virus
2.2.1. Production of Pseudotyped Virus
2.2.2. Titration
2.3. Pseudovirion-Based Neutralization Assay
2.3.1. Traditional 96-Well Plate Method
2.3.2. High-Throughput 384-Well Plate Method
2.4. Statistical Analysis
3. Results
3.1. Selection of Pseudotyped Virus Combinations with Three Types
3.2. Comparison Between Triple-Type and Single-Type Pseudotyped Virus Detection
3.3. Establishment of High-Throughput Neutralization Assay Based on the Three-Type HPV Pseudotyped Virus
3.3.1. Cell Concentration
3.3.2. Virus-Serum Neutralization Time
3.3.3. Incubation Time
3.4. Validation of High-Throughput Neutralization Assay Based on the Three-Type HPV Pseudotyped Virus
3.4.1. Specificity
3.4.2. Serostatus Cutoff
3.4.3. Linearity
3.4.4. Repeatability
3.4.5. Cell Passages
3.4.6. Z-Factor
3.5. Comparison with Traditional 96-Well Plate Assay and High-Throughput 384-Well Plate Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Mühr, L.S.A.; Eklund, C.; Dillner, J. Towards quality and order in human papillomavirus research. Virology 2018, 519, 74–76. [Google Scholar] [CrossRef]
- De Villiers, E.M. Cross-roads in the classification of papillomaviruses. Virology 2013, 445, 2–10. [Google Scholar] [CrossRef] [PubMed]
- International Human Papillomavirus Reference Center. HPV Reference Clones. 2023. Available online: https://www.hpvcenter.se/human_reference_clones/ (accessed on 20 August 2025).
- Scarth, J.A.; Patterson, M.R.; Morgan, E.L.; Macdonald, A. The human papillomavirus oncoproteins: A review of the host pathways targeted on the road to transformation. J. Gen. Virol. 2021, 102, 001540. [Google Scholar] [CrossRef] [PubMed]
- Williamson, A.L. Recent Developments in Human Papillomavirus (HPV) Vaccinology. Viruses 2023, 15, 1440. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, D.; Li, H.; Li, X.; Li, J.; Hu, P.; Zhao, L.; Wang, R.; Zhao, C.; Luo, C.; et al. Validation of Luminex immunological and competitive Luminex immunological assays for clinical immunogenicity assessment of a 14-valent recombinant human papillomavirus vaccine. J. Med. Virol. 2023, 95, e29050. [Google Scholar] [CrossRef]
- Villa, L.L.; Costa, R.L.; Petta, C.A.; Andrade, R.P.; Ault, K.A.; Giuliano, A.R.; Wheeler, C.M.; Koutsky, L.A.; Malm, C.; Lehtinen, M.; et al. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: A randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol. 2005, 6, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Koutsky, L.A.; Ault, K.A.; Wheeler, C.M.; Brown, D.R.; Wiley, D.J.; Alvarez, F.B.; Bautista, O.M.; Jansen, K.U.; Barr, E. Efficacy of human papillomavirus-16 vaccine to prevent cervical intraepithelial neoplasia: A randomized controlled trial. Obstet. Gynecol. 2006, 107, 18–27. [Google Scholar] [CrossRef]
- WHO. Human Papillomavirus Laboratory Manual, 1st ed.; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Buck, C.B.; Pastrana, D.V.; Lowy, D.R.; Schiller, J.T. Efficient intracellular assembly of papillomaviral vectors. J. Virol. 2004, 78, 751–757. [Google Scholar] [CrossRef]
- Buck, C.B.; Pastrana, D.V.; Lowy, D.R.; Schiller, J.T. Generation of HPV pseudovirions using transfection and their use in neutralization assays. Methods Protoc. 2005, 119, 445–462. [Google Scholar]
- Pastrana, D.V.; Buck, C.B.; Pang, Y.Y.; Thompson, C.D.; Castle, P.E.; FitzGerald, P.C.; Kjaer, S.K.; Lowy, D.R.; Schiller, J.T. Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology 2004, 321, 205–216. [Google Scholar] [CrossRef]
- Sehr, P.; Rubio, I.; Seitz, H.; Putzker, K.; Ribeiro-Müller, L.; Pawlita, M.; Müller, M. High-throughput pseudovirion-based neutralization assay for analysis of natural and vaccine-induced antibodies against human papillomaviruses. PLoS ONE 2013, 8, e75677. [Google Scholar] [CrossRef]
- Nie, J.; Huang, W.; Wu, X.; Wang, Y. Optimization and validation of a high throughput method for detecting neutralizing antibodies against human papillomavirus (HPV) based on pseudovirons. J. Med Virol. 2014, 86, 1542–1555. [Google Scholar] [CrossRef]
- Nie, J.; Liu, Y.; Huang, W.; Wang, Y. Development of a Triple-Color Pseudovirion-Based Assay to Detect Neutralizing Antibodies against Human Papillomavirus. Viruses 2016, 8, 107. [Google Scholar] [CrossRef]
- De Vincenzo, R.; Ricci, C.; Conte, C.; Scambia, G. HPV vaccine cross-protection: Highlights on additional clinical benefit. Gynecol. Oncol. 2013, 130, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Nie, J.; Wang, Y. Pseudotyped Virus for Papillomavirus. Adv. Exp. Med. Biol. 2023, 1407, 85–103. [Google Scholar] [PubMed]
- Martins Lima, A.; Bragina, M.E.; Burri, O.; Bortoli Chapalay, J.; Costa-Fraga, F.P.; Chambon, M.; Fraga-Silva, R.A.; Stergiopulos, N. An optimized and validated 384-well plate assay to test platelet function in a high-throughput screening format. Platelets 2019, 30, 563–571. [Google Scholar] [CrossRef]
- Zhang, J.H.; Chung, T.D.; Oldenburg, K.R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J. Biomol. Screen. 1999, 4, 67–73. [Google Scholar] [CrossRef]
- GlaxoSmithKline Vaccine HPV-007 Study Group; Romanowski, B.; de Borba, P.C.; Naud, P.S.; Roteli-Martins, C.M.; De Carvalho, N.S.; Teixeira, J.C.; Aoki, F.; Ramjattan, B.; Shier, R.M.; et al. Sustained efficacy and immunogenicity of the human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine: Analysis of a randomised placebo-controlled trial up to 6.4 years. Lancet 2009, 374, 1975–1985. [Google Scholar] [PubMed]
- Kavanagh, K.; Pollock, K.G.; Cuschieri, K.; Palmer, T.; Cameron, R.L.; Watt, C.; Bhatia, R.; Moore, C.; Cubie, H.; Cruickshank, M.; et al. Changes in the prevalence of human papillomavirus following a national bivalent human papillomavirus vaccination programme in Scotland: A 7-year cross-sectional study. Lancet Infect. Dis. 2017, 17, 1293–1302. [Google Scholar] [CrossRef]
- Hoes, J.; King, A.J.; Berkhof, J.; de Melker, H.E. High vaccine effectiveness persists for ten years after HPV16/18 vaccination among young Dutch women. Vaccine 2023, 41, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zhao, D.; Feng, C.; Kou, Y.; Lu, J.; Luo, C.; Li, X.; Wang, Y.; Xie, L. Validation of a triple-color pseudovirion-based neutralization assay for immunogenicity assessment of a 14-valent recombinant human papillomavirus vaccine. J. Med. Virol. 2024, 96, e29859. [Google Scholar] [CrossRef]
- Zeng, Z.; Austin, R.M.; Wang, L.; Guo, X.; Zeng, Q.; Zheng, B.; Zhao, C. Nationwide Prevalence and Genotype Distribution of High-Risk Human Papillomavirus Infection in China. Am. J. Clin. Pathol. 2022, 157, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Guo, X.L.; Wisman, G.B.; Schuuring, E.; Wang, W.F.; Zeng, Z.Y.; Zhu, H.; Wu, S.W. Nationwide prevalence of human papillomavirus infection and viral genotype distribution in 37 cities in China. BMC Infect. Dis. 2015, 15, 257. [Google Scholar] [CrossRef] [PubMed]
Fluorescent Protein | GFP | RFP | CFP |
---|---|---|---|
Group 1 | HPV6 | HPV33 | HPV45 |
Group 2 | HPV31 | HPV11 | HPV58 |
Group 3 | HPV16 | HPV18 | HPV68 |
Group 4 | HPV39 | HPV51 | HPV35 |
Group 5 | HPV59 | HPV56 | HPV52 |
Characteristic | HPV Types | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HPV6 | HPV11 | HPV16 | HPV18 | HPV31 | HPV33 | HPV35 | HPV39 | HPV45 | HPV51 | HPV52 | HPV56 | HPV58 | HPV59 | HPV68 | |
Serostatus cutoff (ID50) | 177 | 97 | 85 | 100 | 77 | 112 | 82 | 48 | 148 | 52 | 84 | 130 | 125 | 97 | 68 |
Positive rate (%) | 1.4 | 2.0 | 3.6 | 2.9 | 3.4 | 1.3 | 1.7 | 1.0 | 1.2 | 2.2 | 3.0 | 2.7 | 1.5 | 2.3 | 1.0 |
Intra-assay precision (CV%) | 16.3 | 14.5 | 21.4 | 13.7 | 14.9 | 10.9 | 12.6 | 16.8 | 12.3 | 11.5 | 14.2 | 16.0 | 12.4 | 19.4 | 13.9 |
Inter-assay precision (CV%) | 24.1 | 19.6 | 27.8 | 18.3 | 24.0 | 21.5 | 14.3 | 17.1 | 23.7 | 13.4 | 21.1 | 23.3 | 26.4 | 33.1 | 22.0 |
Cell concentration (GCV%) | |||||||||||||||
750 cells/well | 26.1 | 9.4 | 12.5 | 16.7 | 6.2 | 11.1 | 7.9 | 4.3 | 9.6 | 7.6 | 7.4 | 7.6 | 9.5 | 8.0 | 13.8 |
1500 cells/well | 14.4 | 6.5 | 17.1 | 9.5 | 9.4 | 7.5 | 8.1 | 7.2 | 6.9 | 13.6 | 4.8 | 10.6 | 12.1 | 8.9 | 7.7 |
3000 cells/well | 31.6 | 12.6 | 40.4 | 17.5 | 22.7 | 23.0 | 23.5 | 24.1 | 20.6 | 19.5 | 17.2 | 10.9 | 27.3 | 19.3 | 25.5 |
6000 cells/well | 39.1 | 20.4 | 60.4 | 31.3 | 46.6 | 23.1 | 22.1 | 22.3 | 24.2 | 13.7 | 20.9 | 17.6 | 24.2 | 29.8 | 43.9 |
12,000 cells/well | 49.3 | 31.1 | 119.4 | 27.3 | 43.9 | 29.2 | 24.0 | 20.4 | 30.7 | 40.0 | 33.7 | 42.9 | 39.8 | 46.7 | 59.1 |
Virus-serum neutralization time (GCV%) | |||||||||||||||
0 h | 15.0 | 6.8 | 39.2 | 34.3 | 21.0 | 14.1 | 7.5 | 3.6 | 15.1 | 7.6 | 10.7 | 11.7 | 29.1 | 9.7 | 33.9 |
0.5 h | 12.3 | 9.9 | 46.7 | 35.9 | 7.8 | 16.7 | 7.1 | 4.3 | 15.2 | 6.3 | 13.6 | 16.1 | 24.1 | 20.1 | 44.1 |
1 h | 29.4 | 6.4 | 17.1 | 13.1 | 19.7 | 13.5 | 10.5 | 8.3 | 13.4 | 7.7 | 11.9 | 15.2 | 23.1 | 16.4 | 9.1 |
2 h | 11.4 | 6.5 | 10.3 | 16.0 | 12.4 | 16.3 | 10.6 | 6.4 | 12.8 | 10.2 | 8.6 | 13.1 | 24.9 | 16.2 | 21.2 |
Incubation time (GCV%) | |||||||||||||||
48 h | 22.0 | 39.6 | 35.7 | 29.8 | 39.8 | 51.0 | 180.7 | 29.2 | 29.4 | 27.9 | 42.6 | 39.6 | 112.4 | 13.6 | 12.2 |
60 h | 29.1 | 24.1 | 19.6 | 18.0 | 26.6 | 30.3 | 24.5 | 28.0 | 28.0 | 19.6 | 22.4 | 15.8 | 38.2 | 9.1 | 28.9 |
72 h | 24.1 | 22.3 | 19.8 | 22.8 | 21.5 | 26.5 | 28.5 | 19.4 | 30.6 | 20.3 | 15.4 | 12.8 | 43.8 | 5.2 | 22.0 |
96 h | 36.0 | 23.8 | 21.6 | 20.0 | 21.4 | 25.9 | 22.2 | 16.7 | 26.6 | 20.4 | 15.7 | 11.4 | 40.5 | 8.7 | 18.5 |
120 h | 50.3 | 24.5 | 17.7 | 27.2 | 36.1 | 34.6 | 21.8 | 22.0 | 39.4 | 26.8 | 11.1 | 12.6 | 45.0 | 9.4 | 16.2 |
Cell passages (GCV%) | |||||||||||||||
P22 | 23.6 | 16.4 | 24.2 | 13.5 | 12.7 | 10.4 | 10.2 | 13.5 | 10.7 | 11.5 | 10.4 | 16.1 | 9.0 | 15.9 | 15.2 |
P25 | 11.1 | 15.7 | 46.0 | 23.6 | 10.4 | 12.1 | 22.9 | 19.1 | 8.3 | 16.5 | 9.5 | 11.4 | 11.0 | 10.8 | 20.6 |
P28 | 12.5 | 11.8 | 19.6 | 13.3 | 10.5 | 8.9 | 17.5 | 17.5 | 8.2 | 11.5 | 7.0 | 12.1 | 15.6 | 12.3 | 18.7 |
P31 | 15.6 | 10.5 | 21.6 | 12.8 | 12.4 | 9.1 | 12.2 | 11.7 | 9.5 | 8.7 | 8.4 | 13.4 | 12.8 | 11.6 | 14.7 |
Pseudotyped HPV | Pearson’s Correlation Coefficient (r) |
---|---|
HPV6-EGFP | 0.985 |
HPV16-EGFP | 0.992 |
HPV31-EGFP | 0.988 |
HPV11-RFP | 0.986 |
HPV18-RFP | 0.984 |
HPV33-RFP | 0.987 |
HPV45-CFP | 0.925 |
HPV52-CFP | 0.932 |
HPV58-CFP | 0.989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Qin, H.; Nie, L.; Shen, Y.; Li, J.; Xiu, P.; Wang, S.; Wang, M.; Wang, Y.; Nie, J.; et al. Optimization of a High-Throughput Human Papillomavirus Neutralizing Antibody Assay Based on Pseudotyped Viruses for the 15-Valent Human Papillomavirus Vaccine Types. Viruses 2025, 17, 1164. https://doi.org/10.3390/v17091164
Liu H, Qin H, Nie L, Shen Y, Li J, Xiu P, Wang S, Wang M, Wang Y, Nie J, et al. Optimization of a High-Throughput Human Papillomavirus Neutralizing Antibody Assay Based on Pseudotyped Viruses for the 15-Valent Human Papillomavirus Vaccine Types. Viruses. 2025; 17(9):1164. https://doi.org/10.3390/v17091164
Chicago/Turabian StyleLiu, Huan, Haiyang Qin, Lingling Nie, Yanru Shen, Jiayi Li, Pengcheng Xiu, Shasha Wang, Meng Wang, Youchun Wang, Jianhui Nie, and et al. 2025. "Optimization of a High-Throughput Human Papillomavirus Neutralizing Antibody Assay Based on Pseudotyped Viruses for the 15-Valent Human Papillomavirus Vaccine Types" Viruses 17, no. 9: 1164. https://doi.org/10.3390/v17091164
APA StyleLiu, H., Qin, H., Nie, L., Shen, Y., Li, J., Xiu, P., Wang, S., Wang, M., Wang, Y., Nie, J., Huang, W., & Zhang, L. (2025). Optimization of a High-Throughput Human Papillomavirus Neutralizing Antibody Assay Based on Pseudotyped Viruses for the 15-Valent Human Papillomavirus Vaccine Types. Viruses, 17(9), 1164. https://doi.org/10.3390/v17091164