Gastrointestinal Infiltration in Influenza Virus Infection: Mechanisms and Clinical Insights
Abstract
1. Introduction
2. Discussion
2.1. Kinetics of Infection
2.2. Prevalence and Impact of GI Symptoms in Influenza Infection
Citation | DOI | Age/Gender | GI Complaint | Diagnostic Method | Influenza Type | Summary | Outcome |
---|---|---|---|---|---|---|---|
[12] | 10.3396/ijic.v7i4.7855 | 66 y/o female, 65 y/o male | Severe abdominal pain, mimicking acute abdomen | H1N1 viral culture | A (H1N1) | 2 cases initially presenting with acute abdominal pain; later confirmed H1N1 | Both recovered with oseltamivir |
[13] | 10.1111/irv.12222 | 17 y/o female | Severe abdominal pain, vomiting | RT-PCR (nasopharyngeal) | A (H1N1) | Initially presented with worsening abdominal pain and nausea with increased pain in the right lower quadrant with rebound tenderness concerning for appendicitis; Abdominal CT, ultrasound, gynecologic, and genitourinary workup nondiagnostic. Influenza confirmed by PCR | Recovered with supportive care |
[14] | 10.1016/j .jcv.2009.06.011 | Range: >1–97 y/o, all genders | Diarrhea, vomiting, gastroenteritis | RT-PCR of nasopharyngeal and fecal samples | A (H3N2) | Fecal detection of influenza A virus in 6/627 hospitalized patients with GI symptoms and confirmed respiratory flu | Recovered; virus detected in stool in subset |
[15] | 10.3201/eid1007.040415 | 39 y/o female | Vomiting, diarrhea, nausea | RT-PCR and viral culture | A (H5N1) | Mild case of avian influenza with GI symptoms | Recovered |
[16] | 10.1056/NEJMoa044307 | 4 y/o male | Watery diarrhea | RT-PCR and virus isolation | A (H5N1) | Fatal pediatric case with GI onset and encephalopathy. | Death |
[17] | 10.3201/eid1607.091248 | 4.5 y/o male | Prolonged viral shedding in stool | RT-PCR (stool) | A (H1N1) | Immunocompromised child with persistent influenza A RNA in stool for >1 month | Recovered; monitored for shedding |
[18] | 10.1186/1471-2334-10-3 | Children < 6 y/o, all genders | Diarrhea | RT-PCR (nasopharyngeal and stool) | A and B | Concurrent diarrhea with influenza-like symptoms. 40 patients diagnosed with IBV and 60 with IAV | Recovered |
[20] | 10.1016/j.jmii.2011.04.003 | 21 y/o male | Bloody diarrhea, hemorrhagic colitis | Rapid diagnosis kit Capilia Flu A+B, immunochromatography | A | Initially presented with fever and pharyngeal pain later in admission complaining of lower abdominal pain, diarrhea, and hematochezia. Emergency colonoscopy and pathology confirmed hemorrhagic colitis following influenza A | Recovered with zanamivir |
[22] | 10.1186/1752-1947-5-280 | 42 y/o female | Nausea, vomiting, severe gastroenteritis | RT-PCR (nasopharyngeal) | A (H1N1) | H1N1-induced hemophagocytic lymphohistiocytosis with GI prodrome | Death due to refractory shock and multi-organ failure |
[23] | 10.1007/s00104-010-1894-6 | 15 y/o female | Ischemic colitis | RT-PCR | A (H1N1) | Required colon resection due to ischemia associated with influenza | Death post-surgery |
[24] | 10.1016/j.pedneo.2013.01.005 | 14 y/o female | Perforated peptic ulcer, appendicitis | Rapid influenza test | A | Initially presented with abdominal pain, diarrhea, and loss of appetite. Positive influenza test on third day of admission. Oseltamivir started and, 3 days later, had postinfectious peptic ulcer leading to perforation and appendicitis leading to appendectomy | Recovered post-surgery |
[25] | 10.1136/bcr-2014-208219 | 9.5 y/o male | Acute appendicitis | RT-PCR | A (H1N1) | Concurrent H1N1 infection and appendicitis | Recovered post-appendectomy |
[26] | 10.1016/j.hrtlng.2010.04.004 | 15 y/o female | Acute abdominal pain; suspected appendicitis | RT-PCR | A (H1N1) | Initially presented with appendicitis-like symptoms and influenza-like illness. Appendicitis confirmed on CT ultimately linked to influenza | Recovered |
2.3. Routes of Viral Dissemination to GI Tract
2.4. Pathogenesis of Influenza-Associated GI Symptoms
2.4.1. Direct Mechanisms of Inflammation
2.4.2. Indirect Mechanisms of Inflammation
2.5. Other Single-Stranded RNA Viruses
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
GI | Gastrointestinal |
CDC | Centers of Disease Control and Prevention |
WHO | World Health Organization |
IAV | Influenza A |
IBV | Influenza B |
ICV | Influenza C |
IDV | Influenza D |
SA | Sialic acid |
HA | Hemagglutinin |
NA | Neuraminidase |
RNA | Ribonucleic acid |
HEF | Hemagglutinin-esterase-fusion |
9-O-Ac | N-acetyl-9-O-acetylneuraminic |
Y/o | Years old |
RT-PCR | Reverse transcription polymerase chain reaction |
CT | Computed tomography |
PCR | Polymerase chain reaction |
IFN | Interferon |
IL | Interleukins |
TLR | Toll-like receptor |
TGF | Transforming growth factor |
TNF | Tissue necrosis factor |
CCL | C-C-motif chemokine ligands |
CXCL | C-X-C motif chemokine ligands |
ILC2 | Group 2 innate lymphoid cells |
SCFA | Short-chain fatty acids |
BCAA | Branched-chain amino acids |
RSV | Respiratory syncytial virus |
HSPG | Heparan sulfate proteoglycans |
CX3CR1 | CX3C chemokine receptor 1 |
IGFR-1 | Insulin-like growth factor 1 receptor |
EGF | Epidermal growth factor |
ICAM-1 | Intercellular adhesion molecule 1 |
SARS-CoV-2 | Coronavirus |
ACE2 | Angiotensin converting enzyme 2 |
TMPRSS2 | Transmembrane serine protease 2 |
References
- Bouvier, N.M.; Palese, P. The Biology of Influenza Viruses. Vaccine 2008, 26, D49–D53. [Google Scholar] [CrossRef]
- Tokars, J.I.; Olsen, S.J.; Reed, C. Seasonal Incidence of Symptomatic Influenza in the United States. Clin. Infect. Dis. 2018, 66, 1511–1518. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. 2023–2024 Influenza Season Summary: Influenza Severity Assessment, Burden and Burden Prevented; 2023–2024 Influenza Activity Report; Centers for Disease Control and Prevention: Atlanta, Georgia, 2024.
- World Health Organization. Up to 650,000 People Die of Respiratory Diseases Linked to Seasonal Flu Each Year; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Salez, N.; Mélade, J.; Pascalis, H.; Aherfi, S.; Dellagi, K.; Charrel, R.N.; Carrat, F.; Lamballerie, X. de Influenza C Virus High Seroprevalence Rates Observed in 3 Different Population Groups. J. Infect. 2014, 69, 182–189. [Google Scholar] [CrossRef]
- Sederdahl, B.K.; Williams, J.V. Epidemiology and Clinical Characteristics of Influenza C Virus. Viruses 2020, 12, 89. [Google Scholar] [CrossRef]
- Liu, R.; Sheng, Z.; Huang, C.; Wang, D.; Li, F. Influenza D Virus. Curr. Opin. Virol. 2020, 44, 154–161. [Google Scholar] [CrossRef]
- Luo, M. Influenza Virus Entry. In Viral Molecular Machines; Rossman, M., Rao, V., Eds.; Springer: Boston, MA, USA, 2012; Volume 726, ISBN 978-1-4614-0979-3. [Google Scholar]
- Zhao, C.; Pu, J. Influence of Host Sialic Acid Receptors Structure on the Host Specificity of Influenza Viruses. Viruses 2022, 14, 2141. [Google Scholar] [CrossRef]
- Baccam, P.; Beauchemin, C.; Macken, C.A.; Hayden, F.G.; Perelson, A.S. Kinetics of Influenza A Virus Infection in Humans. J. Virol. 2006, 80, 7590–7599. [Google Scholar] [CrossRef] [PubMed]
- Minodier, L.; Charrel, R.N.; Ceccaldi, P.-E.; van der Werf, S.; Blanchon, T.; Hanslik, T.; Falchi, A. Prevalence of Gastrointestinal Symptoms in Patients with Influenza, Clinical Significance, and Pathophysiology of Human Influenza Viruses in Faecal Samples: What Do We Know? Virol. J. 2015, 12, 215. [Google Scholar] [CrossRef] [PubMed]
- Elbanna, M.E.R.; Sharaf, O.; Mahran, M.; Hammady, W. Acute Abdomen as an Unusual Presentation of Swine Flu: Two Case Reports. Int. J. Infect. Control 2011, 7. [Google Scholar] [CrossRef]
- Vivar, K.L.; Uyeki, T.M. Influenza Virus Infection Mimicking an Acute Abdomen in a Female Adolescent. Influenza Other Respir. Viruses 2014, 8, 140–141. [Google Scholar] [CrossRef]
- Chan, M.C.W.; Lee, N.; Chan, P.K.S.; Leung, T.F.; Sung, J.J.Y. Fecal Detection of Influenza A Virus in Patients with Concurrent Respiratory and Gastrointestinal Symptoms. J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol. 2009, 45, 208–211. [Google Scholar] [CrossRef]
- Apisarnthanarak, A.; Kitphati, R.; Thongphubeth, K.; Patoomanunt, P.; Anthanont, P.; Auwanit, W.; Thawatsupha, P.; Chittaganpitch, M.; Saeng-Aroon, S.; Waicharoen, S.; et al. Atypical Avian Influenza (H5N1). Emerg. Infect. Dis. 2004, 10, 1321–1324. [Google Scholar] [CrossRef]
- de Jong, M.D.; Cam, B.V.; Qui, P.T.; Hien, V.M.; Thanh, T.T.; Hue, N.B.; Beld, M.; Phuong, L.T.; Khanh, T.H.; Chau, N.V.V.; et al. Fatal Avian Influenza A (H5N1) in a Child Presenting with Diarrhea Followed by Coma. N. E. J. Med. 2005, 352, 686–691. [Google Scholar] [CrossRef]
- Pinsky, B.A.; Mix, S.; Rowe, J.; Ikemoto, S.; Baron, E.J. Long-Term Shedding of Influenza A Virus in Stool of Immunocompromised Child. Emerg. Infect. Dis. 2010, 16, 1165–1167. [Google Scholar] [CrossRef]
- Dilantika, C.; Sedyaningsih, E.R.; Kasper, M.R.; Agtini, M.; Listiyaningsih, E.; Uyeki, T.M.; Burgess, T.H.; Blair, P.J.; Putnam, S.D. Influenza Virus Infection among Pediatric Patients Reporting Diarrhea and Influenza-like Illness. BMC Infect. Dis. 2010, 10, 3. [Google Scholar] [CrossRef]
- Armstrong, K.L.; Fraser, D.K.B.; Faoagali, J.L. Gastrointestinal Bleeding with Influenza Virus. Med. J. Aust. 1991, 154, 180–182. [Google Scholar] [CrossRef] [PubMed]
- Okayama, S.; Arakawa, S.; Ogawa, K.; Makino, T. A Case of Hemorrhagic Colitis after Influenza A Infection. J. Microbiol. Immunol. Infect. 2011, 44, 480–483. [Google Scholar] [CrossRef] [PubMed]
- Joob, B.; Wiwanitkit, V. Influenza Related Colitis: A Summary on Little Mentioned Colorectal Disorder. Iran. J. Colorectal Res. 2019, 7, 1–4. [Google Scholar]
- Willekens, C.; Cornelius, A.; Guerry, M.-J.; Wacrenier, A.; Fourrier, F. Fulminant Hemophagocytic Lymphohistiocytosis Induced by Pandemic A (H1N1) Influenza: A Case Report. J. Med. Case Rep. 2011, 5, 280. [Google Scholar] [CrossRef] [PubMed]
- Vernadakis, S.; Adamzik, M.; Heuer, M.; Antoch, G.; Baba, H.; Fiedler, M.; Buer, J.; Paul, A.; Kaiser, G.M. Hemicolectomy for ischemic colitis: A case report of a (H1N1) virus-associated death. Chir. Z. Alle Geb. Oper. Medizen 2010, 81, 841–845. [Google Scholar] [CrossRef]
- Hsueh, C.-W.; Yu, H.-M.; Chen, H.-S.; Wu, C.-P. Influenza-Related Postinfectious Encephalomyelitis Complicated by a Perforated Peptic Ulcer. Pediatr. Neonatol. 2013, 54, 281–284. [Google Scholar] [CrossRef]
- Plataras, C.; Tsangouri, S.; Bourikas, D.; Christianakis, E. Acute Appendicitis in a Child with Swine Influenza (H1N1). Case Rep. 2015, 2015, bcr2014208219. [Google Scholar] [CrossRef]
- Cunha, B.A.; Pherez, F.M.; Durie, N. Swine Influenza (H1N1) and Acute Appendicitis. Heart Lung J. Crit. Care 2010, 39, 544–546. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.B.; Kawasaki, K.; Ohnishi, S. Hemolytic Activity of Influenza Virus Hemagglutinin Glycoproteins Activated in Mildly Acidic Environments. Proc. Natl. Acad. Sci. USA 1983, 80, 3153–3157. [Google Scholar] [CrossRef] [PubMed]
- Hayase, Y.; Tobita, K. Detection of Genes of RNA Viruses from Freshly Biopsied Gastric Mucosa by Reverse Transcription Polymerase Chain Reaction. J. Gastroenterol. 1998, 33, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Koçer, Z.A.; Obenauer, J.; Zaraket, H.; Zhang, J.; Rehg, J.E.; Russell, C.J.; Webster, R.G. Fecal Influenza in Mammals: Selection of Novel Variants. J. Virol. 2013, 87, 11476–11486. [Google Scholar] [CrossRef]
- Hirose, R.; Nakaya, T.; Naito, Y.; Daidoji, T.; Watanabe, Y.; Yasuda, H.; Konishi, H.; Itoh, Y. Mechanism of Human Influenza Virus RNA Persistence and Virion Survival in Feces: Mucus Protects Virions From Acid and Digestive Juices. J. Infect. Dis. 2017, 216, 105–109. [Google Scholar] [CrossRef]
- de Jong, M.D.; Simmons, C.P.; Thanh, T.T.; Hien, V.M.; Smith, G.J.D.; Chau, T.N.B.; Hoang, D.M.; Van Vinh Chau, N.; Khanh, T.H.; Dong, V.C.; et al. Fatal Outcome of Human Influenza A (H5N1) Is Associated with High Viral Load and Hypercytokinemia. Nat. Med. 2006, 12, 1203–1207. [Google Scholar] [CrossRef]
- Chan, M.C.W.; Lee, N.; Chan, P.K.S.; To, K.F.; Wong, R.Y.K.; Ho, W.-S.; Ngai, K.L.K.; Sung, J.J.Y. Seasonal Influenza A Virus in Feces of Hospitalized Adults. Emerg. Infect. Dis. 2011, 17, 2038–2042. [Google Scholar] [CrossRef]
- Boliar, S.; Chambers, T.M. A New Strategy of Immune Evasion by Influenza A Virus: Inhibition of Monocyte Differentiation into Dendritic Cells. Vet. Immunol. Immunopathol. 2010, 136, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Peiris, J.; Cheung, C.; Leung, C.; Nicholls, J. Innate Immune Responses to Influenza A H5N1: Friend or Foe? Trends Immunol. 2009, 30, 574–584. [Google Scholar] [CrossRef]
- Page, C.K.; Tompkins, S.M. Influenza B Virus Receptor Specificity: Closing the Gap between Binding and Tropism. Viruses 2024, 16, 1356. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Chang, C.-F.; Chi, C.-Y.; Wang, H.-C.; Wang, J.-R.; Su, I.-J. Characterization of Glycan Binding Specificities of Influenza B Viruses with Correlation with Hemagglutinin Genotypes and Clinical Features. J. Med. Virol. 2012, 84, 679–685. [Google Scholar] [CrossRef]
- Shu, Y.; Li, C.K.; Li, Z.; Gao, R.; Liang, Q.; Zhang, Y.; Dong, L.; Zhou, J.; Dong, J.; Wang, D.; et al. Avian Influenza A(H5N1) Viruses Can Directly Infect and Replicate in Human Gut Tissues. J. Infect. Dis. 2010, 201, 1173–1177. [Google Scholar] [CrossRef] [PubMed]
- Wasik, B.R.; Barnard, K.N.; Ossiboff, R.J.; Khedri, Z.; Feng, K.H.; Yu, H.; Chen, X.; Perez, D.R.; Varki, A.; Parrish, C.R. Distribution of O-Acetylated Sialic Acids among Target Host Tissues for Influenza Virus. mSphere 2017, 2, 10–1128. [Google Scholar] [CrossRef]
- Nelli, R.K.; Kuchipudi, S.V.; White, G.A.; Perez, B.B.; Dunham, S.P.; Chang, K.-C. Comparative Distribution of Human and Avian Type Sialic Acid Influenza Receptors in the Pig. BMC Vet. Res. 2010, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Hirose, R.; Daidoji, T.; Naito, Y.; Watanabe, Y.; Arai, Y.; Oda, T.; Konishi, H.; Yamawaki, M.; Itoh, Y.; Nakaya, T. Long-Term Detection of Seasonal Influenza RNA in Faeces and Intestine. Clin. Microbiol. Infect. 2016, 22, e1–e813. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.C.W.; Lee, N.; Chan, P.K.S.; To, K.; Wong, R.Y.K.; Law, C.O.K.; Ngai, K.L.K.; Sung, J.J.Y. Intestinal Binding of Seasonal Influenza A Viruses to DC-SIGN+ CD68+ Cells. Influenza Other Respir. Viruses 2013, 7, 228–230. [Google Scholar] [CrossRef]
- Rogers, G.N.; Herrler, G.; Paulson, J.C.; Klenk, H.D. Influenza C Virus Uses 9-O-Acetyl-N-Acetylneuraminic Acid as a High Affinity Receptor Determinant for Attachment to Cells. J. Biol. Chem. 1986, 261, 5947–5951. [Google Scholar] [CrossRef]
- Wang, M.; Veit, M. Hemagglutinin-Esterase-Fusion (HEF) Protein of Influenza C Virus. Protein Cell 2016, 7, 28–45. [Google Scholar] [CrossRef]
- Visser, E.A.; Moons, S.J.; Timmermans, S.B.P.E.; de Jong, H.; Boltje, T.J.; Büll, C. Sialic Acid O-Acetylation: From Biosynthesis to Roles in Health and Disease. J. Biol. Chem. 2021, 297, 100906. [Google Scholar] [CrossRef]
- Barnard, K.N.; Wasik, B.R.; LaClair, J.R.; Buchholz, D.W.; Weichert, W.S.; Alford-Lawrence, B.K.; Aguilar, H.C.; Parrish, C.R. Expression of 9-O- and 7,9-O-Acetyl Modified Sialic Acid in Cells and Their Effects on Influenza Viruses. mBio 2019, 10, e02490-19. [Google Scholar] [CrossRef]
- Shen, Y.; Tiralongo, J.; Kohla, G.; Schauer, R. Regulation of Sialic Acid O-Acetylation in Human Colon Mucosa. Biol. Chem. 2004, 385, 145–152. [Google Scholar] [CrossRef]
- Schuster, J.E.; Williams, J.V. Emerging Respiratory Viruses in Children. Infect. Dis. Clin. North Am. 2018, 32, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Fakharian, F.; Thirugnanam, S.; Welsh, D.A.; Kim, W.-K.; Rappaport, J.; Bittinger, K.; Rout, N. The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis. Microorganisms 2023, 11, 1849. [Google Scholar] [CrossRef] [PubMed]
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Reddy, D.N. Role of the Normal Gut Microbiota. World J. Gastroenterol. WJG 2015, 21, 8787–8803. [Google Scholar] [CrossRef]
- Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the Gut Microbiota in Disease. Microb. Ecol. Health Dis. 2015, 26, 26191. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, T.; Aboagye, S.Y.; Ishizaka, A.; Afum, T.; Mensah, G.I.; Asante-Poku, A.; Asandem, D.A.; Parbie, P.K.; Abana, C.Z.-Y.; Kushitor, D.; et al. Gut Microbiota Signature of Pathogen-Dependent Dysbiosis in Viral Gastroenteritis. Sci. Rep. 2021, 11, 13945. [Google Scholar] [CrossRef]
- Pshenichnaya, N.; Usatkin, A.; Shmaylenko, O.; Zhuravlev, A. Diarrhea in Adult Patients with Influenza B. Int. J. Infect. Dis. 2016, 45, 452–453. [Google Scholar] [CrossRef]
- Roach, S.N.; Fiege, J.K.; Shepherd, F.K.; Wiggen, T.D.; Hunter, R.C.; Langlois, R.A. Respiratory Influenza Virus Infection Causes Dynamic Tuft Cell and Innate Lymphoid Cell Changes in the Small Intestine. J. Virol. 2022, 96, e00352-e22. [Google Scholar] [CrossRef]
- Xie, D.; Bai, H.; Liu, L.; Xie, X.; Ayello, J.; Ma, X.; Zhang, J. Apoptosis of Lymphocytes and Monocytes Infected with Influenza Virus Might Be the Mechanism of Combating Virus and Causing Secondary Infection by Influenza. Int. Immunol. 2009, 21, 1251–1262. [Google Scholar] [CrossRef]
- Ou, G.; Xu, H.; Wu, J.; Wang, S.; Chen, Y.; Deng, L.; Chen, X. The Gut-Lung Axis in Influenza A: The Role of Gut Microbiota in Immune Balance. Front. Immunol. 2023, 14, 1147724. [Google Scholar] [CrossRef]
- Druszczynska, M.; Sadowska, B.; Kulesza, J.; Gąsienica-Gliwa, N.; Kulesza, E.; Fol, M. The Intriguing Connection Between the Gut and Lung Microbiomes. Pathogens 2024, 13, 1005. [Google Scholar] [CrossRef]
- He, Y.; Wen, Q.; Yao, F.; Xu, D.; Huang, Y.; Wang, J. Gut–Lung Axis: The Microbial Contributions and Clinical Implications. Crit. Rev. Microbiol. 2017, 43, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Pu, Q.; Lin, P.; Gao, P.; Wang, Z.; Guo, K.; Qin, S.; Zhou, C.; Wang, B.; Wu, E.; Khan, N.; et al. Gut Microbiota Regulates Gut-Lung Axis Inflammatory Responses by Mediating ILC2 Compartmental Migration. J. Immunol. 2021, 207, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, F.; Wei, H.; Lian, Z.-X.; Sun, R.; Tian, Z. Respiratory Influenza Virus Infection Induces Intestinal Immune Injury via Microbiota-Mediated Th17 Cell–Dependent Inflammation. J. Exp. Med. 2014, 211, 2397–2410. [Google Scholar] [CrossRef] [PubMed]
- Deriu, E.; Boxx, G.M.; He, X.; Pan, C.; Benavidez, S.D.; Cen, L.; Rozengurt, N.; Shi, W.; Cheng, G. Influenza Virus Affects Intestinal Microbiota and Secondary Salmonella Infection in the Gut through Type I Interferons. PLOS Pathog. 2016, 12, e1005572. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, S.; Mazel-Sanchez, B.; Kandasamy, M.; Manicassamy, B.; Schmolke, M. Influenza A Virus Infection Impacts Systemic Microbiota Dynamics and Causes Quantitative Enteric Dysbiosis. Microbiome 2018, 6, 9. [Google Scholar] [CrossRef]
- Gart, E.V.; Suchodolski, J.S.; Welsh, T.H.; Alaniz, R.C.; Randel, R.D.; Lawhon, S.D. Salmonella Typhimurium and Multidirectional Communication in the Gut. Front. Microbiol. 2016, 7, 1827. [Google Scholar] [CrossRef]
- den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The Role of Short-Chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef]
- Shin, R.; Suzuki, M.; Morishita, Y. Influence of Intestinal Anaerobes and Organic Acids on the Growth of Enterohaemorrhagic Escherichia Coli O157:H7. J. Med. Microbiol. 2002, 51, 201–206. [Google Scholar] [CrossRef]
- Sencio, V.; Gallerand, A.; Gomes Machado, M.; Deruyter, L.; Heumel, S.; Soulard, D.; Barthelemy, J.; Cuinat, C.; Vieira, A.T.; Barthelemy, A.; et al. Influenza Virus Infection Impairs the Gut’s Barrier Properties and Favors Secondary Enteric Bacterial Infection through Reduced Production of Short-Chain Fatty Acids. Infect. Immun. 2021, 89, e00734-20. [Google Scholar] [CrossRef]
- Sencio, V.; Barthelemy, A.; Tavares, L.P.; Machado, M.G.; Soulard, D.; Cuinat, C.; Queiroz-Junior, C.M.; Noordine, M.-L.; Salomé-Desnoulez, S.; Deryuter, L.; et al. Gut Dysbiosis during Influenza Contributes to Pulmonary Pneumococcal Superinfection through Altered Short-Chain Fatty Acid Production. Cell Rep. 2020, 30, 2934–2947.e6. [Google Scholar] [CrossRef]
- Gowda, D.; Li, Y.; Gowda, S.G.B.; Ohno, M.; Chiba, H.; Hui, S.-P. Determination of Short-Chain Fatty Acids by N,N-Dimethylethylenediamine Derivatization Combined with Liquid Chromatography/Mass Spectrometry and Their Implication in Influenza Virus Infection. Anal. Bioanal. Chem. 2022, 414, 6419–6430. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Yang, Y.; Jiang, C.; Lv, A.; Zuo, W.; Ye, Y.; Ke, J. Influenza and the Gut Microbiota: A Hidden Therapeutic Link. Heliyon 2024, 10, e37661. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; He, Z.; Li, J.; Gong, S.; Yuan, S.; Li, T.; Ning, N.; Xing, L.; Zhang, L.; Chen, F.; et al. Gentamicin Induced Microbiome Adaptations Associate With Increased BCAA Levels and Enhance Severity of Influenza Infection. Front. Immunol. 2021, 11, 608895. [Google Scholar] [CrossRef]
- Price, G.E.; Smith, H.; Sweet, C. Differential Induction of Cytotoxicity and Apoptosis by Influenza Virus Strains of Differing Virulence. J. Gen. Virol. 1997, 78, 2821–2829. [Google Scholar] [CrossRef] [PubMed]
- Hinshaw, V.S.; Olsen, C.W.; Dybdahl-Sissoko, N.; Evans, D. Apoptosis: A Mechanism of Cell Killing by Influenza A and B Viruses. J. Virol. 1994, 68, 3667–3673. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, K. Mechanistic Insights into Influenza A Virus-Induced Cell Death and Emerging Treatment Strategies. Vet. Sci. 2024, 11, 555. [Google Scholar] [CrossRef]
- Roberts, N.J. The Enigma of Lymphocyte Apoptosis in the Response to Influenza Virus Infection. Viruses 2023, 15, 759. [Google Scholar] [CrossRef]
- Qu, B.; Li, X.; Gao, W.; Sun, W.; Jin, Y.; Cardona, C.J.; Xing, Z. Human Intestinal Epithelial Cells Are Susceptible to Influenza Virus Subtype H9N2. Virus Res. 2012, 163, 151–159. [Google Scholar] [CrossRef]
- Nichols, J.E.; Niles, J.A.; Roberts, N.J. Human Lymphocyte Apoptosis after Exposure to Influenza A Virus. J. Virol. 2001, 75, 5921–5929. [Google Scholar] [CrossRef]
- Neubauer, K.; Woźniak-Stolarska, B.; Krzystek-Korpacka, M. Peripheral Lymphocytes of Patients with Inflammatory Bowel Disease Have Altered Concentrations of Key Apoptosis Players: Preliminary Results. BioMed Res. Int. 2018, 2018, 4961753. [Google Scholar] [CrossRef]
- Ramachandra, A.; Madesh, M.; Balasubramanian, K. Apoptosis in the Intestinal Epithelium: Its Relevance in Normal and Pathophysiological Conditions. J. Gastroenterol. Hepatol. 2000, 15, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Liong, S.; Liong, F.; Mohsenipour, M.; Hill-Yardin, E.L.; Miles, M.A.; Selemidis, S. Early-Life Respiratory Syncytial Virus (RSV) Infection Triggers Immunological Changes in Gut-Associated Lymphoid Tissues in a Sex-Dependent Manner in Adulthood. Cells 2024, 13, 1728. [Google Scholar] [CrossRef] [PubMed]
- Siddikova, A.; Brown, J.; Zeng, M. Respiratory Syncytial Virus Infection Alters the Gut Immune Response to Commensal Bacteria. J. Immunol. 2024, 212, 0845_6236. [Google Scholar] [CrossRef]
- Malinczak, C.-A.; Fonseca, W.; Rasky, A.J.; Ptaschinski, C.; Morris, S.; Ziegler, S.F.; Lukacs, N.W. Sex-Associated TSLP-Induced Immune Alterations Following Early-Life RSV Infection Leads to Enhanced Allergic Disease. Mucosal Immunol. 2019, 12, 969–979. [Google Scholar] [CrossRef]
- Yagi, K.; Lukacs, N.W.; Huffnagle, G.B.; Kato, H.; Asai, N. Respiratory and Gut Microbiome Modification during Respiratory Syncytial Virus Infection: A Systematic Review. Viruses 2024, 16, 220. [Google Scholar] [CrossRef] [PubMed]
- von Linstow, M.-L.; Eugen-Olsen, J.; Koch, A.; Winther, T.N.; Westh, H.; Hogh, B. Excretion Patterns of Human Metapneumovirus and Respiratory Syncytial Virus among Young Children. Eur. J. Med. Res. 2006, 11, 329–335. [Google Scholar]
- Donalisio, M.; Rusnati, M.; Cagno, V.; Civra, A.; Bugatti, A.; Giuliani, A.; Pirri, G.; Volante, M.; Papotti, M.; Landolfo, S.; et al. Inhibition of Human Respiratory Syncytial Virus Infectivity by a Dendrimeric Heparan Sulfate-Binding Peptide. Antimicrob. Agents Chemother. 2012, 56, 5278. [Google Scholar] [CrossRef]
- Johnson, S.M.; McNally, B.A.; Ioannidis, I.; Flano, E.; Teng, M.N.; Oomens, A.G.; Walsh, E.E.; Peeples, M.E. Respiratory Syncytial Virus Uses CX3CR1 as a Receptor on Primary Human Airway Epithelial Cultures. PLoS Pathog. 2015, 11, e1005318. [Google Scholar] [CrossRef] [PubMed]
- Sans, M.; Panés, J.; Ardite, E.; Elizalde, J.I.; Arce, Y.; Elena, M.; Palacín, A.; Fernández-Checa, J.C.; Anderson, D.C.; Lobb, R.; et al. VCAM-1 and ICAM-1 Mediate Leukocyte-Endothelial Cell Adhesion in Rat Experimental Colitis. Gastroenterology 1999, 116, 874–883. [Google Scholar] [CrossRef]
- Nicoletti, C.; Arques, J.L.; Bertelli, E. CX3CR1 Is Critical for Salmonella-Induced Migration of Dendritic Cells into the Intestinal Lumen. Gut Microbes 2010, 1, 131–134. [Google Scholar] [CrossRef]
- Wong, M.C.; Huang, J.; Lai, C.; Ng, R.; Chan, F.K.L.; Chan, P.K.S. Detection of SARS-CoV-2 RNA in Fecal Specimens of Patients with Confirmed COVID-19: A Meta-Analysis. J. Infect. 2020, 81, e31–e38. [Google Scholar] [CrossRef]
- Daou, M.; Kannout, H.; Khalili, M.; Almarei, M.; Alhashami, M.; Alhalwachi, Z.; Alshamsi, F.; Tahseen Al Bataineh, M.; Azzam Kayasseh, M.; Al Khajeh, A.; et al. Analysis of SARS-CoV-2 Viral Loads in Stool Samples and Nasopharyngeal Swabs from COVID-19 Patients in the United Arab Emirates. PLoS ONE 2022, 17, e0274961. [Google Scholar] [CrossRef] [PubMed]
- Makhmalbaf, M.; Hosseini, S.M.; Aghdaei, H.A.; Niasar, M.S.; Shoraka, S.; Yadegar, A.; Baradaran Ghavami, S.; Shahrokh, S.; Moshari, M.; Malekpour, H.; et al. Detection of SARS-CoV-2 Genome in Stool and Plasma Samples of Laboratory Confirmed Iranian COVID-19 Patients. Front. Mol. Biosci. 2022, 9, 865129. [Google Scholar] [CrossRef]
- Rubin, R. SARS-CoV-2 RNA Can Persist in Stool Months After Respiratory Tract Clears Virus. JAMA 2022, 327, 2175–2176. [Google Scholar] [CrossRef]
- Sun, X.-L. The Role of Cell Surface Sialic Acids for SARS-CoV-2 Infection. Glycobiology 2021, 31, 1245–1253. [Google Scholar] [CrossRef]
- Knyazev, E.; Nersisyan, S.; Tonevitsky, A. Endocytosis and Transcytosis of SARS-CoV-2 Across the Intestinal Epithelium and Other Tissue Barriers. Front. Immunol. 2021, 12, 636966. [Google Scholar] [CrossRef]
- Zhang, H.; Kang, Z.; Gong, H.; Xu, D.; Wang, J.; Li, Z.; Li, Z.; Cui, X.; Xiao, J.; Zhan, J.; et al. Digestive System Is a Potential Route of COVID-19: An Analysis of Single-Cell Coexpression Pattern of Key Proteins in Viral Entry Process. Gut 2020, 69, 1010–1018. [Google Scholar] [CrossRef]
- Engin, A.B.; Engin, E.D.; Engin, A. Dual Function of Sialic Acid in Gastrointestinal SARS-CoV-2 Infection. Environ. Toxicol. Pharmacol. 2020, 79, 103436. [Google Scholar] [CrossRef] [PubMed]
- Petitjean, S.J.L.; Chen, W.; Koehler, M.; Jimmidi, R.; Yang, J.; Mohammed, D.; Juniku, B.; Stanifer, M.L.; Boulant, S.; Vincent, S.P.; et al. Multivalent 9-O-Acetylated-Sialic Acid Glycoclusters as Potent Inhibitors for SARS-CoV-2 Infection. Nat. Commun. 2022, 13, 2564. [Google Scholar] [CrossRef]
- Smail, S.W.; Albarzinji, N.; Salih, R.H.; Taha, K.O.; Hirmiz, S.M.; Ismael, H.M.; Noori, M.F.; Azeez, S.S.; Janson, C. Microbiome Dysbiosis in SARS-CoV-2 Infection: Implication for Pathophysiology and Management Strategies of COVID-19. Front. Cell. Infect. Microbiol. 2025, 15, 1537456. [Google Scholar] [CrossRef]
- Yeoh, Y.K.; Zuo, T.; Lui, G.C.-Y.; Zhang, F.; Liu, Q.; Li, A.Y.; Chung, A.C.; Cheung, C.P.; Tso, E.Y.; Fung, K.S.; et al. Gut Microbiota Composition Reflects Disease Severity and Dysfunctional Immune Responses in Patients with COVID-19. Gut 2021, 70, 698–706. [Google Scholar] [CrossRef]
- Bernard-Raichon, L.; Venzon, M.; Klein, J.; Axelrad, J.E.; Zhang, C.; Sullivan, A.P.; Hussey, G.A.; Casanovas-Massana, A.; Noval, M.G.; Valero-Jimenez, A.M.; et al. Gut Microbiome Dysbiosis in Antibiotic-Treated COVID-19 Patients Is Associated with Microbial Translocation and Bacteremia. Nat. Commun. 2022, 13, 5926. [Google Scholar] [CrossRef] [PubMed]
- McDonald, D.; Ackermann, G.; Khailova, L.; Baird, C.; Heyland, D.; Kozar, R.; Lemieux, M.; Derenski, K.; King, J.; Vis-Kampen, C.; et al. Extreme Dysbiosis of the Microbiome in Critical Illness. mSphere 2016, 1, e00199-16. [Google Scholar] [CrossRef]
- Yuan, C.; Ma, Z.; Xie, J.; Li, W.; Su, L.; Zhang, G.; Xu, J.; Wu, Y.; Zhang, M.; Liu, W. The Role of Cell Death in SARS-CoV-2 Infection. Signal Transduct. Target. Ther. 2023, 8, 357. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, L.; Zheng, Y.; An, J.; Wen, G.; Jin, H.; Tuo, B. Digestive System Infection by SARS-CoV-2: Entry Mechanism, Clinical Symptoms and Expression of Major Receptors (Review). Int. J. Mol. Med. 2023, 51, 19. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.-R.; Geng, R.; Li, Q.; Chen, Y.; Li, S.-F.; Wang, Q.; Min, J.; Yang, Y.; Li, B.; Jiang, R.-D.; et al. ACE2-Independent Infection of T Lymphocytes by SARS-CoV-2. Signal Transduct. Target. Ther. 2022, 7, 83. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, Q.; Liu, H. Coronavirus Disease 2019 and the Gut–Lung Axis. Int. J. Infect. Dis. 2021, 113, 300–307. [Google Scholar] [CrossRef]
- Sachedina, N.; Donaldson, L.J. Paediatric Mortality Related to Pandemic Influenza A H1N1 Infection in England: An Observational Population-Based Study. Lancet 2010, 376, 1846–1852. [Google Scholar] [CrossRef]
- Hsu, J.-C.; Lee, I.-K.; Huang, W.-C.; Chen, Y.-C.; Tsai, C.-Y. Clinical Characteristics and Predictors of Mortality in Critically Ill Influenza Adult Patients. J. Clin. Med. 2020, 9, 1073. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kulandaivelu, J.; Guo, Y.; Zhang, S.; Shi, J.; O’Brien, J.; Arora, S.; Kumar, M.; Sherchan, S.P.; Honda, R.; et al. SARS-CoV-2 Shedding Sources in Wastewater and Implications for Wastewater-Based Epidemiology. J. Hazard. Mater. 2022, 432, 128667. [Google Scholar] [CrossRef] [PubMed]
- Dumke, R.; Geissler, M.; Skupin, A.; Helm, B.; Mayer, R.; Schubert, S.; Oertel, R.; Renner, B.; Dalpke, A.H. Simultaneous Detection of SARS-CoV-2 and Influenza Virus in Wastewater of Two Cities in Southeastern Germany, January to May 2022. Int. J. Environ. Res. Public Health 2022, 19, 13374. [Google Scholar] [CrossRef] [PubMed]
- Mercier, E.; D’Aoust, P.M.; Thakali, O.; Hegazy, N.; Jia, J.-J.; Zhang, Z.; Eid, W.; Plaza-Diaz, J.; Kabir, M.P.; Fang, W.; et al. Municipal and Neighbourhood Level Wastewater Surveillance and Subtyping of an Influenza Virus Outbreak. Sci. Rep. 2022, 12, 15777. [Google Scholar] [CrossRef]
Virus | Receptor | GI Entry Evidence | Stool Shedding | Major Clinical GI Symptoms | Potential Direct Mechanisms | Potential Indirect Mechanisms |
---|---|---|---|---|---|---|
IAV | α2,6-SA | Strong | Yes | Diarrhea, nausea, emesis, acute abdomen, hemorrhagic colitis, appendicitis | Binding of HA α2,6- and α2,3 glycosidic linkages to α2,6- and α2,3-SA receptors, respectively, allowing for viral entry and inflammation. Preference for binding to α2,6-SA receptors. | Gut microbiome dysbiosis Upregulation of proinflammatory molecules and apoptosis causing tissue inflammation and death Lymphocytic congestion Secondary enteric invasion by pathogenic gut bacteria |
IBV | α2,6-SA | Moderate | Yes | Nausea, diarrhea | Binding of HA α2,6- and α2,3 glycosidic linkages to α2,6- and α2,3-SA receptors, respectively, allowing for viral entry and inflammation. Mostly prefer binding to α2,6-SA receptors. Victoria-lineage preference for α2,3-SA. | Gut microbiome dysbiosis Upregulation of proinflammatory molecules Lymphocytic congestion |
ICV | 9-O-Ac-SA | Limited | Not well studied | Nausea, diarrhea | Binding of HEF glycoprotein to 9-O-Ac SA viral entry. Esterase of HEF cleaves 9-O-Ac to allow for viral release. | Not well studied |
RSV | Multiple: HSPGs, CX3SR1, nucleolin, IGFR-1, EGF, ICAM-1 | Moderate | Yes | Diarrhea, altered gut microbiome | Binding of glycoprotein G to HSPGs and CX3CR1. Binding of glycoprotein F to nucleolin, IGFR-1, EGF, and ICAM-1. Limited application of direct binding. Distribution of cell surface markers and RSV binding in animal models. | Gut microbiome dysbiosis |
SARS-CoV-2 | ACE2 and SA-rich glycans | Strong | Yes | Diarrhea, nausea, GI bleeding | TMPRSS2 cleaving of ACE2 9-O-Ac potential attachment factor for binding | Epithelial, goblet, and lymphoid cell apoptosis. Marked gut microbiome disruption with ACE2 receptor expression dysregulation. Specific mechanisms of inflammation via the lung–gut axis are unknown. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dua, A.; Trehan, B.; Bilasy, S.E.; Yang, C.; ElShamy, A. Gastrointestinal Infiltration in Influenza Virus Infection: Mechanisms and Clinical Insights. Viruses 2025, 17, 1187. https://doi.org/10.3390/v17091187
Dua A, Trehan B, Bilasy SE, Yang C, ElShamy A. Gastrointestinal Infiltration in Influenza Virus Infection: Mechanisms and Clinical Insights. Viruses. 2025; 17(9):1187. https://doi.org/10.3390/v17091187
Chicago/Turabian StyleDua, Aakriti, Bhavna Trehan, Shymaa E. Bilasy, Catherine Yang, and Ahmed ElShamy. 2025. "Gastrointestinal Infiltration in Influenza Virus Infection: Mechanisms and Clinical Insights" Viruses 17, no. 9: 1187. https://doi.org/10.3390/v17091187
APA StyleDua, A., Trehan, B., Bilasy, S. E., Yang, C., & ElShamy, A. (2025). Gastrointestinal Infiltration in Influenza Virus Infection: Mechanisms and Clinical Insights. Viruses, 17(9), 1187. https://doi.org/10.3390/v17091187