Time Series Analysis of Dengue, Zika, and Chikungunya in Ecuador: Emergence Patterns, Epidemiological Interactions, and Climate-Driven Dynamics (1988–2024)
Abstract
1. Introduction
1.1. Regional Context and Public Health Significance
1.2. Diagnostic and Surveillance Challenges
1.3. Innovation and Study Significance
2. Materials and Methods
2.1. Study Design and Setting
2.2. Data Sources and Acquisition
2.2.1. Epidemiological Surveillance Data
- 1.
- Suspected cases: Clinical cases meeting syndromic surveillance definitions based on fever ≥38 °C, headache, myalgia, and other compatible symptoms, reported through the routine surveillance network.
- 2.
- Probable cases: Suspected cases with epidemiological links to confirmed cases or occurrence during confirmed outbreaks within the same geographic area and time period.
- 3.
- Dengue fever (1988–2024): 353,782 suspected cases, 127,843 confirmed cases.
- Severe dengue (2001–2024): 1690 suspected cases, 891 confirmed cases (following WHO 2009 revised classification criteria [51]).
- Chikungunya fever (2014–2024): 29,124 suspected cases, 8732 confirmed cases.
- Zika virus disease (2015–2024): 2947 suspected cases, 743 confirmed cases.
2.2.2. Diagnostic Method Evolution and Validation
- 1.
- 2.
- 3.
- 4.
2.2.3. Climate and Environmental Data
2.2.4. COVID-19 Policy and Healthcare System Data
- Lockdown measures: Timeline and intensity of mobility restrictions using the Oxford COVID-19 Government Response Tracker methodology, including school closures, workplace restrictions, and economic shutdowns implemented between March 2020 and December 2021 [73].
2.3. Advanced Statistical Analysis Framework
2.3.1. Time Series Analysis with Diagnostic Bias Correction
2.3.2. Climate–Epidemic Association Analysis
2.3.3. Multi-Pathogen Interaction Modeling
2.4. Quality Assurance and Validation Framework
2.5. Statistical Software and Computational Environment
- tidyverse v2.0.0 for data manipulation [112]
- forecast v8.21 for time series analysis [113]
- changepoint v2.2.4 for structural break detection [114]
- dlnm v2.4.7 for distributed lag models [115]
- vars v1.5-6 for vector autoregression [96]
- mice v3.15.0 for multiple imputation [109]
- rpart v4.1.19 for regression trees [93]
2.6. Limitations and Methodological Considerations
- 1.
- Surveillance sensitivity changes: Varying diagnostic capacity and reporting completeness over the 36-year period, particularly for emerging pathogens, addressed through bias correction methods and sensitivity analyses.
- 2.
- Asymptomatic infections: Substantial underestimation of true infection rates due to focus on clinically apparent cases, estimated at 50–80% for dengue and up to 80% for Zika based on published studies [117].
- 3.
- Cross-reactivity: Potential misclassification of cases due to serological cross-reactions between related flaviviruses, partially addressed through PRNT testing when available [62].
- 4.
- Reporting delays: Temporal lags between case occurrence and official reporting (mean delay: 7–14 days during routine periods, up to 30 days during epidemics), accounted for through retrospective data validation.
- 5.
- Geographic heterogeneity: Varying surveillance quality across Ecuador’s diverse geographic regions and healthcare infrastructure, addressed through stratified analyses and geographic weighting procedures.
- 6.
- 7.
- Assumptions in Bias Correction: Our retrospective bias correction methodology assumes consistent confirmed-to-suspected case ratios during stable diagnostic periods. While this approach provides standardized adjustments, it may inadequately capture gradual historical changes in clinical case definitions, reporting behaviors, or healthcare-seeking patterns that could systematically vary over the 36-year period.
2.7. Ethical Considerations and Data Management
3. Results
3.1. Comprehensive Epidemiological Overview with Diagnostic Bias Assessment
3.2. Dengue Virus: Long-Term Endemic–Epidemic Dynamics with Climate Forcing
Temporal Patterns and Cyclical Analysis
3.3. The COVID-19 Pandemic: A Natural Experiment in Surveillance Disruption
3.4. The Severe Dengue Paradox: Immunological Modulation Hypothesis
3.5. Chikungunya and Zika: Explosive Emergence and Competitive Displacement
3.5.1. Chikungunya Epidemic Dynamics (2014–2024)
- Peak incidence: 181.10 per 100,000 (2015).
- Estimated attack rate: 2–5% of national population (seroprevalence studies).
- Geographic concentration: 83% of cases in coastal provinces.
- Rapid decline: >99% reduction by 2017 (burnout pattern).
- Age distribution: Bimodal peak (15–29 years: 35%, 30–49 years: 32%).
3.5.2. Zika Epidemic Dynamics (2015–2024)
- Peak incidence: 17.50 per 100,000 (2016).
- Estimated attack rate: 0.5–1.2% of exposed population.
- Geographic focus: Concentrated in coastal Ecuador (72% of cases).
- Temporal displacement: Peak occurred 8 months after chikungunya peak.
- Rapid disappearance: Minimal detection post-2017.
3.6. Multi-Pathogen Interactions: Evidence for Viral Competition and Cross-Immunity
3.6.1. Vector Autoregression Analysis
- CHIKV emergence negatively predicted dengue incidence 2 months later (coefficient = −0.31, SE = 0.12, ).
- ZIKV circulation negatively predicted CHIKV transmission (coefficient = −0.28, SE = 0.11, ).
- Bidirectional negative feedback between DENV and ZIKV (Granger causality ).
3.6.2. Cross-Pathogen Displacement Analysis
- 1.
- DENV displacement by CHIKV (2015): Level change = −34% (), recovery time = 14 months.
- 2.
- CHIKV displacement by ZIKV (2016): Level change = −67% (), no recovery observed.
- 3.
- ZIKV self-limitation (2017): Rapid decline following herd immunity threshold achievement.
3.7. Climate–Epidemic Associations: Quantifying Environmental Forcing
3.7.1. Comprehensive Climate Analysis
3.7.2. Threshold Effects and Early Warning Potential
- ONI exceeded +0.8 °C (RR = 2.34; 95% CI: 1.78–3.08).
- Temperature anomalies exceeded +1.5 °C (RR = 1.87; 95% CI: 1.34–2.61).
- Combined climate index exceeded 75th percentile (RR = 3.12; 95% CI: 2.17–4.48).
3.8. Geographic and Temporal Heterogeneity
3.8.1. Regional Transmission Patterns
3.8.2. Altitude–Temperature Gradient Analysis
- Dengue: 2200 m elevation (approximate temperature limit: 18 °C mean annual).
- Chikungunya: 1800 m elevation (temperature limit: 20 °C mean annual).
- Zika: 1600 m elevation (temperature limit: 22 °C mean annual).
3.9. Surveillance System Performance Assessment
3.9.1. Reporting Completeness and Timeliness
3.9.2. Laboratory Diagnostic Evolution
- 1988–1995: Clinical diagnosis only, no laboratory confirmation available.
- 1996–2005: IgM ELISA introduced, 15–25% of cases confirmed.
- 2006–2014: NS1 antigen testing added, 35–45% confirmation rate.
- 2015–2024: RT-PCR capacity established, 40–60% confirmation rate.
4. Discussion
4.1. Principal Findings and Global Epidemiological Significance
4.2. Climate Forcing as a Predictive Framework for Epidemic Preparedness
4.2.1. ENSO-Dengue Relationship: Mechanistic Understanding
- 1.
- 2.
- 3.
- 4.
4.2.2. Multi-Pathogen Climate Sensitivity
4.3. The Severe Dengue Paradox: Immunological Cross-Protection Hypothesis
4.3.1. Evidence for Cross-Reactive Immunity
- 1.
- Temporal correlation: The structural break in severe dengue trends (2016) coincides precisely with peak multi-pathogen circulation (, ).
- 2.
- Maintained transmission: Overall dengue incidence remained stable or increased during the period of severe disease decline, indicating continued viral circulation.
- 3.
- 4.
- Geographic consistency: The severe dengue decline was observed across all biogeographic regions, suggesting a population-level immunological phenomenon rather than local factors.
4.3.2. Immunological Mechanisms and Therapeutic Implications
- 1.
- Sequential vaccination: Controlled exposure to less pathogenic arboviruses might provide population-level protection against severe dengue manifestations.
- 2.
- Multi-valent approaches: Arboviral vaccines should consider cross-protective effects rather than focusing on single-pathogen immunity.
- 3.
- Population immunity assessment: Surveillance systems must account for multi-pathogen exposure history when evaluating dengue risk and vaccine effectiveness.
- 4.
- Therapeutic targeting: Understanding cross-reactive T-cell responses could inform development of broad-spectrum antiviral therapies.
4.4. Multi-Pathogen Dynamics: Competition, Displacement, and Coexistence
4.4.1. Viral Competition and Displacement Mechanisms
4.4.2. Implications for Integrated Disease Control
- 1.
- Simultaneous surveillance: Monitoring systems should track all circulating arboviruses simultaneously rather than focusing on individual pathogens, as changes in one virus may predict changes in others.
- 2.
- Coordinated control: Vector control interventions should consider multi-pathogen dynamics, potentially timing intensive interventions during periods when multiple viruses circulate to maximize population impact.
- 3.
- Diagnostic integration: Laboratory systems should maintain capacity for differential diagnosis of multiple arboviruses, as single-pathogen testing may miss important epidemiological transitions.
- 4.
- Vaccine coordination: Future arboviral vaccination programs should consider potential interactions between vaccine-induced and natural immunity across different viruses.
4.5. COVID-19 Pandemic: Lessons for Health System Resilience
4.5.1. Surveillance System Vulnerability and Recovery
4.5.2. Pandemic Preparedness and Endemic Disease Maintenance
- 1.
- Dual-capacity systems: Health infrastructure that can simultaneously respond to pandemic threats while maintaining surveillance and control of endemic diseases.
- 2.
- Rapid deployment capabilities: Pre-positioned diagnostic supplies, trained personnel, and response protocols that can be quickly scaled during epidemic periods.
- 3.
- Community-based surveillance: Decentralized monitoring systems that can function independently of formal healthcare infrastructure during system disruptions.
- 4.
- Digital health integration: Technology-enabled surveillance and reporting systems that reduce dependence on physical healthcare interactions.
- 5.
- Cross-training programs: Healthcare workforce development that enables rapid redeployment between different disease programs while maintaining core competencies.
4.6. Geographic and Temporal Heterogeneity: Ecological Constraints and Climate Change
4.6.1. Biogeographic Patterns and Transmission Limits
4.6.2. Climate Change Implications
- 1.
- Expanded surveillance: Monitoring systems must be extended to newly at-risk areas, particularly inter-Andean valleys and peripheral highland cities.
- 2.
- Infrastructure development: Laboratory diagnostic capacity and vector control programs need expansion to serve previously low-risk populations.
- 3.
- Healthcare system adaptation: Medical training and clinical protocols must be implemented in regions with limited arboviral experience.
- 4.
- Early warning systems: Climate-based prediction models should incorporate elevation and local topographic factors to identify emerging transmission foci.
- 5.
- Vector control innovation: Novel control approaches adapted to highland environments and indigenous community contexts are needed.
4.7. Diagnostic Challenges and Surveillance System Evolution
4.7.1. Historical Bias Correction and Data Quality
4.7.2. Innovation Opportunities and Future Directions
- 1.
- Multiplex diagnostics: Point-of-care tests capable of simultaneously detecting multiple arboviruses with high specificity and sensitivity.
- 2.
- Digital surveillance: Mobile health platforms enabling real-time case reporting and syndromic surveillance from remote areas.
- 3.
- Artificial intelligence: Machine learning algorithms for early epidemic detection using integrated climate, epidemiological, and social media data.
- 4.
- Community diagnostics: Simplified testing protocols that can be implemented by trained community health workers in resource-limited settings.
- 5.
- Genomic surveillance: Rapid sequencing capabilities for real-time tracking of viral evolution and transmission chains [171].
4.8. Study Limitations and Methodological Considerations
4.8.1. Surveillance System Limitations
4.8.2. Analytical Limitations
4.8.3. Generalizability Considerations
- 1.
- Ecological specificity: Ecuador’s unique biogeographic diversity and ENSO exposure may not be representative of other arboviral-endemic regions.
- 2.
- Healthcare system characteristics: The specific structure and capacity of Ecuador’s health system may influence surveillance performance and outbreak response in ways that differ from other countries.
- 3.
- Vector ecology: Regional variations in Aedes aegypti populations, insecticide resistance patterns, and competing vector species may affect transmission dynamics differently across geographic regions.
- 4.
- Population genetics: Host genetic factors influencing immune responses and disease susceptibility may vary between populations, potentially affecting the immunological interactions observed in Ecuador.
4.9. Policy Implications and Recommendations
4.9.1. Integrated Arboviral Management
4.9.2. Research Priorities
- 1.
- Immunological validation: Prospective cohort studies with detailed immunological profiling to validate the multi-pathogen cross-protection hypothesis and identify biomarkers of protection.
- 2.
- Vector competence studies: Laboratory and field studies to characterize within-mosquito viral interactions and their impact on transmission efficiency and epidemic dynamics.
- 3.
- Climate prediction models: Development of operational forecasting systems that integrate multiple climate variables with epidemiological models to provide quantitative epidemic risk assessments.
- 4.
- Economic impact assessment: Comprehensive cost-effectiveness analyses of integrated versus vertical disease control approaches, including indirect costs and benefits of multi-pathogen management. The economic implications of these arboviral epidemics are substantial. Studies estimate the global economic burden of dengue alone exceeds $8.9 billion annually, with Ecuador bearing significant costs in healthcare expenditure and lost productivity [127,172].
- 5.
- Vaccine interaction studies: Research on potential interactions between arboviral vaccines and natural immunity to optimize vaccination strategies and minimize unintended consequences.
4.9.3. Global Health Security Implications
5. Conclusions
5.1. Principal Findings and Their Global Significance
5.2. Methodological Innovations and Analytical Contributions
5.3. Implications for Global Arboviral Control and Pandemic Preparedness
5.3.1. Paradigm Shift Toward Integrated Management
5.3.2. Innovation Priorities for the Next Decade
5.4. Climate Change and Future Arboviral Risk
5.5. Global Health Security and Pandemic Preparedness Lessons
5.6. Research Priorities and Future Directions
5.6.1. Immunological Mechanisms
5.6.2. Vector and Environmental Studies
5.6.3. Implementation Science
5.7. Call to Action: Transforming Arboviral Disease Management
5.8. Final Reflections: Lessons from 36 Years of Arboviral Circulation
Critical Lessons for Pandemic Preparedness
- Climate-Epidemic Associations: Predictive early warning capabilities can transform reactive responses into proactive preparedness strategies.
- Multi-Pathogen Interactions: Complex epidemiological dynamics require integrated rather than vertical surveillance and control approaches.
- Diagnostic Surge Capacity: Broad-spectrum detection methods essential for emerging pathogen identification challenges.
- Resilient Surveillance Systems: Must maintain essential functions during healthcare system stress and pandemic responses.
- Cross-Protective Immunity: Related pathogens may provide unexpected population benefits for vaccine development and deployment strategies.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
ACF | Autocorrelation Function |
ADE | Antibody-Dependent Enhancement |
AIC | Akaike Information Criterion |
CHIKV | Chikungunya virus |
CI | Confidence Interval |
COVID-19 | Coronavirus Disease 2019 |
CUSUM | Cumulative Sum Control Chart |
DENV | Dengue virus |
DHF/DSS | Dengue Hemorrhagic Fever/Dengue Shock Syndrome |
DLNM | Distributed Lag Non-linear Model |
ELISA | Enzyme-Linked Immunosorbent Assay |
ENSO | El Niño–Southern Oscillation |
EW | Epidemiological Week |
FFT | Fast Fourier Transform |
GAM | Generalized Additive Model |
IgG | Immunoglobulin G |
IgM | Immunoglobulin M |
INAMHI | Instituto Nacional de Meteorología e Hidrología |
INEC | Instituto Nacional de Estadística y Censos |
INSPI | Instituto Nacional de Investigación en Salud Pública |
MEM | Moving Epidemic Method |
MSP | Ministerio de Salud Pública |
NDVI | Normalized Difference Vegetation Index |
NOAA | National Oceanic and Atmospheric Administration |
NS1 | Non-structural protein 1 |
ONI | Oceanic Niño Index |
PAHO | Pan American Health Organization |
PCA | Principal Component Analysis |
PELT | Pruned Exact Linear Time |
RT-PCR | Reverse Transcription-Polymerase Chain Reaction |
SIVE | Sistema de Vigilancia Epidemiológica |
SST | Sea Surface Temperature |
STL | Seasonal and Trend decomposition using Loess |
VAR | Vector Autoregression |
WHO | World Health Organization |
ZIKV | Zika virus |
References
- Messina, J.P.; Brady, O.J.; Golding, N.; Kraemer, M.U.G.; Wint, G.R.W.; Ray, S.E.; Pigott, D.M.; Shearer, F.M.; Johnson, K.; Earl, L.; et al. The current and future global distribution and population at risk of dengue. Nat. Microbiol. 2019, 4, 1508–1515. [Google Scholar] [CrossRef]
- Brady, O.J.; Hay, S.I. The Rise and Fall of Dengue in the Americas. Cell 2019, 178, 774–776. [Google Scholar]
- Wilder-Smith, A.; Gubler, D.J.; Weaver, S.C.; Monath, T.P.; Heymann, D.L.; Scott, T.W. Epidemic arboviral diseases: Priorities for research and public health. Lancet Infect. Dis. 2017, 17, e101–e106. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Morales, A.J.; Villamil-Gómez, W.E.; Franco-Paredes, C. The arboviral burden of disease caused by co-circulation and co-infection of dengue, chikungunya and Zika in the Americas. Travel Med. Infect. Dis. 2016, 14, 177–179. [Google Scholar] [CrossRef]
- Powell, J.R.; Tabachnick, W.J. History of domestication and spread of Aedes aegypti—A review. Mem. Inst. Oswaldo Cruz 2013, 108, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Faria, N.R.; Azevedo, R.d.S.d.S.; Kraemer, M.U.G.; Souza, R.; Cunha, M.S.; Hill, S.C.; Thézé, J.; Bonsall, M.B.; Bowden, T.A.; Rissanen, I.; et al. Zika virus in the Americas: Early epidemiological and genetic findings. Science 2016, 352, 345–349. [Google Scholar] [CrossRef]
- Weaver, S.C.; Lecuit, M. Chikungunya virus and the global spread of a mosquito-borne disease. N. Engl. J. Med. 2015, 372, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Vasilakis, N.; Weaver, S.C. The history and evolution of human arboviral disease. PLoS Pathog. 2017, 13, e1006092. [Google Scholar]
- Vogels, C.B.F.; Rückert, C.; Cavany, S.M.; Perkins, T.A.; Ebel, G.D.; Grubaugh, N.D. Arbovirus coinfection and co-transmission: A neglected public health concern? PLoS Biol. 2019, 17, e3000130. [Google Scholar] [CrossRef]
- Stewart-Ibarra, A.M.; Ryan, S.J.; Kenneson, A.; King, C.A.; Abbott, M.; Barbachano-Guerrero, A.; Beltrán-Ayala, E.; Borbor-Cordova, M.J.; Cárdenas, W.B.; Cueva, C.; et al. The Burden of Dengue Fever and Chikungunya in Southern Coastal Ecuador: Epidemiology, Clinical Presentation, and Phylogenetics from the First Two Years of a Prospective Study. Am. J. Trop. Med. Hyg. 2018, 98, 1444–1459. [Google Scholar] [CrossRef]
- Ryan, S.J.; Carlson, C.J.; Mordecai, E.A.; Johnson, L.R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 2019, 13, e0007213. [Google Scholar] [CrossRef] [PubMed]
- Lowe, R.; Stewart-Ibarra, A.M.; Petrova, D.; García-Díez, M.; Borbor-Cordova, M.J.; Mejía, R.; Regato, M.; Rodó, X. Climate services for health: Predicting the evolution of the 2016 dengue season in Machala, Ecuador. Lancet Planet. Health 2017, 1, e142–e151. [Google Scholar] [CrossRef] [PubMed]
- Sippy, R.; Herrera, D.; Gaus, D.; Gangnon, R.E.; Patz, J.A.; Osorio, J.E. Seasonal patterns of dengue fever in rural Ecuador: 2009–2016. PLoS Negl. Trop. Dis. 2019, 13, e0007360. [Google Scholar] [CrossRef]
- Katzelnick, L.C.; Quentin, E.; Colston, S.; Ha, T.A.; Andrade, P.; Eisenberg, J.N.S.; Ponce, P.; Coloma, J.; Cevallos, V. Increasing transmission of dengue virus across ecologically diverse regions of Ecuador and associated risk factors. PLoS Negl. Trop. Dis. 2024, 18, e0011408. [Google Scholar] [CrossRef] [PubMed]
- Coloma, J.; Harris, E. Molecular and virological study of dengue in Ecuador. Rev. Panam. Salud Publica 2010, 27, 398–402. [Google Scholar]
- Stewart-Ibarra, A.M.; Lowe, R. Climate and non-climate drivers of dengue epidemics in southern coastal Ecuador. Am. J. Trop. Med. Hyg. 2013, 88, 971–981. [Google Scholar] [CrossRef]
- Pan American Health Organization. Epidemiological Update: Dengue; PAHO/WHO: Washington, DC, USA, 2019; Available online: https://iris.paho.org/handle/10665.2/51496 (accessed on 26 July 2025).
- Márquez, S.; Lee, G.O.; Andrade, P.; Zuniga, J.; Trueba, G.; Eisenberg, J.N.S.; Coloma, J. A Chikungunya Outbreak in a Dengue-endemic Region in Rural Northern Coastal Ecuador. Am. J. Trop. Med. Hyg. 2022, 107, 1226–1233. [Google Scholar] [CrossRef]
- Waggoner, J.J.; Pinsky, B.A. Zika virus: Diagnostics for an emerging pandemic threat. J. Clin. Microbiol. 2016, 54, 860–867. [Google Scholar] [CrossRef]
- Musso, D.; Gubler, D.J. Zika virus. Clin. Microbiol. Rev. 2016, 29, 487–524. [Google Scholar] [CrossRef]
- Cardona-Ospina, J.A.; Arteaga-Livias, K.; Villamil-Gómez, W.E.; Pérez-Díaz, C.E.; Bonilla-Aldana, D.K.; Mondragon-Cardona, A.; Rodriguez-Morales, A.J.; Solarte-Portilla, M.; Martinez, E.; Millan-Oñate, J.; et al. Dengue and COVID-19, overlapping epidemics? An analysis from Colombia. J. Med. Virol. 2021, 93, 522–527. [Google Scholar] [CrossRef]
- Quintero, B.; Ramón-Ochoa, A.X.; Morillo-Puente, S.; Tenezaca-Ramón, D.A.; Cevallos-Naranjo, A.S. Emergence and expansion of dengue in Paltas: Possible implications of the COVID-19 pandemic and climatic variations. Trop. Med. Health 2025, 53, 12. [Google Scholar] [CrossRef]
- Lorenz, C.; Azevedo, T.S.; Chiaravalloti-Neto, F. COVID-19 and dengue fever: A dangerous combination for the health system in Brazil. Travel Med. Infect. Dis. 2020, 35, 101659. [Google Scholar] [CrossRef]
- Garcia-Bereguiain, M.A.; Gonzalez, E.; Vivanco, E.; Vega-Mariño, P.; Romero, C.; Comas-García, A.; Vera, E.; Loaiza, O.; Bonilla, F.; Aguirre, M.; et al. COVID-19 in Ecuador: Preliminary molecular epidemiological analysis and public health implications. J. Glob. Health 2020, 10, 020354. [Google Scholar] [CrossRef]
- Kraemer, M.U.G.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.N.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 2015, 4, e08347. [Google Scholar] [CrossRef]
- Mordecai, E.A.; Caldwell, J.M.; Grossman, M.K.; Lippi, C.A.; Johnson, L.R.; Neira, M.; Rohr, J.R.; Ryan, S.J.; Savage, V.; Shocket, M.S.; et al. Thermal biology of mosquito-borne disease. Ecol. Lett. 2019, 22, 1690–1708. [Google Scholar] [CrossRef] [PubMed]
- Freire-Paspuel, B.; Vega-Mariño, P.; Velez, A.; Cruz, M.; Garcia-Bereguiain, M.A. Sample pooling of RNA extracts to speed up SARS-CoV-2 diagnosis using CDC FDA EUA RT-qPCR kit. Virus Res. 2020, 290, 198173. [Google Scholar] [CrossRef]
- Collins, M.H.; McGowan, E.; Jadi, R.; Young, E.; Lopez, C.A.; Baric, R.S.; Lazear, H.M.; de Silva, A.M. Lack of Durable Cross-Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection. Emerg. Infect. Dis. 2017, 23, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Perera, R.A.P.M.; Tso, E.; Tsang, O.T.Y.; Tsang, D.N.C.; Fung, K.; Leung, Y.W.Y.; Chin, A.W.H.; Chu, D.K.W.; Cheng, S.M.S.; Poon, L.L.M.; et al. SARS-CoV-2 Virus Culture and Subgenomic RNA for Respiratory Specimens from Patients with Mild Coronavirus Disease. Emerg. Infect. Dis. 2020, 26, 2701–2704. [Google Scholar] [CrossRef]
- Grubaugh, N.D.; Saraf, S.; Gangavarapu, K.; Watts, A.; Tan, A.L.; Oidtman, R.J.; Ladner, J.T.; Oliveira, G.; Matteson, N.L.; Kraemer, M.U.G.; et al. Travel Surveillance and Genomics Uncover a Hidden Zika Outbreak during the Waning Epidemic. Cell 2019, 178, 1057–1071.e11. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.R.; Chen, T.H.; Hancock, W.T.; Powers, A.M.; Kool, J.L.; Lanciotti, R.S.; Pretrick, M.; Marfel, M.; Holzbauer, S.; Dubray, C.; et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 2009, 360, 2536–2543. [Google Scholar] [CrossRef]
- Katzelnick, L.C.; Montoya, M.; Gresh, L.; Balmaseda, A.; Harris, E. Neutralizing antibody titers against dengue virus correlate with protection from symptomatic infection in a longitudinal cohort. Proc. Natl. Acad. Sci. USA 2016, 113, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Salje, H.; Cummings, D.A.T.; Rodriguez-Barraquer, I.; Katzelnick, L.C.; Lessler, J.; Klungthong, C.; Thaisomboonsuk, B.; Nisalak, A.; Weg, A.; Ellison, D.; et al. Reconstruction of antibody dynamics and infection histories to evaluate dengue risk. Nature 2018, 557, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Barraquer, I.; Costa, F.; Nascimento, E.J.M.; Nery, N., Jr.; Castanha, P.M.S.; Sacramento, G.A.; Cruz, J.; Carvalho, M.; De Olivera, D.; Hagan, J.E.; et al. Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region. Science 2019, 363, 607–610. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 2nd ed.; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- Killick, R.; Fearnhead, P.; Eckley, I.A. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 2012, 107, 1590–1598. [Google Scholar] [CrossRef]
- Lowe, R.; Bailey, T.C.; Stephenson, D.B.; Graham, R.J.; Coelho, C.A.S.; Carvalho, M.S.; Barcellos, C. Spatio-temporal modelling of climate-sensitive disease risk: Towards an early warning system for dengue in Brazil. Comput. Geosci. 2011, 37, 371–381. [Google Scholar] [CrossRef]
- Tamerius, J.; Nelson, M.I.; Zhou, S.Z.; Viboud, C.; Miller, M.A.; Alonso, W.J. Global influenza seasonality: Reconciling patterns across temperate and tropical regions. Environ. Health Perspect. 2011, 119, 439–445. [Google Scholar] [CrossRef]
- Andrade, P.; Gimblet-Ochieng, C.; Modirian, F.; Collins, M.; Cardenas, M.; Katzelnick, L.C.; Montoya, M.; Michlmayr, D.; Kuan, G.; Balmaseda, A.; et al. Impact of pre-existing dengue immunity on human antibody and memory B cell responses to Zika. Nat. Commun. 2019, 10, 938. [Google Scholar] [CrossRef]
- Andrade, P.; Narvekar, P.; Montoya, M.; Michlmayr, D.; Balmaseda, A.; Coloma, J.; Harris, E. Primary and Secondary Dengue Virus Infections Elicit Similar Memory B-Cell Responses, but Breadth to Other Serotypes and Cross-Reactivity to Zika Virus Is Higher in Secondary Dengue. J. Infect. Dis. 2020, 222, 590–600. [Google Scholar] [CrossRef]
- Rothman, K.J.; Greenland, S.; Lash, T.L. Modern Epidemiology, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008; p. 758. [Google Scholar]
- Szklo, M.; Nieto, F.J. Epidemiology: Beyond the Basics, 3rd ed.; Jones & Bartlett Learning: Burlington, MA, USA, 2014; p. 516. [Google Scholar]
- Bernal, J.L.; Cummins, S.; Gasparrini, A. Interrupted time series regression for the evaluation of public health interventions: A tutorial. Int. J. Epidemiol. 2017, 46, 348–355. [Google Scholar] [CrossRef]
- Kontopantelis, E.; Doran, T.; Springate, D.A.; Buchan, I.; Reeves, D. Regression based quasi-experimental approach when randomisation is not possible: Interrupted time series analysis. BMJ 2015, 350, h2750. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Estadística y Censos del Ecuador. Proyecciones Poblacionales; INEC: Quito, Ecuador, 2023. Available online: https://www.ecuadorencifras.gob.ec/proyecciones-poblacionales/ (accessed on 26 July 2025).
- Young, K.R.; Ulloa, C.U.; Luteyn, J.L.; Knapp, S. Plant evolution and endemism in Andean South America: An introduction. Bot. Rev. 2002, 68, 4–21. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Thacker, S.B.; Qualters, J.R.; Lee, L.M. Public health surveillance in the United States: Evolution and challenges. MMWR Suppl. 2012, 61, 3–9. [Google Scholar] [PubMed]
- German, R.R.; Lee, L.M.; Horan, J.M.; Milstein, R.L.; Pertowski, C.A.; Waller, M.N.; Guidelines Working Group. Updated guidelines for evaluating public health surveillance systems: Recommendations from the guidelines working group. MMWR Recomm. Rep. 2001, 50, 1–35. [Google Scholar]
- Ministerio de Salud Pública del Ecuador. Protocolo de Vigilancia Epidemiológica para Arbovirosis; MSP: Quito, Ecuador, 2023. Available online: https://www.salud.gob.ec/wp-content/uploads/2023/02/Gaceta-SE-3_2023.pdf (accessed on 26 July 2025).
- World Health Organization. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control; WHO Press: Geneva, Switzerland, 2009. [Google Scholar]
- Pan American Health Organization. Tool for the Diagnosis and Care of Patients with Suspected Arboviral Diseases; PAHO: Washington, DC, USA, 2017. [Google Scholar]
- Guzman, M.G.; Halstead, S.B.; Artsob, H.; Buchy, P.; Farrar, J.; Gubler, D.J.; Hunsperger, E.; Kroeger, A.; Margolis, H.S.; Martínez, E.; et al. Dengue: A continuing global threat. Nat. Rev. Microbiol. 2010, 8, S7–S16. [Google Scholar] [CrossRef] [PubMed]
- Peeling, R.W.; Artsob, H.; Pelegrino, J.L.; Buchy, P.; Cardosa, M.J.; Devi, S.; Enria, D.A.; Farrar, J.; Gubler, D.J.; Guzman, M.G.; et al. Evaluation of diagnostic tests: Dengue. Nat. Rev. Microbiol. 2010, 8, S30–S38. [Google Scholar] [CrossRef] [PubMed]
- Blacksell, S.D. Commercial dengue rapid diagnostic tests for point-of-care application: Recent evaluations and future needs? J. Biomed. Biotechnol. 2012, 2012, 151967. [Google Scholar] [CrossRef]
- Hunsperger, E.A.; Yoksan, S.; Buchy, P.; Nguyen, V.C.; Sekaran, S.D.; Enria, D.A.; Vazquez, S.; Cartozian, E.; Pelegrino, J.L.; Artsob, H.; et al. Evaluation of commercially available anti-dengue virus immunoglobulin M tests. Emerg. Infect. Dis. 2009, 15, 436–440. [Google Scholar] [CrossRef]
- Lima, M.d.R.Q.; Nogueira, R.M.R.; Schatzmayr, H.G.; dos Santos, F.B. Comparison of three commercially available dengue NS1 antigen capture assays for acute diagnosis of dengue in Brazil. PLoS Negl. Trop. Dis. 2010, 4, e738. [Google Scholar] [CrossRef]
- Santiago, G.A.; Vergne, E.; Quiles, Y.; Cosme, J.; Vazquez, J.; Medina, J.F.; Medina, F.; Colón, C.; Margolis, H.; Muñoz-Jordán, J.L. Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus. PLoS Negl. Trop. Dis. 2013, 7, e2311. [Google Scholar] [CrossRef]
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Velez, J.O.; Lambert, A.J.; Johnson, A.J.; Stanfield, S.M.; Duffy, M.R. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 2008, 14, 1232–1239. [Google Scholar] [CrossRef]
- Domingo, C.; Palacios, G.; Jabado, O.; Reyes, N.; Niedrig, M.; Gascón, J.; Cabrerizo, M.; Lipkin, W.I.; Tenorio, A. Use of a short fragment of the C-terminal E gene for detection and characterization of two new lineages of dengue virus 1 in India. J. Clin. Microbiol. 2006, 44, 1519–1529. [Google Scholar] [CrossRef]
- Harris, E.; Videa, E.; Pérez, L.; Sandoval, E.; Téllez, Y.; Pérez, M.L.; Cuadra, R.; Rocha, J.; Idiaquez, W.; Alonso, R.E.; et al. Clinical, epidemiologic, and virologic features of dengue in the 1998 epidemic in Nicaragua. Am. J. Trop. Med. Hyg. 2000, 63, 5–11. [Google Scholar] [CrossRef]
- Mansfield, K.L.; Horton, D.L.; Johnson, N.; Li, L.; Barrett, A.D.; Smith, D.J.; Galbraith, S.E.; Solomon, T.; Fooks, A.R. Flavivirus-induced antibody cross-reactivity. J. Gen. Virol. 2011, 92, 2821–2829. [Google Scholar] [CrossRef] [PubMed]
- Felix, A.C.; Romano, C.M.; Centrone, C.d.C.; Rodrigues, C.L.; Villas-Boas, L.; Araújo, E.S.; de Matos, A.M.; Carvalho, K.I.; Martelli, C.M.; Kallas, E.G.; et al. Low sensitivity of NS1 protein tests evidenced during a dengue type 2 virus outbreak in Santos, Brazil, in 2010. Clin. Vaccine Immunol. 2012, 19, 1972–1976. [Google Scholar] [CrossRef] [PubMed]
- National Oceanic and Atmospheric Administration. Oceanic Niño Index (ONI). Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 26 July 2025).
- Trenberth, K.E. The definition of El Niño. Bull. Am. Meteorol. Soc. 1997, 78, 2771–2777. [Google Scholar] [CrossRef]
- Instituto Nacional de Meteorología e Hidrología del Ecuador. Boletín Climatológico Nacional 2023; INAMHI: Quito, Ecuador, 2024. Available online: https://servicios.inamhi.gob.ec/clima/ (accessed on 26 July 2025).
- Peterson, T.C.; Vose, R.S. An overview of the Global Historical Climatology Network temperature database. Bull. Am. Meteorol. Soc. 1997, 78, 2837–2849. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Anyamba, A.; Chretien, J.P.; Small, J.; Tucker, C.J.; Formenty, P.B.; Richardson, J.H.; Britch, S.C.; Schnabel, D.C.; Erickson, R.L.; Linthicum, K.J. Prediction of a Rift Valley fever outbreak. Proc. Natl. Acad. Sci. USA 2009, 106, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.M. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Hogan, A.B.; Jewell, B.L.; Sherrard-Smith, E.; Vesga, J.F.; Watson, O.J.; Whittaker, C.; Hamlet, A.; Smith, J.A.; Winskill, P.; Verity, R.; et al. Potential impact of the COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income and middle-income countries: A modelling study. Lancet Glob. Health 2020, 8, e1132–e1141. [Google Scholar] [CrossRef] [PubMed]
- Hale, T.; Angrist, N.; Goldszmidt, R.; Kira, B.; Petherick, A.; Phillips, T.; Webster, S.; Cameron-Blake, E.; Hallas, L.; Majumdar, S.; et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 2021, 5, 529–538. [Google Scholar] [CrossRef]
- Ministerio de Salud Pública del Ecuador. Informe de Gestión COVID-19: Impacto en el Sistema de Salud; MSP: Quito, Ecuador, 2021.
- Litewka, S.G.; Heitman, E. Latin American healthcare systems in times of pandemic. Dev. World Bioeth. 2020, 20, 69–73. [Google Scholar] [CrossRef]
- Buehler, J.W.; Hopkins, R.S.; Overhage, J.M.; Sosin, D.M.; Tong, V.; CDC Working Group. Framework for evaluating public health surveillance systems for early detection of outbreaks: Recommendations from the CDC working group. MMWR Recomm. Rep. 2004, 53, 1–11. [Google Scholar]
- World Health Organization. Global Strategy for Dengue Prevention and Control 2012–2020; WHO Press: Geneva, Switzerland, 2012. [Google Scholar]
- Morrison, A.C.; Zielinski-Gutierrez, E.; Scott, T.W.; Rosenberg, R. Defining challenges and proposing solutions for control of the virus vector Aedes aegypti. PLoS Med. 2008, 5, e68. [Google Scholar] [CrossRef]
- Farrington, C.P.; Andrews, N.J.; Beale, A.D.; Catchpole, M.A. A statistical algorithm for the early detection of outbreaks of infectious disease. J. R. Stat. Soc. Ser. A 1996, 159, 547–563. [Google Scholar] [CrossRef]
- Noufaily, A.; Enki, D.G.; Farrington, P.; Garthwaite, P.; Andrews, N.; Charlett, A. An improved algorithm for outbreak detection in multiple surveillance systems. Stat. Med. 2013, 32, 1206–1222. [Google Scholar] [CrossRef]
- Aminikhanghahi, S.; Cook, D.J. A survey of methods for time series change point detection. Knowl. Inf. Syst. 2017, 51, 339–367. [Google Scholar] [CrossRef] [PubMed]
- Zeileis, A.; Leisch, F.; Hornik, K.; Kleiber, C. strucchange: An R package for testing for structural change in linear regression models. J. Stat. Softw. 2002, 7, 1–38. [Google Scholar] [CrossRef]
- Doyle, T.J.; Glynn, M.K.; Groseclose, S.L. Completeness of notifiable infectious disease reporting in the United States: An analytical literature review. Am. J. Epidemiol. 2002, 155, 866–874. [Google Scholar] [CrossRef]
- Brookmeyer, R.; Stroup, D.F. Monitoring the Health of Populations: Statistical Principles and Methods for Public Health Surveillance; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition procedure based on loess. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Gasparrini, A. Modeling exposure-lag-response associations with distributed lag non-linear models. Stat. Med. 2014, 33, 881–899. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, B. Models for the relationship between ambient temperature and daily mortality. Epidemiology 2006, 17, 624–631. [Google Scholar] [CrossRef]
- Chatfield, C. The Analysis of Time Series: An Introduction, 6th ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2003. [Google Scholar]
- Shumway, R.H.; Stoffer, D.S. Time Series Analysis and Its Applications: With R Examples, 4th ed.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Gasparrini, A.; Armstrong, B.; Kenward, M.G. Distributed lag non-linear models. Stat. Med. 2010, 29, 2224–2234. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Sera, F.; Vicedo-Cabrera, A.M.; Huber, V.; Tong, S.; de Sousa Zanotti Stagliorio Coelho, M.; Nascimento Saldiva, P.H.; Lavigne, E.; Matus Correa, P.; et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Health 2017, 1, e360–e367. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Therneau, T.; Atkinson, B. rpart: Recursive Partitioning and Regression Trees. R Package Version 4.1-19, 2023. Available online: https://CRAN.R-project.org/package=rpart (accessed on 26 July 2025).
- Hamilton, J.D. Time Series Analysis; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Earn, D.J.D.; Rohani, P.; Bolker, B.M.; Grenfell, B.T. A simple model for complex dynamical transitions in epidemics. Science 2000, 287, 667–670. [Google Scholar] [CrossRef]
- Pfaff, B. VAR, SVAR and SVEC models: Implementation within R package vars. J. Stat. Softw. 2008, 27, 1–32. [Google Scholar] [CrossRef]
- Lütkepohl, H. New Introduction to Multiple Time Series Analysis; Springer: Berlin, Germany, 2005. [Google Scholar]
- Granger, C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Toda, H.Y.; Yamamoto, T. Statistical inference in vector autoregressions with possibly integrated processes. J. Econom. 1995, 66, 225–250. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Penfold, R.B.; Zhang, F. Use of interrupted time series analysis in evaluating health care quality improvements. Acad. Pediatr. 2013, 13, S38–S44. [Google Scholar] [CrossRef]
- Kelsey, J.L.; Whittemore, A.S.; Evans, A.S.; Thompson, W.D. Methods in Observational Epidemiology, 2nd ed.; Oxford University Press: New York, NY, USA, 1996. [Google Scholar]
- Pan American Health Organization. PLISA Health Information Platform for the Americas. Available online: https://www3.paho.org/data/index.php/en/ (accessed on 26 July 2025).
- World Health Organization. Global Health Observatory Data Repository. Available online: https://apps.who.int/gho/data/ (accessed on 26 July 2025).
- van den Broeck, J.; Cunningham, S.A.; Eeckels, R.; Herbst, K. Data cleaning: Detecting, diagnosing, and editing data abnormalities. PLoS Med. 2005, 2, e267. [Google Scholar] [CrossRef]
- English, D.R.; Daya, S. Data quality in health research. In Encyclopedia of Health and Behavior; Anderson, N.B., Ed.; Sage Publications: Thousand Oaks, CA, USA, 2004; pp. 234–237. [Google Scholar]
- Rubin, D.B. Multiple Imputation for Nonresponse in Surveys; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- White, I.R.; Royston, P.; Wood, A.M. Multiple imputation using chained equations: Issues and guidance for practice. Stat. Med. 2011, 30, 377–399. [Google Scholar] [CrossRef]
- Hsu, C.C.; Sandford, B.A. The Delphi technique: Making sense of consensus. Pract. Assess. Res. Eval. 2007, 12, 10. [Google Scholar] [CrossRef]
- Diamond, I.R.; Grant, R.C.; Feldman, B.M.; Pencharz, P.B.; Ling, S.C.; Moore, A.M.; Wales, P.W. Defining consensus: A systematic review recommends methodologic criteria for reporting of Delphi studies. J. Clin. Epidemiol. 2014, 67, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 2008, 27, 1–22. [Google Scholar] [CrossRef]
- Killick, R.; Eckley, I.A. changepoint: An R Package for Changepoint Analysis. J. Stat. Softw. 2014, 58, 1–19. [Google Scholar] [CrossRef]
- Gasparrini, A. Distributed lag linear and non-linear models in R: The package dlnm. J. Stat. Softw. 2011, 43, 1–20. [Google Scholar] [CrossRef]
- Hill, A.B. The environment and disease: Association or causation? Proc. R. Soc. Med. 1965, 58, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Lessler, J.; Chaisson, L.H.; Kucirka, L.M.; Bi, Q.; Grantz, K.; Salje, H.; Carcelen, A.C.; Ott, C.T.; Sheffield, J.S.; Ferguson, N.M.; et al. Assessing the global threat from Zika virus. Science 2016, 353, aaf8160. [Google Scholar] [CrossRef] [PubMed]
- Robinson, W.S. Ecological correlations and the behavior of individuals. Am. Sociol. Rev. 1950, 15, 351–357. [Google Scholar] [CrossRef]
- Morgenstern, H. Ecologic studies in epidemiology: Concepts, principles, and methods. Annu. Rev. Public Health 1995, 16, 61–81. [Google Scholar] [CrossRef]
- Council for International Organizations of Medical Sciences. International Ethical Guidelines for Health-Related Research Involving Humans, 4th ed.; CIOMS: Geneva, Switzerland, 2016. [Google Scholar]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- ISO/IEC 27001:2013; Information Technology—Security Techniques—Information Security Management Systems—Requirements. ISO: Geneva, Switzerland, 2013.
- Halstead, S.B. Dengvaxia sensitizes seronegatives to vaccine enhanced disease regardless of age. Vaccine 2017, 35, 6355–6358. [Google Scholar] [CrossRef]
- Erdman, C.; Emerson, J.W. bcp: An R package for performing a Bayesian analysis of change point problems. J. Stat. Softw. 2007, 23, 1–13. [Google Scholar] [CrossRef]
- Anderson, R.M.; May, R.M. Infectious Diseases of Humans: Dynamics and Control; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Keeling, M.J.; Rohani, P. Modeling Infectious Diseases in Humans and Animals; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Vega-Corredor, M.C.; Tiga-Loza, A.; Torres, A.L.; Morales-Betancourt, M.A.; López-Corzo, J.C. Spatial and temporal analysis of dengue transmission patterns in tropical Andean settings: A case study from Colombia. Rev. Salud Publica 2014, 16, 845–858. [Google Scholar]
- Colón-González, F.J.; Fezzi, C.; Lake, I.R.; Hunter, P.R. The effects of weather and climate change on dengue. PLoS Negl. Trop. Dis. 2013, 7, e2503. [Google Scholar] [CrossRef]
- Tesla, B.; Demakovsky, L.R.; Mordecai, E.A.; Ryan, S.J.; Bonds, M.H.; Ngonghala, C.N.; Brindley, M.A.; Murdock, C.C. Temperature drives Zika virus transmission: Evidence from empirical and mathematical models. Proc. R. Soc. B 2018, 285, 20180795. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, L.; Paaijmans, K.P.; Fansiri, T.; Carrington, L.B.; Kramer, L.D.; Thomas, M.B.; Scott, T.W. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc. Natl. Acad. Sci. USA 2011, 108, 7460–7465. [Google Scholar] [CrossRef] [PubMed]
- Carrington, L.B.; Seifert, S.N.; Willits, N.H.; Lambrechts, L.; Scott, T.W. Large diurnal temperature fluctuations negatively influence Aedes aegypti (Diptera: Culicidae) life-history traits. J. Med. Entomol. 2013, 50, 43–51. [Google Scholar] [CrossRef]
- Naish, S.; Dale, P.; Mackenzie, J.S.; McBride, J.; Mengersen, K.; Tong, S. Climate change and dengue: A critical and systematic review of quantitative modelling approaches. BMC Infect. Dis. 2014, 14, 167. [Google Scholar] [CrossRef]
- Vezzulli, L.; Grande, C.; Reid, P.C.; Hélaouët, P.; Edwards, M.; Höfle, M.G.; Brettar, I.; Colwell, R.R.; Pruzzo, C. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl. Acad. Sci. USA 2016, 113, E5062–E5071. [Google Scholar] [CrossRef]
- McMichael, A.J.; Woodruff, R.E.; Hales, S. Climate change and human health: Present and future risks. Lancet 2006, 367, 859–869. [Google Scholar] [CrossRef]
- Confalonieri, U.; Menne, B.; Akhtar, R.; Ebi, K.L.; Hauengue, M.; Kovats, R.S.; Revich, B.; Woodward, A. Human health. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 391–431. [Google Scholar]
- Rehman, A.U.; Hassanein, E.; Sohail, S.S.; Alomrani, A.; Aljubran, F.; Alsayed, A.R.; Alsamiri, H.M.; Ahmad, R.; Khan, N.A. Predictive modeling of the El Niño-Southern Oscillation effect on dengue transmission in Ecuador. PLoS ONE 2022, 17, e0275745. [Google Scholar] [CrossRef]
- Patterson, J.; Sammon, M.; Garg, M. Dengue, Zika and chikungunya: Emerging arboviruses in the new world. West. J. Emerg. Med. 2016, 17, 671–679. [Google Scholar] [CrossRef]
- Mordecai, E.A.; Cohen, J.M.; Evans, M.V.; Gudapati, P.; Johnson, L.R.; Lippi, C.A.; Miazgowicz, K.; Murdock, C.C.; Rohr, J.R.; Ryan, S.J.; et al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 2017, 11, e0005568. [Google Scholar] [CrossRef] [PubMed]
- Tjaden, N.B.; Thomas, S.M.; Fischer, D.; Beierkuhnlein, C. Extrinsic incubation period of dengue: Knowledge, backlog, and applications of temperature dependence. PLoS Negl. Trop. Dis. 2013, 7, e2207. [Google Scholar] [CrossRef]
- Rückert, C.; Weger-Lucarelli, J.; Garcia-Luna, S.M.; Young, M.C.; Byas, A.D.; Murrieta, R.A.; Fauver, J.R.; Ebel, G.D. Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes. Nat. Commun. 2017, 8, 15412. [Google Scholar] [CrossRef] [PubMed]
- Göertz, G.P.; Vogels, C.B.F.; Geertsema, C.; Koenraadt, C.J.M.; Pijlman, G.P. Mosquito co-infection with Zika and chikungunya virus allows simultaneous transmission without affecting vector competence of Aedes aegypti. PLoS Negl. Trop. Dis. 2017, 11, e0005654. [Google Scholar] [CrossRef]
- Dejnirattisai, W.; Supasa, P.; Wongwiwat, W.; Rouvinski, A.; Barba-Spaeth, G.; Duangchinda, T.; Sakuntabhai, A.; Cao-Lormeau, V.M.; Malasit, P.; Rey, F.A.; et al. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with Zika virus. Nat. Immunol. 2016, 17, 1102–1108. [Google Scholar] [CrossRef]
- Screaton, G.; Mongkolsapaya, J.; Yacoub, S.; Roberts, C. New insights into the immunopathology and control of dengue virus infection. Nat. Rev. Immunol. 2015, 15, 745–759. [Google Scholar] [CrossRef]
- Weiskopf, D.; Angelo, M.A.; de Azeredo, E.L.; Sidney, J.; Greenbaum, J.A.; Fernando, A.N.; Broadwater, A.; Kolla, R.V.; De Silva, A.D.; de Silva, A.M.; et al. Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Proc. Natl. Acad. Sci. USA 2013, 110, E2046–E2053. [Google Scholar] [CrossRef] [PubMed]
- Rivino, L. T cell immunity to dengue virus and implications for vaccine design. Expert Rev. Vaccines 2016, 15, 443–453. [Google Scholar] [CrossRef]
- Grifoni, A.; Pham, J.; Sidney, J.; O’Rourke, P.H.; Paul, S.; Peters, B.; Martini, S.R.; de Silva, A.D.; Ricciardi, M.J.; Magnani, D.M.; et al. Prior dengue virus exposure shapes T cell immunity to Zika virus in humans. J. Virol. 2017, 91, e01469-17. [Google Scholar] [CrossRef]
- Elong Ngono, A.; Shresta, S. Immune response to dengue and Zika. Annu. Rev. Immunol. 2018, 36, 279–308. [Google Scholar] [CrossRef]
- Weiskopf, D.; Cerpas, C.; Angelo, M.A.; Bangs, D.J.; Sidney, J.; Paul, S.; Peters, B.; Sanches, F.P.; Silvera, C.G.; Romero-Sanchez, C.; et al. Human CD8+ T-cell responses against the 4 dengue virus serotypes are associated with distinct patterns of protein targets. J. Infect. Dis. 2015, 212, 1743–1751. [Google Scholar] [CrossRef]
- Yauch, L.E.; Shresta, S. Mouse models of dengue virus infection and disease. Antivir. Res. 2008, 80, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Elong Ngono, A.; Regla-Nava, J.A.; Kim, K.; Gorman, M.J.; Diamond, M.S.; Shresta, S. Dengue virus-reactive CD8+ T cells mediate cross-protection against subsequent Zika virus challenge. Nat. Commun. 2017, 8, 1459. [Google Scholar] [CrossRef]
- Ricciardi, M.J.; Magnani, D.M.; Grifoni, A.; Kwon, Y.C.; Gutman, M.J.; Grubaugh, N.D.; Gangavarapu, K.; Sharkey, M.; Silveira, C.G.T.; Bailey, V.K.; et al. Ontogeny of the B- and T-cell response in a primary Zika virus infection of a dengue-naïve individual during the 2016 outbreak in Miami, FL. PLoS Negl. Trop. Dis. 2017, 11, e0006000. [Google Scholar] [CrossRef]
- Wauquier, N.; Becquart, P.; Nkoghe, D.; Padilla, C.; Ndjoyi-Mbiguino, A.; Leroy, E.M. The acute phase of chikungunya virus infection in humans is associated with strong innate immunity and T CD8 cell activation. J. Infect. Dis. 2011, 204, 115–123. [Google Scholar] [CrossRef]
- Lum, F.M.; Teo, T.H.; Lee, W.W.L.; Kam, Y.W.; Rénia, L.; Ng, L.F.P. An essential role of antibodies in the control of chikungunya virus infection. J. Immunol. 2013, 190, 6295–6302. [Google Scholar] [CrossRef]
- Keasler, C.; Rodriguez, A.; Rodriguez, M.; Quinonez, E.; Barrera, R. Increased efficiency of Aedes aegypti (Diptera: Culicidae) surveillance through mobile technology and improved deployment of BGS traps. J. Med. Entomol. 2019, 56, 1395–1405. [Google Scholar] [CrossRef]
- Bowman, L.R.; Donegan, S.; McCall, P.J. Is dengue vector control deficient in effectiveness or evidence?: Systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2016, 10, e0004551. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.L.; Courtenay, O.; Kelly-Hope, L.A.; Scott, T.W.; Takken, W.; Torr, S.J.; Lindsay, S.W. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 2020, 14, e0007831. [Google Scholar] [CrossRef]
- Utarini, A.; Indriani, C.; Ahmad, R.A.; Tantowijoyo, W.; Arguni, E.; Ansari, M.R.; Supriyati, E.; Wardana, D.S.; Meitika, Y.; Ernesia, I.; et al. Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. N. Engl. J. Med. 2021, 384, 2177–2186. [Google Scholar] [CrossRef] [PubMed]
- Abbas, K.; Procter, S.R.; van Zandvoort, K.; Clark, A.; Funk, S.; Mengistu, T.; Hogan, D.; Dansereau, E.; Jit, M.; Flasche, S.; et al. Routine childhood immunisation during the COVID-19 pandemic in Africa: A benefit-risk analysis of health benefits versus excess risk of SARS-CoV-2 infection. Lancet Glob. Health 2020, 8, e1264–e1272. [Google Scholar] [CrossRef]
- Kruk, M.E.; Myers, M.; Varpilah, S.T.; Dahn, B.T. What is a resilient health system? Lessons from Ebola. Lancet 2015, 385, 1910–1912. [Google Scholar] [CrossRef]
- Hanefeld, J.; Mayhew, S.; Legido-Quigley, H.; Martineau, F.; Karanikolos, M.; Blanchet, K.; Liverani, M.; Yei Mokuwa, E.; McKay, G.; Balabanova, D. Towards an understanding of resilience: Responding to health systems shocks. Health Policy Plan. 2018, 33, 355–367. [Google Scholar] [CrossRef]
- Henning, K.J. What is syndromic surveillance? MMWR Suppl. 2004, 53, 5–11. [Google Scholar]
- Launiala, A. How much can a KAP survey tell us about people’s knowledge, attitudes and practices? Some observations from medical anthropology research on malaria in pregnancy in Malawi. Anthropol. Matters 2009, 11, 1–13. [Google Scholar] [CrossRef]
- Parks, W.; Lloyd, L. Planning Social Mobilization and Communication for Dengue Fever Prevention and Control: A Step-by-Step Guide; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Roberton, T.; Carter, E.D.; Chou, V.B.; Stegmuller, A.R.; Jackson, B.D.; Tam, Y.; Sawadogo-Lewis, T.; Walker, N. Early estimates of the indirect effects of the COVID-19 pandemic on maternal and child mortality in low-income and middle-income countries: A modelling study. Lancet Glob. Health 2020, 8, e901–e908. [Google Scholar] [CrossRef]
- Christophers, S.R. Aedes aegypti (L.) the Yellow Fever Mosquito: Its Life History, Bionomics and Structure; Cambridge University Press: Cambridge, UK, 1960. [Google Scholar]
- Scott, T.W.; Amerasinghe, P.H.; Morrison, A.C.; Lorenz, L.H.; Clark, G.G.; Strickman, D.; Kittayapong, P.; Edman, J.D. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: Blood feeding frequency. J. Med. Entomol. 2000, 37, 89–101. [Google Scholar] [CrossRef]
- Reiter, P. Oviposition, dispersal, and survival in Aedes aegypti: Implications for the efficacy of control strategies. Vector Borne Zoonotic Dis. 2007, 7, 261–273. [Google Scholar] [CrossRef]
- Colón-González, F.J.; Sewe, M.O.; Tompkins, A.M.; Sjödin, H.; Casallas, A.; Rocklöv, J.; Caminade, C.; Lowe, R. Projecting the risk of mosquito-borne diseases in a warmer and more populated world: A multi-model, multi-scenario intercomparison modelling study. Lancet Planet. Health 2021, 5, e404–e414. [Google Scholar] [CrossRef]
- Peeling, R.W.; Boeras, D.I.; Nkengasong, J. Re-imagining the future of diagnosis of neglected tropical diseases. Comput. Struct. Biotechnol. J. 2017, 15, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Boehme, C.C.; Nabeta, P.; Hillemann, D.; Nicol, M.P.; Shenai, S.; Krapp, F.; Allen, J.; Tahirli, R.; Blakemore, R.; Rustomjee, R.; et al. Rapid molecular detection of tuberculosis and rifampin resistance. N. Engl. J. Med. 2010, 363, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Pybus, O.G.; Suchard, M.A.; Lemey, P.; Bernardin, F.J.; Rambaut, A.; Crawford, F.W.; Gray, R.R.; Arinaminpathy, N.; Stramer, S.L.; Busch, M.P.; et al. Unifying the spatial epidemiology and molecular evolution of emerging epidemics. Proc. Natl. Acad. Sci. USA 2012, 109, 15066–15071. [Google Scholar] [CrossRef] [PubMed]
- Shepard, D.S.; Undurraga, E.A.; Halasa, Y.A.; Stanaway, J.D. The global economic burden of dengue: A systematic analysis. Lancet Infect. Dis. 2016, 16, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Morse, S.S.; Mazet, J.A.K.; Woolhouse, M.; Parrish, C.R.; Carroll, D.; Karesh, W.B.; Zambrana-Torrelio, C.; Lipkin, W.I.; Daszak, P. Prediction and prevention of the next pandemic zoonosis. Lancet 2012, 380, 1956–1965. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.A.; Grace, D.; Kock, R.; Alonso, S.; Rushton, J.; Said, M.Y.; McKeever, D.; Mutua, F.; Young, J.; McDermott, J.; et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl. Acad. Sci. USA 2013, 110, 8399–8404. [Google Scholar] [CrossRef] [PubMed]
- Bambrick, H.J.; Woodruff, R.E.; Hanigan, I.C. Climate change could threaten blood supply by altering the distribution of vector-borne disease: An Australian case-study. Glob. Health Action 2009, 2, 2059. [Google Scholar] [CrossRef]
- World Health Organization. Global Vector Control Response 2017–2030; WHO Press: Geneva, Switzerland, 2017. [Google Scholar]
- Holmes, E.C.; Twiddy, S.S. The origin, emergence and evolutionary genetics of dengue virus. Infect. Genet. Evol. 2003, 3, 19–28. [Google Scholar] [CrossRef]
Pathogen | Period | Suspected Cases | Confirmed Cases | Confirmation Rate (%) | Peak Incidence (Per 100,000) | 95% CI |
---|---|---|---|---|---|---|
Dengue | 1988–2024 | 353,782 | 127,843 | 36.1 | 264.3 (2015) | (251.2, 277.4) |
Severe Dengue | 2001–2024 | 1690 | 891 | 52.7 * | 2.1 (2002) | (1.8, 2.4) |
Chikungunya | 2014–2024 | 29,124 | 8732 | 30.0 | 181.1 (2015) | (175.3, 186.9) |
Zika | 2015–2024 | 2947 | 743 | 25.2 | 17.5 (2016) | (15.8, 19.2) |
Total | 1988–2024 | 387,543 | 137,407 | 35.5 | 445.4 (2015) | (431.2, 459.6) |
Climate Variable | Optimal Lag (Months) | Correlation Coefficient | 95% CI | p-Value | R2 |
---|---|---|---|---|---|
ONI (ENSO Index) | 4 | 0.67 | (0.52, 0.79) | <0.001 | 0.45 |
Temperature Anomaly | 5 | 0.58 | (0.41, 0.72) | <0.001 | 0.34 |
Precipitation Anomaly | 6 | 0.52 | (0.33, 0.68) | <0.001 | 0.27 |
Pacific SST Anomaly | 3 | 0.61 | (0.45, 0.74) | <0.001 | 0.37 |
NDVI (Vegetation Index) | 2 | 0.43 | (0.24, 0.59) | 0.002 | 0.18 |
Multivariate Model | – | – | – | <0.001 | 0.72 * |
Epidemic Year | Cases | Incidence (Per 100,000) | ONI Peak (°C) | Lag (Months) | Attack Rate (%) | Prediction Accuracy * |
---|---|---|---|---|---|---|
1994 | 10,247 | 91.3 | +1.8 | 3 | 0.92 | 87% |
2000 | 22,937 | 183.5 | +1.5 | 4 | 1.84 | 92% |
2010 | 16,298 | 112.4 | +0.8 | 5 | 1.13 | 76% |
2015 | 42,483 | 264.3 | +2.3 | 4 | 2.64 | 94% |
2024 ** | 23,156 | 287.5 | +1.2 | 3 | 2.88 | 89% |
Period | Dengue Cases | Change vs. Baseline (%) | Lab Capacity (%) | Vector Control (%) | Healthcare Access (%) | Mobility Index * |
---|---|---|---|---|---|---|
Pre-pandemic (2019) | 7963 | Baseline | 100 | 100 | 100 | 100 |
Lockdown (Mar–Aug 2020) | 856 | −89 | 25 | 15 | 45 | 23 |
Partial opening (Sep–Dec 2020) | 1300 | −67 | 45 | 35 | 65 | 58 |
Transition (2021) | 4123 | −48 | 65 | 45 | 75 | 78 |
Recovery (2022) | 6891 | −13 | 85 | 70 | 90 | 95 |
Post-pandemic (2023) | 8234 | +3 | 95 | 85 | 95 | 98 |
Current surge (2024) ** | 23,156 | +191 | 100 | 90 | 100 | 100 |
Period | Total Dengue Cases | Severe Cases | Proportion (%) | 95% CI | Trend Test (p-Value) | RR vs. 2001-05 * |
---|---|---|---|---|---|---|
2001–2005 | 45,678 | 1234 | 2.70 | (2.55, 2.85) | Ref | 1.00 |
2006–2010 | 67,890 | 1876 | 2.76 | (2.64, 2.89) | 0.342 | 1.02 (0.95, 1.10) |
2011–2015 | 98,765 | 987 | 1.00 | (0.94, 1.06) | <0.001 | 0.37 (0.34, 0.40) |
2016–2020 | 54,321 | 234 | 0.43 | (0.38, 0.49) | <0.001 | 0.16 (0.14, 0.18) |
2021–2024 | 87,654 | 87 | 0.10 | (0.08, 0.12) | <0.001 | 0.04 (0.03, 0.05) |
Interaction Type | Time Period | Effect Size | 95% CI | p-Value |
---|---|---|---|---|
CHIKV → DENV displacement | 2015 Q2–Q4 | −0.34 | (−0.52, −0.16) | 0.008 |
ZIKV → CHIKV displacement | 2016 Q1–Q3 | −0.67 | (−0.89, −0.45) | 0.002 |
DENV ↔ ZIKV competition | 2015–2017 | −0.28 | (−0.43, −0.13) | 0.007 |
Multi-pathogen → Severe DENV | 2016–2024 | −0.89 | (−0.94, −0.84) | <0.001 |
Pathogen | Optimal Climate Predictor | Lag (Months) | Correlation Coefficient | 95% CI | Threshold Effect |
---|---|---|---|---|---|
Dengue | ONI | 4 | 0.67 | (0.52, 0.79) | ONI > +0.8 °C |
Chikungunya | Temperature Anomaly | 2 | 0.58 | (0.35, 0.74) | +1.5 °C above normal |
Zika | Pacific SST | 3 | 0.51 | (0.28, 0.69) | +1.2 °C above normal |
All Arboviruses | Multivariate Index * | 3–5 | 0.74 | (0.61, 0.84) | Composite > 75th percentile |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, J.D.; Álvarez Ramírez, C.; Cevallos Carrillo, E.; Arias Salazar, J.; Barros Cevallos, C. Time Series Analysis of Dengue, Zika, and Chikungunya in Ecuador: Emergence Patterns, Epidemiological Interactions, and Climate-Driven Dynamics (1988–2024). Viruses 2025, 17, 1201. https://doi.org/10.3390/v17091201
Sánchez JD, Álvarez Ramírez C, Cevallos Carrillo E, Arias Salazar J, Barros Cevallos C. Time Series Analysis of Dengue, Zika, and Chikungunya in Ecuador: Emergence Patterns, Epidemiological Interactions, and Climate-Driven Dynamics (1988–2024). Viruses. 2025; 17(9):1201. https://doi.org/10.3390/v17091201
Chicago/Turabian StyleSánchez, José Daniel, Carolina Álvarez Ramírez, Emilio Cevallos Carrillo, Juan Arias Salazar, and César Barros Cevallos. 2025. "Time Series Analysis of Dengue, Zika, and Chikungunya in Ecuador: Emergence Patterns, Epidemiological Interactions, and Climate-Driven Dynamics (1988–2024)" Viruses 17, no. 9: 1201. https://doi.org/10.3390/v17091201
APA StyleSánchez, J. D., Álvarez Ramírez, C., Cevallos Carrillo, E., Arias Salazar, J., & Barros Cevallos, C. (2025). Time Series Analysis of Dengue, Zika, and Chikungunya in Ecuador: Emergence Patterns, Epidemiological Interactions, and Climate-Driven Dynamics (1988–2024). Viruses, 17(9), 1201. https://doi.org/10.3390/v17091201