Recombinant Chimeric Virus-like Particles of Human Papillomavirus Produced by Distinct Cell Lineages: Potential as Prophylactic Nanovaccine and Therapeutic Drug Nanocarriers
Abstract
1. Introduction
2. Overview of Basic Concepts
2.1. Virus-like Particle and the Versatility of the Host System of Expression
2.2. VLPs as a Platform for Drug Delivery
2.2.1. Uses of VLPs
- Preventive Vaccines: VLPs have been incorporated into vaccines against viruses such as HPV and Hepatitis B, inducing an effective immune response that helps prevent infections.
- Oncology Therapies: In addition to vaccines, VLPs are being explored as nanocarriers for cancer therapies, allowing targeted delivery of drugs directly to tumor cells.
- Personalized Vaccines: VLPs’ versatility enables them to be adapted to create personalized vaccines for various pathogens or virus variants, allowing for a rapid response to emerging outbreaks.
- Delivery Platforms: VLPs can deliver antigens from different pathogens, facilitating the creation of combination vaccines.
2.2.2. Advantages of VLPs Compared to Other Vaccine Approaches
- Safety: Because VLPs do not contain viral genetic material, they cannot cause infections, making them a safe option for vaccination.
- Immunogenicity: VLPs are highly immunogenic, inducing a strong and long-lasting immune response with fewer doses than other vaccines.
- Versatility: The ability to modify VLPs to include different antigens enables their use in a wide range of diseases, from viral infections to cancer.
- Efficient Production: VLPs can be produced in mammalian cells, such as HEK cell lines, which are ideal for large-scale production and can quickly be adapted to various antigens.
- Fewer Side Effects: The non-infectious nature of VLPs makes them less likely to cause side effects than the attenuated virus vaccines.
2.3. Structural Basis of HPV Function
2.3.1. Basic Structure of HPV
- I.
- Capsid: The capsid is a protein coat that surrounds and protects the virus’s genetic material. It is composed of proteins called capsomeres, which are arranged in specific patterns. The shape of the capsid can be icosahedral, helical, cylindrical, or complex, depending on the type of virus. For example, the capsid of HPV is composed of two structural proteins, L1 and L2, which assemble to form an icosahedral structure. The major capsid protein, L1, organizes into 72 pentameric capsomeres, arranged in a T = 7 symmetric lattice (Figure 5A). These capsomeres create the outer shell of the capsid, providing the virus with its characteristic spherical shape. The minor capsid protein, L2, is located internally and plays a role in stabilizing the structure and facilitating viral genome packaging. Together, L1 and L2 form a robust and highly organized capsid that protects the viral DNA and mediates host cell entry.
- II.
- Genetic Material: Viruses contain genetic material, either DNA or RNA, which can be single- or double-stranded. This material allows the virus to hijack host cell machinery, replicate, and produce new viral particles. HPV has a double-stranded DNA genome that encodes proteins for replication and assembly, enabling it to infect and spread within host cells. This genetic diversity is key to viruses’ ability to infect a wide range of hosts and cause disease.
2.3.2. HPV Mechanisms of Pathogenesis
- I.
- Attachment and Entry: Proteins on the surface of the viral capsid bind to specific receptors on the host epithelial cell surface—undifferentiated basal cells of stratified epithelia. The HPV major capsid protein L1 interacts with heparan sulfate proteoglycans (HSPGs) on the cell surface. This binding triggers structural changes in the virus, exposing the minor capsid protein L2 after the L1-HSPG interaction. The exposed L2 protein then interacts with additional cell receptors, such as integrins, facilitating clathrin- or caveolin-mediated endocytosis. This process enables the virus to enter the host cell and initiate infection.
- II.
- Replication: Once inside a cell, the virus releases its genetic material and uses the host cell’s machinery to replicate itself. HPV’s replication strategy first establishes a low-copy-number replication phase, during which a limited set of Early genes (E1 and E2) are expressed. In this stage, the viral genome replicates in sync with the host cell’s DNA, usually just once per cell cycle. This ensures the viral episomes are efficiently maintained and passed to daughter cells as they divide. This quiet phase in the basal layer contributes to the persistent nature of HPV infections, as the low level of viral protein expression minimizes immune detection.
- III.
- As infected basal cells begin to differentiate and migrate into the suprabasal layers of the epithelium, an upregulation of viral Early gene expression is triggered. This leads to a dramatic viral DNA amplification—known as vegetative replication, with copies reaching hundreds to thousands per cell. This amplification is often achieved through mechanisms that modify the host cell cycle and DNA damage response pathways.
- IV.
- Assembly: Simultaneously with the vegetative replication, the Late genes (L1 and L2), encoding the viral capsid proteins, are expressed. The newly synthesized viral DNA is then encapsulated into mature virions within the nucleus of these differentiating cells.
- V.
- Release: Finally, the new HPV virions are released from the host cell, completing the viral life cycle and enabling further transmission.
3. VLP Vaccines and the Role of Capsid and Other HPV Proteins in Research
3.1. Chimeras Designed for New HPV Vaccines
- Surface-exposed antigens must be incorporated without compromising the structural stability of the chi-VLPs.
- The chi-VLPs should induce protective antibodies against both the displayed antigen and the source virus of the VLPs.
3.2. Some Examples of Chi-VLP Applications
3.3. Further Applications of VLPs in Drug Delivery
3.4. Other Applications Based on HPV Proteins
4. A Brief Overview of Methods for Studying Viral Particles
5. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cianciarullo, A.M.; Oliveira, C.S.; Vicente, P.I.; Sakauchi, D.; Sasaki, E.A.K. Prophylactic and Therapeutic Vaccines against HPV and Associated Cancers, 1st ed.; EDITORA CRV: Curitiba, Brazil, 2024; ISBN 978-65-251-5296-7. [Google Scholar]
- Mohsen, M.O.; Bachmann, M.F. Virus-like Particle Vaccinology, from Bench to Bedside. Cell Mol. Immunol. 2022, 19, 993–1011. [Google Scholar] [CrossRef]
- Yan, D.; Wei, Y.-Q.; Guo, H.-C.; Sun, S.-Q. The Application of Virus-like Particles as Vaccines and Biological Vehicles. Appl. Microbiol. Biotechnol. 2015, 99, 10415–10432. [Google Scholar] [CrossRef]
- D’Aoust, M.; Lavoie, P.; Couture, M.M.-J.; Trépanier, S.; Guay, J.; Dargis, M.; Mongrand, S.; Landry, N.; Ward, B.J.; Vézina, L. Influenza Virus-like Particles Produced by Transient Expression in Nicotiana benthamiana Induce a Protective Immune Response against a Lethal Viral Challenge in Mice. Plant Biotechnol. J. 2008, 6, 930–940. [Google Scholar] [CrossRef]
- Deng, F. Advances and Challenges in Enveloped Virus-like Particle (VLP)-Based Vaccines. J. Immunol. Sci. 2018, 2, 36–41. [Google Scholar] [CrossRef]
- Nooraei, S.; Bahrulolum, H.; Hoseini, Z.S.; Katalani, C.; Hajizade, A.; Easton, A.J.; Ahmadian, G. Virus-like Particles: Preparation, Immunogenicity and Their Roles as Nanovaccines and Drug Nanocarriers. J. Nanobiotechnol. 2021, 19, 59. [Google Scholar] [CrossRef] [PubMed]
- Petrov, G.V.; Galkina, D.A.; Koldina, A.M.; Grebennikova, T.V.; Eliseeva, O.V.; Chernoryzh, Y.Y.; Lebedeva, V.V.; Syroeshkin, A.V. Controlling the Quality of Nanodrugs According to Their New Property—Radiothermal Emission. Pharmaceutics 2024, 16, 180. [Google Scholar] [CrossRef] [PubMed]
- Kheirvari, M.; Liu, H.; Tumban, E. Virus-like Particle Vaccines and Platforms for Vaccine Development. Viruses 2023, 15, 1109. [Google Scholar] [CrossRef] [PubMed]
- Zabel, F.; Kündig, T.M.; Bachmann, M.F. Virus-Induced Humoral Immunity: On How B Cell Responses Are Initiated. Curr. Opin. Virol. 2013, 3, 357–362. [Google Scholar] [CrossRef]
- Morón, V.G.; Rueda, P.; Sedlik, C.; Leclerc, C. In Vivo, Dendritic Cells Can Cross-Present Virus-Like Particles Using an Endosome-to-Cytosol Pathway. J. Immunol. 2003, 171, 2242–2250. [Google Scholar] [CrossRef]
- Nierengarten, M.B. Men Face Substantial Lifelong Risk of Oral HPV Infection: A Study Provides Information on Rates of Newly Acquired Oral HPV Infections and Associated Risk Factors for Acquiring HPV Infections in a Multinational Cohort of More than 3000 Men. Cancer 2025, 131, e35714. [Google Scholar] [CrossRef]
- Crisci, E.; Bárcena, J.; Montoya, M. Virus-like Particle-Based Vaccines for Animal Viral Infections. Inmunología 2013, 32, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Bárcena, J.; Blanco, E. Design of Novel Vaccines Based on Virus-Like Particles or Chimeric Virions. In Structure and Physics of Viruses; Mateu, M.G., Ed.; Subcellular Biochemistry; Springer: Dordrecht, The Netherlands, 2013; Volume 68, pp. 631–665. ISBN 978-94-007-6551-1. [Google Scholar]
- González-Domínguez, I.; Lorenzo, E.; Bernier, A.; Cervera, L.; Gòdia, F.; Kamen, A. A Four-Step Purification Process for Gag VLPs: From Culture Supernatant to High-Purity Lyophilized Particles. Vaccines 2021, 9, 1154. [Google Scholar] [CrossRef] [PubMed]
- Boxus, M.; Fochesato, M.; Miseur, A.; Mertens, E.; Dendouga, N.; Brendle, S.; Balogh, K.K.; Christensen, N.D.; Giannini, S.L. Broad Cross-Protection Is Induced in Preclinical Models by a Human Papillomavirus Vaccine Composed of L1/L2 Chimeric Virus-Like Particles. J. Virol. 2016, 90, 6314–6325. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Modis, Y.; High, K.; Towne, V.; Meng, Y.; Wang, Y.; Alexandroff, J.; Brown, M.; Carragher, B.; Potter, C.S.; et al. Disassembly and Reassembly of Human Papillomavirus Virus-like Particles Produces More Virion-like Antibody Reactivity. Virol. J. 2012, 9, 52. [Google Scholar] [CrossRef]
- Cai, X.; Xu, L. Human Papillomavirus-Related Cancer Vaccine Strategies. Vaccines 2024, 12, 1291. [Google Scholar] [CrossRef]
- Hagensee, M.E.; Yaegashi, N.; Galloway, D.A. Self-Assembly of Human Papillomavirus Type 1 Capsids by Expression of the L1 Protein Alone or by Coexpression of the L1 and L2 Capsid Proteins. J. Virol. 1993, 67, 315–322. [Google Scholar] [CrossRef]
- Ahmels, M.; Mariz, F.C.; Braspenning-Wesch, I.; Stephan, S.; Huber, B.; Schmidt, G.; Cao, R.; Müller, M.; Kirnbauer, R.; Rösl, F.; et al. Next Generation L2-Based HPV Vaccines Cross-Protect against Cutaneous Papillomavirus Infection and Tumor Development. Front. Immunol. 2022, 13, 1010790. [Google Scholar] [CrossRef]
- Gardella, B.; Pasquali, M.F.; La Verde, M.; Cianci, S.; Torella, M.; Dominoni, M. The Complex Interplay between Vaginal Microbiota, HPV Infection, and Immunological Microenvironment in Cervical Intraepithelial Neoplasia: A Literature Review. IJMS 2022, 23, 7174. [Google Scholar] [CrossRef]
- Pouyanfard, S.; Spagnoli, G.; Bulli, L.; Balz, K.; Yang, F.; Odenwald, C.; Seitz, H.; Mariz, F.C.; Bolchi, A.; Ottonello, S.; et al. Minor Capsid Protein L2 Polytope Induces Broad Protection against Oncogenic and Mucosal Human Papillomaviruses. J. Virol. 2018, 92, e01930-17. [Google Scholar] [CrossRef]
- Lowe, J.; Panda, D.; Rose, S.; Jensen, T.; Hughes, W.A.; Tso, F.Y.; Angeletti, P.C. Evolutionary and Structural Analyses of Alpha-Papillomavirus Capsid Proteins Yields Novel Insights into L2 Structure and Interaction with L1. Virol. J. 2008, 5, 150. [Google Scholar] [CrossRef]
- Olczak, P.; Roden, R.B.S. Progress in L2-Based Prophylactic Vaccine Development for Protection against Diverse Human Papillomavirus Genotypes and Associated Diseases. Vaccines 2020, 8, 568. [Google Scholar] [CrossRef]
- Wu, X.; Ma, X.; Li, Y.; Xu, Y.; Zheng, N.; Xu, S.; Nawaz, W.; Wu, Z. Induction of Neutralizing Antibodies by Human Papillomavirus Vaccine Generated in Mammalian Cells. Antib. Ther. 2019, 2, 45–53. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Q.; Han, Y.; Song, G.; Xu, X. Type-Specific and Cross-Reactive Antibodies Induced by Human Papillomavirus 31 L1/L2 Virus-like Particles. J. Med. Microbiol. 2007, 56, 907–913. [Google Scholar] [CrossRef]
- Jia, C.; Yang, T.; Liu, Y.; Zhu, A.; Yin, F.; Wang, Y.; Xu, L.; Wang, Y.; Yan, M.; Cai, Q.; et al. A Novel Human Papillomavirus 16 L1 Pentamer-Loaded Hybrid Particles Vaccine System: Influence of Size on Immune Responses. ACS Appl. Mater. Interfaces 2018, 10, 35745–35759. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Huang, H.; Yu, C.; Li, X.; Wang, Y.; Xie, L. Current Status and Future Directions for the Development of Human Papillomavirus Vaccines. Front. Immunol. 2024, 15, 1362770. [Google Scholar] [CrossRef] [PubMed]
- Aires, K.A.; Cianciarullo, A.M.; Carneiro, S.M.; Villa, L.L.; Boccardo, E.; Pérez-Martinez, G.; Perez-Arellano, I.; Oliveira, M.L.S.; Ho, P.L. Production of Human Papillomavirus Type 16 L1 Virus-Like Particles by Recombinant Lactobacillus casei Cells. Appl. Env. Microbiol. 2006, 72, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Bazan, S.B.; De Alencar Muniz Chaves, A.; Aires, K.A.; Cianciarullo, A.M.; Garcea, R.L.; Ho, P.L. Expression and Characterization of HPV-16 L1 Capsid Protein in Pichia Pastoris. Arch. Virol. 2009, 154, 1609–1617. [Google Scholar] [CrossRef]
- Bei, L.; Gao, S.; Zhao, D.; Kou, Y.; Liang, S.; Wu, Y.; Zhang, X.; Meng, D.; Lu, J.; Luo, C.; et al. Immunogenicity Assessment of a 14-Valent Human Papillomavirus Vaccine Candidate in Mice. Vaccines 2024, 12, 1262. [Google Scholar] [CrossRef]
- Cianciarullo, A.M.; Szulczewski, V.; Chaves, A.A.M.; Aires, K.A.; Müller, M.; Armbruster-Moraes, E. Production of HPV16 L1L2 VLPs in Cultures of Human Epithelial Cells. In Microscopy: Science, Technology, Applications and Education; Microscopy Book Series; Formatex Research Center: Badajoz, Spain, 2010; Volume 3, ISBN 978-84-614-6191-2. [Google Scholar]
- Sakauchi, D.; Sasaki, E.A.K.; Anni, F.D.O.B.; Cianciarullo, A.M. Production of HPV16 Capsid Proteins in Suspension Cultures of Human Epithelial Cells. World J. Adv. Res. Rev. 2021, 9, 258–268. [Google Scholar] [CrossRef]
- Panatto, D.; Amicizia, D.; Bragazzi, N.L.; Rizzitelli, E.; Tramalloni, D.; Valle, I.; Gasparini, R. Human Papillomavirus Vaccine. In Advances in Protein Chemistry and Structural Biology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 101, pp. 231–322. ISBN 978-0-12-803367-8. [Google Scholar]
- Monie, A.; Hung, C.-F.; Roden, R.; Wu, T.-C. Cervarix: A Vaccine for the Prevention of HPV 16, 18-Associated Cervical Cancer. Biologics 2008, 2, 97–105. [Google Scholar] [CrossRef]
- Villa, L.L.; Costa, R.L.R.; Petta, C.A.; Andrade, R.P.; Paavonen, J.; Iversen, O.-E.; Olsson, S.-E.; Høye, J.; Steinwall, M.; Riis-Johannessen, G.; et al. High Sustained Efficacy of a Prophylactic Quadrivalent Human Papillomavirus Types 6/11/16/18 L1 Virus-like Particle Vaccine through 5 Years of Follow-Up. Br. J. Cancer 2006, 95, 1459–1466. [Google Scholar] [CrossRef]
- Li, J.; Shi, L.-W.; Li, K.; Huang, L.-R.; Li, J.-B.; Dong, Y.-L.; Li, W.; Ji, M.; Yang, Q.; Zhou, L.-Y.; et al. Comparison of the Safety and Persistence of Immunogenicity of Bivalent HPV16/18 Vaccine in Healthy 9–14-Year-Old and 18–26-Year-Old Chinese Females: A Randomized, Double-Blind, Non-Inferiority Clinical Trial. Vaccine 2023, 41, 7212–7219. [Google Scholar] [CrossRef]
- Zhao, F.-H.; Wu, T.; Hu, Y.-M.; Wei, L.-H.; Li, M.-Q.; Huang, W.-J.; Chen, W.; Huang, S.-J.; Pan, Q.-J.; Zhang, X.; et al. Efficacy, Safety, and Immunogenicity of an Escherichia Coli-Produced Human Papillomavirus (16 and 18) L1 Virus-like-Particle Vaccine: End-of-Study Analysis of a Phase 3, Double-Blind, Randomised, Controlled Trial. Lancet Infect. Dis. 2022, 22, 1756–1768. [Google Scholar] [CrossRef]
- Wynne, S.A.; Crowther, R.A.; Leslie, A.G.W. The Crystal Structure of the Human Hepatitis B Virus Capsid. Mol. Cell 1999, 3, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Arora, K.; Roy, S.S.; Joseph, A.; Rastogi, R.; Arora, N.M.; Kundu, P.K. Platforms, Advances, and Technical Challenges in Virus-like Particles-Based Vaccines. Front. Immunol. 2023, 14, 1123805. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Yui, M.; Deo, V.K.; Park, E.Y. Development of Rous Sarcoma Virus-like Particles Displaying hCC49 scFv for Specific Targeted Drug Delivery to Human Colon Carcinoma Cells. Pharm. Res. 2015, 32, 3699–3707. [Google Scholar] [CrossRef]
- Chung, Y.H.; Cai, H.; Steinmetz, N.F. Viral Nanoparticles for Drug Delivery, Imaging, Immunotherapy, and Theranostic Applications. Adv. Drug Deliv. Rev. 2020, 156, 214–235. [Google Scholar] [CrossRef] [PubMed]
- Suffian, I.F.B.M.; Al-Jamal, K.T. Bioengineering of Virus-like Particles as Dynamic Nanocarriers for in Vivo Delivery and Targeting to Solid Tumours. Adv. Drug Deliv. Rev. 2022, 180, 114030. [Google Scholar] [CrossRef]
- Wei, B.; Wei, Y.; Zhang, K.; Wang, J.; Xu, R.; Zhan, S.; Lin, G.; Wang, W.; Liu, M.; Wang, L.; et al. Development of an Antisense RNA Delivery System Using Conjugates of the MS2 Bacteriophage Capsids and HIV-1 TAT Cell Penetrating Peptide. Biomed. Pharmacother. 2009, 63, 313–318. [Google Scholar] [CrossRef]
- Tatarūnas, V.; Čiapienė, I.; Giedraitienė, A. Precise Therapy Using the Selective Endogenous Encapsidation for Cellular Delivery Vector System. Pharmaceutics 2024, 16, 292. [Google Scholar] [CrossRef]
- Bar, H.; Yacoby, I.; Benhar, I. Killing Cancer Cells by Targeted Drug-Carrying Phage Nanomedicines. BMC Biotechnol. 2008, 8, 37. [Google Scholar] [CrossRef]
- Thong, Q.X.; Biabanikhankahdani, R.; Ho, K.L.; Alitheen, N.B.; Tan, W.S. Thermally-Responsive Virus-like Particle for Targeted Delivery of Cancer Drug. Sci. Rep. 2019, 9, 3945. [Google Scholar] [CrossRef]
- Mateu, M.G. (Ed.) Structure and Physics of Viruses: An Integrated Guide; Subcellular Biochemistry; Springer Nature: Cham, Switzerland, 2024; Volume 105, ISBN 978-3-031-65186-1. [Google Scholar]
- Zella, D.; Gallo, R.C. Viruses and Bacteria Associated with Cancer: An Overview. Viruses 2021, 13, 1039. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Vignat, J.; Lorenzoni, V.; Eslahi, M.; Ginsburg, O.; Lauby-Secretan, B.; Arbyn, M.; Basu, P.; Bray, F.; Vaccarella, S. Global Estimates of Incidence and Mortality of Cervical Cancer in 2020: A Baseline Analysis of the WHO Global Cervical Cancer Elimination Initiative. Lancet Glob. Health 2023, 11, e197–e206. [Google Scholar] [CrossRef] [PubMed]
- Adelstein, D.J.; Rodriguez, C.P. Human Papillomavirus: Changing Paradigms in Oropharyngeal Cancer. Curr. Oncol. Rep. 2010, 12, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Pickard, R.K.L.; Xiao, W.; Broutian, T.R.; He, X.; Gillison, M.L. The Prevalence and Incidence of Oral Human Papillomavirus Infection Among Young Men and Women, Aged 18–30 Years. Sex. Transm. Dis. 2012, 39, 559–566. [Google Scholar] [CrossRef]
- Andersen, A.S.; Koldjær Sølling, A.S.; Ovesen, T.; Rusan, M. The Interplay between HPV and Host Immunity in Head and Neck Squamous Cell Carcinoma. Intl. J. Cancer 2014, 134, 2755–2763. [Google Scholar] [CrossRef]
- De Vuyst, H.; Clifford, G.M.; Nascimento, M.C.; Madeleine, M.M.; Franceschi, S. Prevalence and Type Distribution of Human Papillomavirus in Carcinoma and Intraepithelial Neoplasia of the Vulva, Vagina and Anus: A Meta-analysis. Intl. J. Cancer 2009, 124, 1626–1636. [Google Scholar] [CrossRef]
- De Martel, C.; Plummer, M.; Vignat, J.; Franceschi, S. Worldwide Burden of Cancer Attributable to HPV by Site, Country and HPV Type. Intl. J. Cancer 2017, 141, 664–670. [Google Scholar] [CrossRef]
- Accardi, R.; Gheit, T. Cutaneous HPV and Skin Cancer. La. Presse Médicale 2014, 43, e435–e443. [Google Scholar] [CrossRef]
- Paolini, F.; Cota, C.; Amantea, A.; Curzio, G.; Venuti, A. Mucosal Alpha-Papillomavirus (HPV89) in a Rare Skin Lesion. Virol. J. 2015, 12, 105. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Reasearch on Cancer (IARC) Cancer Today. Available online: https://gco.iarc.fr/today/en (accessed on 9 March 2025).
- Brazil Healthy Ministry. NOTA TÉCNICA No 41/2024-CGICI/DPNI/SVSA/MS. Available online: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/notas-tecnicas/2024/nota-tecnica-no-41-2024-cgici-dpni-svsa-ms/view (accessed on 18 January 2025).
- Cianciarullo, A.M. Prophylaxis against Human Papillomavirus. SODEBRAS 2014, 9, 134–141. [Google Scholar]
- INCA, Instituto Nacional de Câncer. Prevenção do Câncer do colo do Útero. Available online: https://www.gov.br/inca/pt-br/assuntos/gestor-e-profissional-de-saude/controle-do-cancer-do-colo-do-utero/acoes/prevencao (accessed on 18 January 2025).
- McCormack, P.L. Quadrivalent Human Papillomavirus (Types 6, 11, 16, 18) Recombinant Vaccine (Gardasil®): A Review of Its Use in the Prevention of Premalignant Anogenital Lesions, Cervical and Anal Cancers, and Genital Warts. Drugs 2014, 74, 1253–1283. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.; Oredein, O.; Dass, C. Update on Safety and Efficacy of HPV Vaccines: Focus on Gardasil. Int. J. Mol. Cell Med. 2021, 10, 101–112. [Google Scholar] [CrossRef]
- Didierlaurent, A.M.; Morel, S.; Lockman, L.; Giannini, S.L.; Bisteau, M.; Carlsen, H.; Kielland, A.; Vosters, O.; Vanderheyde, N.; Schiavetti, F.; et al. AS04, an Aluminum Salt- and TLR4 Agonist-Based Adjuvant System, Induces a Transient Localized Innate Immune Response Leading to Enhanced Adaptive Immunity. J. Immunol. 2009, 183, 6186–6197. [Google Scholar] [CrossRef]
- Herrin, D.M.; Coates, E.E.; Costner, P.J.; Kemp, T.J.; Nason, M.C.; Saharia, K.K.; Pan, Y.; Sarwar, U.N.; Holman, L.; Yamshchikov, G.; et al. Comparison of Adaptive and Innate Immune Responses Induced by Licensed Vaccines for Human Papillomavirus. Hum. Vaccines Immunother. 2014, 10, 3446–3454. [Google Scholar] [CrossRef]
- Shu, Y.; Yu, Y.; Ji, Y.; Zhang, L.; Li, Y.; Qin, H.; Huang, Z.; Ou, Z.; Huang, M.; Shen, Q.; et al. Immunogenicity and Safety of Two Novel Human Papillomavirus 4- and 9-Valent Vaccines in Chinese Women Aged 20–45 Years: A Randomized, Blinded, Controlled with Gardasil (Type 6/11/16/18), Phase III Non-Inferiority Clinical Trial. Vaccine 2022, 40, 6947–6955. [Google Scholar] [CrossRef]
- Lei, X.; Cai, X.; Yang, Y. Genetic Engineering Strategies for Construction of Multivalent Chimeric VLPs Vaccines. Expert. Rev. Vaccines 2020, 19, 235–246. [Google Scholar] [CrossRef]
- Zhu, F.-C.; Zhong, G.-H.; Huang, W.-J.; Chu, K.; Zhang, L.; Bi, Z.-F.; Zhu, K.-X.; Chen, Q.; Zheng, T.-Q.; Zhang, M.-L.; et al. Head-to-Head Immunogenicity Comparison of an Escherichia Coli-Produced 9-Valent Human Papillomavirus Vaccine and Gardasil 9 in Women Aged 18–26 Years in China: A Randomised Blinded Clinical Trial. Lancet Infect. Dis. 2023, 23, 1313–1322. [Google Scholar] [CrossRef]
- Gambhira, R.; Karanam, B.; Jagu, S.; Roberts, J.N.; Buck, C.B.; Bossis, I.; Alphs, H.; Culp, T.; Christensen, N.D.; Roden, R.B.S. A Protective and Broadly Cross-Neutralizing Epitope of Human Papillomavirus L2. J. Virol. 2007, 81, 13927–13931. [Google Scholar] [CrossRef]
- Zhou, X.; Lian, H.; Li, H.; Fan, M.; Xu, W.; Jin, Y. Nanotechnology in Cervical Cancer Immunotherapy: Therapeutic Vaccines and Adoptive Cell Therapy. Front. Pharmacol. 2022, 13, 1065793. [Google Scholar] [CrossRef]
- Mukerjee, N.; Maitra, S.; Gorai, S.; Ghosh, A.; Alexiou, A.; Thorat, N.D. Revolutionizing Human Papillomavirus (HPV)-related Cancer Therapies: Unveiling the Promise of Proteolysis Targeting Chimeras (PROTACs) and Proteolysis Targeting Antibodies (PROTABs) in Cancer Nano-vaccines. J. Med. Virol. 2023, 95, e29135. [Google Scholar] [CrossRef]
- Qi, W.; Qingfeng, L.; Jing, Z.; Maolin, Z.; Zhihui, Z.; Wangqi, D.; Shanli, Z.; Jun, C.; Pengfei, J.; Lifang, Z. A Novel Multi-Epitope Vaccine of HPV16 E5E6E7 Oncoprotein Delivered by HBc VLPs Induced Efficient Prophylactic and Therapeutic Antitumor Immunity in Tumor Mice Model. Vaccine 2022, 40, 7693–7702. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Zhang, D. Nano-Sized Chimeric Human Papillomavirus-16 L1 Virus-like Particles Displaying Mycobacterium tuberculosis Antigen Ag85B Enhance Ag85B-Specific Immune Responses in Female C57BL/c Mice. Viruses 2023, 15, 2123. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-W.; Saubi, N.; Kilpeläinen, A.; Joseph-Munné, J. Chimeric Human Papillomavirus-16 Virus-like Particles Presenting P18I10 and T20 Peptides from HIV-1 Envelope Induce HPV16 and HIV-1-Specific Humoral and T Cell-Mediated Immunity in BALB/c Mice. Vaccines 2022, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-W.; Saubi, N.; Joseph-Munné, J. Chimeric Human Papillomavirus-16 Virus-like Particles Presenting HIV-1 P18I10 Peptide: Expression, Purification, Bio-Physical Properties and Immunogenicity in BALB/c Mice. Int. J. Mol. Sci. 2023, 24, 8060. [Google Scholar] [CrossRef]
- Kaufmann, A.M.; Nieland, J.D.; Jochmus, I.; Baur, S.; Friese, K.; Gabelsberger, J.; Gieseking, F.; Gissmann, L.; Glasschr, B.; Ikenberg, H.; et al. Vaccination Trial with HPV16 L1E7 Chimeric Virus-like Particles in Women Suffering from High Grade Cervical Intraepithelial Neoplasia (CIN 2/3). Int. J. Cancer 2007, 121, 2794–2800. [Google Scholar] [CrossRef]
- Matsubara, V.H.; Christoforou, J.; Samaranayake, L. Recrudescence of Scarlet Fever and Its Implications for Dental Professionals. Int. Dent. J. 2023, 73, 331–336. [Google Scholar] [CrossRef]
- Gardella, B.; Gritti, A.; Soleymaninejadian, E.; Pasquali, M.; Riemma, G.; La Verde, M.; Schettino, M.; Fortunato, N.; Torella, M.; Dominoni, M. New Perspectives in Therapeutic Vaccines for HPV: A Critical Review. Medicina 2022, 58, 860. [Google Scholar] [CrossRef]
- Poddighe, D.; Castelli, L.; Marseglia, G.L.; Bruni, P. A Sudden Onset of a Pseudo-Neurological Syndrome after HPV-16/18 AS04-Adjuvated Vaccine: Might It Be an Autoimmune/Inflammatory Syndrome Induced by Adjuvants (ASIA) Presenting as a Somatoform Disorder? Immunol. Res. 2014, 60, 236–246. [Google Scholar] [CrossRef]
- Shan, W.; Wang, C.; Chen, H.; Ren, L. Rational Design of Virus-like Particles for Nanomedicine. Acc. Mater. Res. 2023, 4, 814–826. [Google Scholar] [CrossRef]
- Sakai, C.; Hosokawa, K.; Watanabe, T.; Suzuki, Y.; Nakano, T.; Ueda, K.; Fujimuro, M. Human Hepatitis B Virus-Derived Virus-like Particle as a Drug and DNA Delivery Carrier. Biochem. Biophys. Res. Commun. 2021, 581, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Perez, N.G.; Sapin, C.; Jaffrelo, L.; Daou, S.; Grill, J.P.; Langella, P.; Seksik, P.; Beaugerie, L.; Chwetzoff, S.; Trugnan, G. Rotavirus-Like Particles: A Novel Nanocarrier for the Gut. J. Biomed. Biotechnol. 2010, 2010, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Naskalska, A.; Pyrć, K. Virus Like Particles as Immunogens and Universal Nanocarriers. Pol. J. Microbiol. 2015, 64, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Zochowska, M.; Paca, A.; Schoehn, G.; Andrieu, J.-P.; Chroboczek, J.; Dublet, B.; Szolajska, E. Adenovirus Dodecahedron, as a Drug Delivery Vector. PLoS ONE 2009, 4, e5569. [Google Scholar] [CrossRef]
- Shan, L.; Cui, S.; Du, C.; Wan, S.; Qian, Z.; Achilefu, S.; Gu, Y. A Paclitaxel-Conjugated Adenovirus Vector for Targeted Drug Delivery for Tumor Therapy. Biomaterials 2012, 33, 146–162. [Google Scholar] [CrossRef]
- Crooke, S.N.; Schimer, J.; Raji, I.; Wu, B.; Oyelere, A.K.; Finn, M.G. Lung Tissue Delivery of Virus-Like Particles Mediated by Macrolide Antibiotics. Mol. Pharm. 2019, 16, 2947–2955. [Google Scholar] [CrossRef]
- Ashley, C.E.; Carnes, E.C.; Phillips, G.K.; Durfee, P.N.; Buley, M.D.; Lino, C.A.; Padilla, D.P.; Phillips, B.; Carter, M.B.; Willman, C.L.; et al. Cell-Specific Delivery of Diverse Cargos by Bacteriophage MS2 Virus-like Particles. ACS Nano 2011, 5, 5729–5745. [Google Scholar] [CrossRef]
- Aljabali, A.A.A.; Shukla, S.; Lomonossoff, G.P.; Steinmetz, N.F.; Evans, D.J. CPMV-DOX Delivers. Mol. Pharm. 2013, 10, 3–10. [Google Scholar] [CrossRef]
- Zeng, Q.; Wen, H.; Wen, Q.; Chen, X.; Wang, Y.; Xuan, W.; Liang, J.; Wan, S. Cucumber Mosaic Virus as Drug Delivery Vehicle for Doxorubicin. Biomaterials 2013, 34, 4632–4642. [Google Scholar] [CrossRef] [PubMed]
- Yacoby, I.; Shamis, M.; Bar, H.; Shabat, D.; Benhar, I. Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages. Antimicrob. Agents Chemother. 2006, 50, 2087–2097. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Kim, K.; Kwon, I.C.; Kim, I.-S.; Ahn, H.J. Systemic Delivery of siRNA by Chimeric Capsid Protein: Tumor Targeting and RNAi Activity In Vivo. Mol. Pharm. 2013, 10, 18–25. [Google Scholar] [CrossRef]
- Abbing, A.; Blaschke, U.K.; Grein, S.; Kretschmar, M.; Stark, C.M.B.; Thies, M.J.W.; Walter, J.; Weigand, M.; Woith, D.C.; Hess, J.; et al. Efficient Intracellular Delivery of a Protein and a Low Molecular Weight Substance via Recombinant Polyomavirus-like Particles. J. Biol. Chem. 2004, 279, 27410–27421. [Google Scholar] [CrossRef] [PubMed]
- Fuenmayor, J.; Gòdia, F.; Cervera, L. Production of Virus-like Particles for Vaccines. New Biotechnol. 2017, 39, 174–180. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, W.; Chen, Y.; Zhang, L.; Zhang, J.; Zhang, Z. Self-Assembled Virus-Like Particles from Rotavirus Structural Protein VP6 for Targeted Drug Delivery. Bioconjugate Chem. 2011, 22, 346–352. [Google Scholar] [CrossRef]
- Janitzek, C.M.; Peabody, J.; Thrane, S.; Carlsen, P.H.R.; Theander, T.G.; Salanti, A.; Chackerian, B.; Nielsen, M.A.; Sander, A.F. A Proof-of-Concept Study for the Design of a VLP-Based Combinatorial HPV and Placental Malaria Vaccine. Sci. Rep. 2019, 9, 5260. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Heath, M.D.; Cabral-Miranda, G.; Lipp, C.; Zeltins, A.; Sande, M.; Stein, J.V.; Riether, C.; Roesti, E.; Zha, L.; et al. Vaccination with Nanoparticles Combined with Micro-Adjuvants Protects against Cancer. J. Immunother. Cancer 2019, 7, 114. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Speiser, D.E.; Knuth, A.; Bachmann, M.F. Virus-like Particles for Vaccination against Cancer. WIREs Nanomed. Nanobiotechnol. 2020, 12, e1579. [Google Scholar] [CrossRef]
- Lizotte, P.H.; Wen, A.M.; Sheen, M.R.; Fields, J.; Rojanasopondist, P.; Steinmetz, N.F.; Fiering, S. In Situ Vaccination with Cowpea Mosaic Virus Nanoparticles Suppresses Metastatic Cancer. Nat. Nanotechnol. 2016, 11, 295–304. [Google Scholar] [CrossRef]
- Zhang, H.-G.; Chen, H.-S.; Peng, J.-R.; Shang, X.-Y.; Zhang, J.; Xing, Q.; Pang, X.-W.; Qin, L.-L.; Fei, R.; Mei, M.-H.; et al. Specific CD8+ T Cell Responses to HLA-A2 Restricted MAGE-A3 P271–279 Peptide in Hepatocellular Carcinoma Patients without Vaccination. Cancer Immunol. Immunother. 2007, 26, 1945–1954. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, S.; Liu, C.; Wang, Y.; Xian, X.; He, Y.; Wang, J.; Liu, F.; Sun, S. Generation of Chimeric HBc Proteins with Epitopes in E.Coli: Formation of Virus-like Particles and a Potent Inducer of Antigen-Specific Cytotoxic Immune Response and Anti-Tumor Effect in Vivo. Cell. Immunol. 2007, 247, 18–27. [Google Scholar] [CrossRef]
- Ding, F.-X.; Wang, F.; Lu, Y.-M.; Li, K.; Wang, K.-H.; He, X.-W.; Sun, S.-H. Multiepitope Peptide-Loaded Virus-like Particles as a Vaccine against Hepatitis B Virus-Related Hepatocellular Carcinoma. Hepatology 2009, 49, 1492–1502. [Google Scholar] [CrossRef]
- Caballero, J.M.; Torres, I.J.; Calderita, G.; Rodriguez, M.; Gondar, V.; Bernal, J.; Ardavın, C.; Andreu, D. Chimeric Infectious Bursal Disease Virus-Like Particles as Potent Vaccines for Eradication of Established HPV-16 E7–Dependent Tumors. PLoS ONE 2012, 7, e52976. [Google Scholar] [CrossRef]
- Rolih, V.; Caldeira, J.; Bolli, E.; Salameh, A.; Conti, L.; Barutello, G.; Riccardo, F.; Magri, J.; Lamolinara, A.; Parra, K.; et al. Development of a VLP-Based Vaccine Displaying an xCT Extracellular Domain for the Treatment of Metastatic Breast Cancer. Cancers 2020, 12, 1492. [Google Scholar] [CrossRef]
- Bolli, E.; O’Rourke, J.P.; Conti, L.; Lanzardo, S.; Rolih, V.; Christen, J.M.; Barutello, G.; Forni, M.; Pericle, F.; Cavallo, F. A Virus-Like-Particle Immunotherapy Targeting Epitope-Specific Anti-xCT Expressed on Cancer Stem Cell Inhibits the Progression of Metastatic Cancer In Vivo. OncoImmunology 2018, 7, e1408746. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Peabody, J.; Pang, Y.-Y.S.; Schiller, J.; Chackerian, B.; Tumban, E. A Novel Candidate HPV Vaccine: MS2 Phage VLP Displaying a Tandem HPV L2 Peptide Offers Similar Protection in Mice to Gardasil-9. Antivir. Res. 2017, 147, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, M.; Walter, J.; Grein, S.; Thies, M.J.W.; Schulz, T.W.; Herrmann, M.; Reiser, C.O.A.; Hess, J. Beneficial Therapeutic Effects with Different Particulate Structures of Murine Polyomavirus VP1-Coat Protein Carrying Self or Non-Self CD8 T Cell Epitopes against Murine Melanoma. Cancer Immunol. Immunother. 2005, 54, 611–622. [Google Scholar] [CrossRef]
- Jemon, K.; Young, V.; Wilson, M.; McKee, S.; Ward, V.; Baird, M.; Young, S.; Hibma, M. An Enhanced Heterologous Virus-Like Particle for Human Papillomavirus Type 16 Tumour Immunotherapy. PLOS ONE 2013, 8, e66866. [Google Scholar] [CrossRef]
- Zhang, S.; Yong, L.-K.; Li, D.; Cubas, R.; Chen, C.; Yao, Q. Mesothelin Virus-Like Particle Immunization Controls Pancreatic Cancer Growth through CD8+ T Cell Induction and Reduction in the Frequency of CD4+foxp3+ICOS− Regulatory T Cells. PLoS ONE 2013, 8, e68303. [Google Scholar] [CrossRef]
- Li, M.; Bharadwaj, U.; Zhang, R.; Zhang, S.; Mu, H.; Fisher, W.E.; Brunicardi, F.C.; Chen, C.; Yao, Q. Mesothelin Is a Malignant Factor and Therapeutic Vaccine Target for Pancreatic Cancer. Mol. Cancer Ther. 2008, 7, 286–296. [Google Scholar] [CrossRef]
- Cubas, R.; Zhang, S.; Li, M.; Chen, C.; Yao, Q. Chimeric Trop2 Virus-like Particles: A Potential Immunotherapeutic Approach Against Pancreatic Cancer. J. Immunother. 2011, 34, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Clinicaltrials.gov. A Multicenter, Two Part Open-Label, Phase 1B Clinical Study of CMP-001 Administered Either in Combination with Pembrolizumab or as a Monotherapy in Subjects with Advanced Melanoma. Available online: https://clinicaltrials.gov/study/NCT02680184 (accessed on 30 April 2025).
- Clinicaltrials.gov. A Multicenter, Two Part, Phase 1B Study Evaluating Alternative Routes of Administration of CMP-001 in Combination with Pembrolizumab in Subjects with Advanced Melanoma. Available online: https://clinicaltrials.gov/study/NCT03084640 (accessed on 30 April 2025).
- Clinicaltrials.gov. Neoadjuvant Phase II Study of TLR9 Agonist CMP-001 in Combination with Nivolumab in Stage IIIB/C/D Melanoma Patients with Clinically Apparent Lymph Node Disease. Available online: https://clinicaltrials.gov/study/NCT03618641 (accessed on 30 April 2025).
- Clinicaltrials.gov. Safety and Immunogenicity of a Melan-A VLP Vaccine in Advanced Stage Melanoma Patients. Available online: https://clinicaltrials.gov/study/NCT00306553 (accessed on 30 April 2025).
- Clinicaltrials.gov. A Phase IIa Study to Evaluate Safety, Tolerability, and Immunogenicity of a Melan-A VLP Vaccine in HLA-A2 Positive Patients with Stage III/IV Malignant Melanoma. Available online: https://clinicaltrials.gov/study/NCT00306514 (accessed on 30 April 2025).
- Clinicaltrials.gov. A Phase IIa Study to Evaluate Safety, Tolerability, and Immunogenicity of a Melan-A VLP Vaccine in HLA-A2 Positive Patients with Stage II Malignant Melanoma. Available online: https://clinicaltrials.gov/study/NCT00306566 (accessed on 30 April 2025).
- Clinicaltrials.gov. Safety, Tolerability, and Immunogenicity of CYT004-MelQbG10 Vaccine with or Without Immunostimulating Adjuvant in HLA-A2 Positive Patients with Stage III/IV Malignant Melanoma. Available online: https://clinicaltrials.gov/study/NCT00651703 (accessed on 30 April 2025).
- Da Silva, D.M.; Velders, M.P.; Nieland, J.D.; Schiller, J.T.; Nickoloff, B.J.; Kast, W.M. Physical Interaction of Human Papillomavirus Virus-like Particles with Immune Cells. Int. Immunol. 2001, 13, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Sereflioglu, S.; Yapici, E.; Tekarslan Sahin, S.H.; Ozsoy, Y.; Bulent Ustundag, C. Targeted Drug Delivery and Vaccinology Approaches Using Virus-like Particles for Cancer. Istanb. J. Pharm. 2017, 47, 112–119. [Google Scholar] [CrossRef]
- World Health Organization. One in Three Men Worldwide Are Infected with Genital Human Papillomavirus. Available online: https://www.who.int/news/item/01-09-2023-one-in-three-men-worldwide-are-infected-with-genital-human-papillomavirus (accessed on 17 July 2025).
- Kombe Kombe, A.J.; Li, B.; Zahid, A.; Mengist, H.M.; Bounda, G.-A.; Zhou, Y.; Jin, T. Epidemiology and Burden of Human Papillomavirus and Related Diseases, Molecular Pathogenesis, and Vaccine Evaluation. Front. Public Health 2021, 8, 552028. [Google Scholar] [CrossRef] [PubMed]
- Malboeuf, C.M.; Simon, D.A.L.; Lee, Y.-E.E.; Lankes, H.A.; Dewhurst, S.; Frelinger, J.G.; Rose, R.C. Human Papillomavirus-like Particles Mediate Functional Delivery of Plasmid DNA to Antigen Presenting Cells in Vivo. Vaccine 2007, 25, 3270–3276. [Google Scholar] [CrossRef]
- Herrero, R.; González, P.; Markowitz, L.E. Present Status of Human Papillomavirus Vaccine Development and Implementation. Lancet Oncol. 2015, 16, e206–e216. [Google Scholar] [CrossRef]
- Wang, D.; Li, Z.; Xiao, J.; Wang, J.; Zhang, L.; Liu, Y.; Fan, F.; Xin, L.; Wei, M.; Kong, Z.; et al. Identification of Broad-Genotype HPV L2 Neutralization Site for Pan-HPV Vaccine Development by a Cross-Neutralizing Antibody. PLoS ONE 2015, 10, e0123944. [Google Scholar] [CrossRef]
- Vande Pol, S.B.; Klingelhutz, A.J. Papillomavirus E6 Oncoproteins. Virology 2013, 445, 115–137. [Google Scholar] [CrossRef]
- Cianciarullo, A.M.; Sasaki, E.A.K. Process of Producing an Immunological Composition of Prophylatic and Therapeutic DNA against HPV and Cancers Associated with the Virus, Hybrid Protein, Expression Vector, Immunologial Composition, and Its Use. International Application No. PCT/BR2020/050516; BR Application No. 102019025802-0 A2, 5 December 2019. Available online: https://repositorio.butantan.gov.br/handle/butantan/4329 (accessed on 30 April 2025).
- Cianciarullo, A.M.; Sasaki, E.A.K. Processo De Produção De Uma Composição Imunológica De DNA Profilática E Terapêutica Contra HPV E Cânceres Associados Ao Vírus, Proteína Híbrida, Vetor De Expressão, Composição Imunológica E Seus Usos 2019. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2021108884&_cid=P20-KPWQ99-33050-1 (accessed on 30 April 2025).
- Tîrziu, A.; Avram, S.; Mada, L.; Crișan-Vida, M.; Popovici, C.; Popovici, D.; Faur, C.; Duda-Seiman, C.; Păunescu, V.; Vernic, C. Design of a Synthetic Long Peptide Vaccine Targeting HPV-16 and -18 Using Immunoinformatic Methods. Pharmaceutics 2023, 15, 1798. [Google Scholar] [CrossRef]
- Jaradat, D. Thirteen Decades of Peptide Synthesis: Key Developments in Solid Phase Peptide Synthesis and Amide Bond Formation Utilized in Peptide Ligation. Amino Acids 2018, 39–68. [Google Scholar] [CrossRef] [PubMed]
- Merrifield, B. Concept and Early Development of Solid-Phase Peptide Synthesis. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1997; Volume 289, pp. 3–13. ISBN 978-0-12-182190-6. [Google Scholar]
- El-Baky, N.A.; Elkhawaga, M.A.; Abdelkhalek, E.S.; Sharaf, M.M.; Redwan, E.M.; Kholef, H.R. De Novo Expression and Antibacterial Potential of Four Lactoferricin Peptides in Cell-Free Protein Synthesis System. Biotechnol. Rep. 2021, 29, e00583. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.D.T.; Cao, J.; Franco, O.L.; Lu, T.K.; De La Fuente-Nunez, C. Synthetic Biology and Computer-Based Frameworks for Antimicrobial Peptide Discovery. ACS Nano 2021, 15, 2143–2164. [Google Scholar] [CrossRef] [PubMed]
- Namvar, A.; Bolhassani, A.; Javadi, G.; Noormohammadi, Z. In Silico/In Vivo Analysis of High-Risk Papillomavirus L1 and L2 Conserved Sequences for Development of Cross-Subtype Prophylactic Vaccine. Sci. Rep. 2019, 9, 15225. [Google Scholar] [CrossRef]
- Ronchi, V.P.; Klein, J.M.; Edwards, D.J.; Haas, A.L. The Active Form of E6-Associated Protein (E6AP)/UBE3A Ubiquitin Ligase Is an Oligomer. J. Biol. Chem. 2014, 289, 1033–1048. [Google Scholar] [CrossRef]
- Pal, A.; Kundu, R. Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Front. Microbiol. 2020, 10, 3116. [Google Scholar] [CrossRef]
- Hamley, I.W. Peptides for Vaccine Development. ACS Appl. Bio Mater. 2022, 5, 905–944. [Google Scholar] [CrossRef]
- Gomes, D.; Silvestre, S.; Duarte, A.P.; Venuti, A.; Soares, C.P.; Passarinha, L.; Sousa, Â. In Silico Approaches: A Way to Unveil Novel Therapeutic Drugs for Cervical Cancer Management. Pharmaceuticals 2021, 14, 741. [Google Scholar] [CrossRef]
- Matos, A.S.; Invenção, M.D.C.V.; Moura, I.A.D.; Freitas, A.C.D.; Batista, M.V.D.A. Immunoinformatics Applications in the Development of Therapeutic Vaccines against Human Papillomavirus-related Infections and Cervical Cancer. Rev. Med. Virol. 2023, 33, e2463. [Google Scholar] [CrossRef]
- Yang, A.; Farmer, E.; Wu, T.C.; Hung, C.-F. Perspectives for Therapeutic HPV Vaccine Development. J. Biomed. Sci. 2016, 23, 75. [Google Scholar] [CrossRef]
- Yang, A.; Jeang, J.; Cheng, K.; Cheng, T.; Yang, B.; Wu, T.-C.; Hung, C.-F. Current State in the Development of Candidate Therapeutic HPV Vaccines. Expert. Rev. Vaccines 2016, 15, 989–1007. [Google Scholar] [CrossRef]
- Kayyal, M.; Bolhassani, A.; Noormohammadi, Z.; Sadeghizadeh, M. In Silico Design and Immunological Studies of Two Novel Multiepitope DNA-Based Vaccine Candidates Against High-Risk Human Papillomaviruses. Mol. Biotechnol. 2021, 63, 1192–1222. [Google Scholar] [CrossRef]
- Garcia, F.; Petry, K.U.; Muderspach, L.; Gold, M.A.; Braly, P.; Crum, C.P.; Magill, M.; Silverman, M.; Urban, R.G.; Hedley, M.L.; et al. ZYC101a for Treatment of High-Grade Cervical Intraepithelial Neoplasia: A Randomized Controlled Trial. Obstet. Gynecol. 2004, 103, 317–326. [Google Scholar] [CrossRef]
- Gaillard, S.; Deery, A.; Fader, A.N.; Huh, W.; Liang, M.; Straughn, M.; Arend, R.; Wu, T.C.; Leath, C.; Roden, R. Safety and Feasibility of an HPV Therapeutic Vaccine (TA-CIN) in Patients with HPV16 Associated Cervical Cancer (458). Gynecol. Oncol. 2022, 166, S228–S229. [Google Scholar] [CrossRef]
- Kaufmann, A.M.; Stern, P.L.; Rankin, E.M.; Sommer, H.; Nuessler, V.; Schneider, A.; Adams, M.; Onon, T.S.; Bauknecht, T.; Wagner, U.; et al. Safety and Immunogenicity of TA-HPV, a Recombinant Vaccinia Virus Expressing Modified Human Papillomavirus (HPV)-16 and HPV-18 E6 and E7 Genes, in Women with Progressive Cervical Cancer. Clin. Cancer Res. 2002, 8, 3676–3685. [Google Scholar] [PubMed]
- Roman, L.D.; Wilczynski, S.; Muderspach, L.I.; Burnett, A.F.; O’Meara, A.; Brinkman, J.A.; Kast, W.M.; Facio, G.; Felix, J.C.; Aldana, M.; et al. A Phase II Study of Hsp-7 (SGN-00101) in Women with High-Grade Cervical Intraepithelial Neoplasia. Gynecol. Oncol. 2007, 106, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Kayyal, M.; Bolhassani, A.; Noormohammadi, Z.; Sadeghizadeh, M. Immunological Responses and Anti-Tumor Effects of HPV16/18 L1-L2-E7 Multiepitope Fusion Construct along with Curcumin and Nanocurcumin in C57BL/6 Mouse Model. Life Sci. 2021, 285, 119945. [Google Scholar] [CrossRef]
- Bahmani, B.; Amini-bayat, Z.; Ranjbar, M.M.; Bakhtiari, N.; Zarnani, A.-H. HPV16-E7 Protein T Cell Epitope Prediction and Global Therapeutic Peptide Vaccine Design Based on Human Leukocyte Antigen Frequency: An In-Silico Study. Int. J. Pept. Res. Ther. 2021, 27, 365–378. [Google Scholar] [CrossRef]
- Gupta, S.K.; Singh, A.; Srivastava, M.; Gupta, S.K.; Akhoon, B.A. In Silico DNA Vaccine Designing against Human Papillomavirus (HPV) Causing Cervical Cancer. Vaccine 2009, 28, 120–131. [Google Scholar] [CrossRef]
- Castelletto, S.; Boretti, A. Viral Particle Imaging by Super-Resolution Fluorescence Microscopy. Chem. Phys. Impact 2021, 2, 100013. [Google Scholar] [CrossRef]
- Holmes, E.C.; Krammer, F.; Goodrum, F.D. Virology—The next Fifty Years. Cell 2024, 187, 5128–5145. [Google Scholar] [CrossRef]
- Balvers, M.; Gordijn, I.F.; Voskamp-Visser, I.A.I.; Schelling, M.F.A.; Schuurman, R.; Heikens, E.; Braakman, R.; Stingl, C.; Van Leeuwen, H.C.; Luider, T.M.; et al. Proteome2virus: Shotgun Mass Spectrometry Data Analysis Pipeline for Virus Identification. J. Clin. Virol. Plus 2023, 3, 100147. [Google Scholar] [CrossRef]
- Zheng, J.; Tan, B.H.; Sugrue, R.; Tang, K. Current Approaches on Viral Infection: Proteomics and Functional Validations. Front. Microbio. 2012, 3, 393. [Google Scholar] [CrossRef]
- Lum, K.K.; Cristea, I.M. Proteomic Approaches to Uncovering Virus–Host Protein Interactions during the Progression of Viral Infection. Expert. Rev. Proteom. 2016, 13, 325–340. [Google Scholar] [CrossRef]
- Saha, D.; Iannuccelli, M.; Brun, C.; Zanzoni, A.; Licata, L. The Intricacy of the Viral-Human Protein Interaction Networks: Resources, Data, and Analyses. Front. Microbiol. 2022, 13, 849781. [Google Scholar] [CrossRef]
Quadrivalent Gardasil® | Bivalent Cervarix® | Nonavalent Gardasil-9® | Bivalent Cecolin® | Bivalent WalrinVax® | Quadrivalent Cervavac-4 * | |
---|---|---|---|---|---|---|
Approval | 2006 | 2009 | 2014 | 2019 | 2022 | 2022 |
Manufacturer | Merck & Co., Inc. (Rahway, NJ, USA) | Glaxo Smith Kline plc. (Rixensar, Belgium) | Merck & Co., Inc. (Rahway, NJ, USA) | Xiamen Innovax Co., Ltd. (Xiamen, Fujian, China) | Walvax Co., Ltd. (Kunming, Yunnan, China) | Serum Institute of India (Hadapsar, Pune, India) |
VLP HPV Type (protein dose) | HPV-6, 18 (20 µg each) HPV-11, 16 (40 µg each) | HPV-16 (20 µg) HPV-18 (20 µg) | HPV-6 (30 mg) HPV-16 (60 mg) HPV-11, 18 (40 mg each) HPV-31, 33, 45, 52, 58 (20 mg each) | HPV-16 (40 µg) HPV-18 (20 µg) | HPV-16 (40 µg) HPV-18 (20 µg) | HPV-6, 18 (20 µg each) HPV-11, 16 (40 µg each) |
Expression system | Saccharomyces cerevisiae | Trichoplusia ni insect cell line | Saccharomyces cerevisiae | Escherichia coli | Pichia pastoris | Hansenula polymorpha |
Adjuvant | AAHS | AS04 | AAHS | Aluminum hydroxide | Aluminum phosphate | Aluminum hydroxide |
VLP Origin | Loaded Material | Application | References |
---|---|---|---|
Adenovirus | Bleomycin Paclitaxel mRNA | Tumor therapy | [84,85] |
Bacteriophage Qβ | Azithromycin Clarithromycin | Antimicrobial drug | [86] |
Bacteriophage MS2 | Doxorubicin, Cisplatin, 5-fluorouracil siRNA Ricin toxin A-chain | Tumor therapy | [87] |
Cowpea mosaic virus (CPMV) | Doxorubicin | Tumor therapy | [88] |
Cucumber mosaic virus (CMV) | Doxorubicin | Tumor therapy | [89] |
Filamentous bacteriophages | Chloramphenicol | Antimicrobial drug | [90] |
Hepatitis B virus (HBV) | siRNA | Tumor therapy | [91] |
Polyomavirus | Methotrexate | Tumor therapy | [92] |
Rotavirus | Doxorubicin | Tumor therapy | [93,94] |
VLP Source | Cancer Type | Antigen Target | Association | References | |
---|---|---|---|---|---|
Pre-clinical studies | |||||
AP205 | Cervical Breast | HPV RG1 epitope (from L2) HER-2 | -- | [21,95] | |
Bacteriophage Qβ | Melanoma | PMEL17, MTC-1, Calpastatin, ZFP518, TRP-2, Caveolin2, Cpsf3l, and Kifl8b | Anti-CD25 | [96] | |
CMV | Melanoma | LCMV-gp33 | Microcrystalline tyrosine | [97] | |
CPMV | Metastatic models | Empty | -- | [98] | |
HBcAg | Hepatocellular carcinoma | MAGE-1, MAGE-3, AFP-1 HBx protein | -- | [99,100,101] | |
Infectious bursal disease virus (IBDV) | Cervical | E7 | -- | [102] | |
MS2 | Breast Cervical | cystine-glutamate antiporter protein (xCT) L2 | - | [103,104,105] | |
Polyomavirus | Melanoma | OVA (model antigen), TRP2 | QuilA-saponin adjuvant or alone | [106] | |
Rabbit Hemorrhagic Disease Virus (RHDV) | Cervical Colorectal | E6 Topoisomerase IIα and Surviving | Anti-CTLA4 or antiCD25 Unmethylated CpGs | [107] | |
Simian-Human Immunodeficiency Virus (SHIV) | Pancreatic | hMSLN, mMSLN | -- | [108,109] | |
Simian immunodeficiency virus (SIV) | Pancreatic | Trop2 | With gemcitabine or alone | [110] | |
Clinical trials | Phase | ||||
Bacteriophage Qβ | Melanoma types | -- | Pembrolizumab (anti-PD-1) | I | [111,112] |
Bacteriophage Qβ | Melanoma Lymphoma | -- | Nivolumab (anti-PD1) | II | [113] |
Bacteriophage Qβ | Melanoma stage II/IV | Melan A | CpG type A | I/II | [114,115,116] |
Bacteriophage Qβ | Melanoma stage II/IV | Melan A | IFA (Montanide) or imiquimod | IIa | [117] |
Chimeric HPV16-VLPs | Cervical intraepithelial neoplasia (CIN 2/3) | E7 and 16L1 | -- | I | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, C.S.; Sakauchi, D.; Sasaki, É.A.K.; Cianciarullo, A.M. Recombinant Chimeric Virus-like Particles of Human Papillomavirus Produced by Distinct Cell Lineages: Potential as Prophylactic Nanovaccine and Therapeutic Drug Nanocarriers. Viruses 2025, 17, 1209. https://doi.org/10.3390/v17091209
Oliveira CS, Sakauchi D, Sasaki ÉAK, Cianciarullo AM. Recombinant Chimeric Virus-like Particles of Human Papillomavirus Produced by Distinct Cell Lineages: Potential as Prophylactic Nanovaccine and Therapeutic Drug Nanocarriers. Viruses. 2025; 17(9):1209. https://doi.org/10.3390/v17091209
Chicago/Turabian StyleOliveira, Cyntia Silva, Dirce Sakauchi, Érica Akemi Kavati Sasaki, and Aurora Marques Cianciarullo. 2025. "Recombinant Chimeric Virus-like Particles of Human Papillomavirus Produced by Distinct Cell Lineages: Potential as Prophylactic Nanovaccine and Therapeutic Drug Nanocarriers" Viruses 17, no. 9: 1209. https://doi.org/10.3390/v17091209
APA StyleOliveira, C. S., Sakauchi, D., Sasaki, É. A. K., & Cianciarullo, A. M. (2025). Recombinant Chimeric Virus-like Particles of Human Papillomavirus Produced by Distinct Cell Lineages: Potential as Prophylactic Nanovaccine and Therapeutic Drug Nanocarriers. Viruses, 17(9), 1209. https://doi.org/10.3390/v17091209