Probing Viral Dark Matter: Comparative Genomics of Atypical Bacillus Phage YungSlug
Abstract
1. Introduction
2. Materials and Methods
3. Results
Phage | GenBank Accession | Host | Genome Length (bp) | GC% | # ORFs | Publication |
---|---|---|---|---|---|---|
Subfamily: Spounavirinae | ||||||
CP-51 | KF554508.2 | B. cereus | 138,658 | 40.9 | 219 | [42,43] |
JL | KC595512.2 | B. cereus | 137,918 | 40.8 | 222 | [44] |
Shanette | KC595513.2 | B. cereus | 138,877 | 40.8 | 223 | [44] |
SP-10 | NC_019487.1 | B. subtilis | 143,986 | 40.5 | 236 | [45] |
SP01 | FJ230960.1 | B. subtilis | 132,562 | 40 | 209 | [46] |
Goe2 | KY368639.1 | B. subtilis | 146,141 | 40.3 | 230 | [47] |
YungSlug | MT416612.2 | B. thuringiensis kurstaki | 150,011 | 37.6 | 227 | [2] |
Nachito | OP380492 | Bacillus sp. ET1 lab isolate | 148,928 | 38.5 | 238 | Unpublished |
Subfamily: Bastillevirinae | ||||||
Bastille | JF966203.1 | B. cereus HER1399 a | 153,962 | 38.1 | 273 | [42,48] |
Juglone | KU737345.1 | B. thuringiensis kurstaki | 164,227 | 37.8 | 293 | [49] |
NotTheCreek | KU737351.1 | B. thuringiensis kurstaki | 161,929 | 38.7 | 296 | [49] |
phiAGATE | JX238501.3 | B. pumilus | 149,844 | 41 | 204 | [50] |
Class: Caudoviricetes | ||||||
0305phi8-36 | EF583821.1 | B. thuringiensis | 218,948 | 41.8 | 247 | [35,51] |
4. Discussion
- (1)
- Isolation methods favor specific phage types. Methods used by the SEA PHAGES program for the detection and isolation of phage primarily from soil rely on a homogenous environment with a single host genotype [52] that may fail to replicate important environmental features or host-phage interactions [53,54,55,56]. Likewise, phages may have characteristics that make them difficult to detect, even if able to successfully infect host cells under culture conditions [57,58]. The use of novel culture and metagenomic methods [59] may lead to the identification of additional phage clusters, such as the novel methods reported by Serwer for the isolation of phage 0305phi8-36 [53].
- (2)
- Transient host associations. Sampling methods relying on a single host genotype for phage discovery may preferentially detect phages that are specialist parasites of that host genotype. Phages Bastille, CP-51, and W.Ph. are reported to infect more than one species of Bacillus within the “ACT” family (B. anthracis, B. cereus, and B. thuringiensis [42]), and other work suggests host-switching may have contributed to the overall diversity of phages infecting Bacillus [12,60,61]. Host-switching or the presence of generalist parasites may lead to infrequent infections of a given host genotype, which are less likely to be sampled in culture.
- (3)
- Variation in abundance. Spatial or temporal variation in phage composition has been shown for species communities [10,62]. Sampling schemes focused on specific geographic locations, ecosystems, seasons, or sampling over short time periods may increase sampling biases. For example, recently, three phages closely related to Bacillus-infecting phage SPP1 were identified, despite SPP1 being the sole representative of a cluster for 40 years [63].
- (4)
- Relative abundance. Some phages may persist at high abundance relative to other phages within communities [64], decreasing the likelihood of sampling of low-abundance phage types in the presence of more common forms.
- (5)
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HHMI | Howard Hughes Medical Institute |
SEA PHAGES | Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science |
NCBI nr | National Center for Biotechnology Information, non-redundant protein records database |
GCS | Gene content similarity |
BLAST | Basic Local Alignment Search Tool |
BLASTP | Standard protein Basic Local Alignment Search Tool |
ACT family | B. anthracis, B. cereus, and B. thuringiensis |
ICTV | International Committee on Taxonomy of Viruses |
References
- Jordan, T.C.; Burnett, S.H.; Carson, S.; Caruso, S.M.; Clase, K.; DeJong, R.J.; Dennehy, J.J.; Denver, D.R.; Dunbar, D.; Elgin, S.C.R.; et al. A Broadly Implementable Research Course in Phage Discovery and Genomics for First-Year Undergraduate Students. mBio 2014, 5, e01051-13. [Google Scholar] [CrossRef]
- Kostyk, N.; Chigbu, O.; Cochran, E.; Davis, J.; Essig, J.; Do, L.; Farooque, N.; Gbadamosi, Z.; Gnanodayan, A.; Hale, A.; et al. Complete Genome Sequences of Bacillus Cereus Group Phages AaronPhadgers, ALPS, Beyonphe, Bubs, KamFam, OmnioDeoPrimus, Phireball, PPIsBest, YungSlug, and Zainny. Microbiol. Resour. Announc. 2021, 10, e0030021. [Google Scholar] [CrossRef]
- Russell, D.A.; Hatfull, G.F. PhagesDB: The Actinobacteriophage Database. Bioinformatics 2017, 33, 784–786. [Google Scholar] [CrossRef]
- Wommack, K.E.; Colwell, R.R. Virioplankton: Viruses in Aquatic Ecosystems. Microbiol. Mol. Biol. Rev. 2000, 64, 69–114. [Google Scholar] [CrossRef]
- Suttle, C.A. Viruses in the Sea. Nature 2005, 437, 356–361. [Google Scholar] [CrossRef]
- Dion, M.B.; Oechslin, F.; Moineau, S. Phage Diversity, Genomics and Phylogeny. Nat. Rev. Microbiol. 2020, 18, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Shkoporov, A.N.; Turkington, C.J.; Hill, C. Mutualistic Interplay between Bacteriophages and Bacteria in the Human Gut. Nat. Rev. Microbiol. 2022, 20, 737–749. [Google Scholar] [CrossRef]
- Emencheta, S.C.; Olovo, C.V.; Eze, O.C.; Kalu, C.F.; Berebon, D.P.; Onuigbo, E.B.; Vila, M.M.D.C.; Balcão, V.M.; Attama, A.A. The Role of Bacteriophages in the Gut Microbiota: Implications for Human Health. Pharmaceutics 2023, 15, 2416. [Google Scholar] [CrossRef] [PubMed]
- Georjon, H.; Bernheim, A. The Highly Diverse Antiphage Defence Systems of Bacteria. Nat. Rev. Microbiol. 2023, 21, 686–700. [Google Scholar] [CrossRef] [PubMed]
- Jansson, J.K.; Wu, R. Soil Viral Diversity, Ecology and Climate Change. Nat. Rev. Microbiol. 2023, 21, 296–311. [Google Scholar] [CrossRef]
- Pope, W.H.; Bowman, C.A.; Russell, D.A.; Jacobs-Sera, D.; Asai, D.J.; Cresawn, S.G.; Jacobs, W.R.; Hendrix, R.W.; Lawrence, J.G.; Hatfull, G.F.; et al. Whole Genome Comparison of a Large Collection of Mycobacteriophages Reveals a Continuum of Phage Genetic Diversity. eLife 2015, 4, e06416. [Google Scholar] [CrossRef]
- Grose, J.H.; Jensen, G.L.; Burnett, S.H.; Breakwell, D.P. Genomic Comparison of 93 Bacillus Phages Reveals 12 Clusters, 14 Singletons and Remarkable Diversity. BMC Genom. 2014, 15, 855. [Google Scholar] [CrossRef] [PubMed]
- Grose, J.H.; Casjens, S.R. Understanding the Enormous Diversity of Bacteriophages: The Tailed Phages That Infect the Bacterial Family Enterobacteriaceae. Virology 2014, 468–470, 421–443. [Google Scholar] [CrossRef] [PubMed]
- Abraha, H.B.; Lee, J.-W.; Kim, G.; Ferdiansyah, M.K.; Ramesha, R.M.; Kim, K.-P. Genomic Diversity and Comprehensive Taxonomical Classification of 61 Bacillus Subtilis Group Member Infecting Bacteriophages, and the Identification of Ortholog Taxonomic Signature Genes. BMC Genom. 2022, 23, 835. [Google Scholar] [CrossRef] [PubMed]
- Pope, W.H.; Mavrich, T.N.; Garlena, R.A.; Guerrero-Bustamante, C.A.; Jacobs-Sera, D.; Montgomery, M.T.; Russell, D.A.; Warner, M.H.; Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES); Hatfull, G.F. Bacteriophages of Gordonia spp. Display a Spectrum of Diversity and Genetic Relationships. mBio 2017, 8, e01069-17. [Google Scholar] [CrossRef]
- Thompson, D.W.; Casjens, S.R.; Sharma, R.; Grose, J.H. Genomic Comparison of 60 Completely Sequenced Bacteriophages That Infect Erwinia and/or Pantoea Bacteria. Virology 2019, 535, 59–73. [Google Scholar] [CrossRef]
- Mavrich, T.N.; Hatfull, G.F. Bacteriophage Evolution Differs by Host, Lifestyle and Genome. Nat. Microbiol. 2017, 2, 17112. [Google Scholar] [CrossRef]
- Kunst, F.; Ogasawara, N.; Moszer, I.; Albertini, A.M.; Alloni, G.; Azevedo, V.; Bertero, M.G.; Bessières, P.; Bolotin, A.; Borchert, S.; et al. The Complete Genome Sequence of the Gram-Positive Bacterium Bacillus Subtilis. Nature 1997, 390, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.Y.; Park, J.B.; Liu, Q.; Kim, S.E.; Tao, X.; Choi, T.W.; Choi, J.Y.; Kim, W.J.; Jin, B.R.; Je, Y.H. Existence of Lysogenic Bacteriophages in Bacillus Thuringiensis Type Strains. J. Invertebr. Pathol. 2013, 113, 228–231. [Google Scholar] [CrossRef]
- Lima-Mendez, G.; Van Helden, J.; Toussaint, A.; Leplae, R. Reticulate Representation of Evolutionary and Functional Relationships between Phage Genomes. Mol. Biol. Evol. 2008, 25, 762–777. [Google Scholar] [CrossRef]
- Helgason, E.; Økstad, O.A.; Caugant, D.A.; Johansen, H.A.; Fouet, A.; Mock, M.; Hegna, I.; Kolstø, A.-B. Bacillus Anthracis, Bacillus Cereus, and Bacillus Thuringiensis—One Species on the Basis of Genetic Evidence. Appl. Environ. Microbiol. 2000, 66, 2627–2630. [Google Scholar] [CrossRef]
- Ehling-Schulz, M.; Lereclus, D.; Koehler, T.M. The Bacillus Cereus Group: Bacillus Species with Pathogenic Potential. Microbiol. Spectr. 2019, 7, 1–35. [Google Scholar] [CrossRef]
- Put, H.; Gerstmans, H.; Capelle, H.V.; Fauvart, M.; Michiels, J.; Masschelein, J. Bacillus Subtilis as a Host for Natural Product Discovery and Engineering of Biosynthetic Gene Clusters. Nat. Prod. Rep. 2024, 41, 1113–1151. [Google Scholar] [CrossRef]
- Lee, J.-H.; Shin, H.; Son, B.; Heu, S.; Ryu, S. Characterization and Complete Genome Sequence of a Virulent Bacteriophage B4 Infecting Food-Borne Pathogenic Bacillus Cereus. Arch. Virol. 2013, 158, 2101–2108. [Google Scholar] [CrossRef]
- Ganz, H.H.; Law, C.; Schmuki, M.; Eichenseher, F.; Calendar, R.; Loessner, M.J.; Getz, W.M.; Korlach, J.; Beyer, W.; Klumpp, J. Novel Giant Siphovirus from Bacillus Anthracis Features Unusual Genome Characteristics. PLoS ONE 2014, 9, e85972. [Google Scholar] [CrossRef] [PubMed]
- Minakhin, L.; Semenova, E.; Liu, J.; Vasilov, A.; Severinova, E.; Gabisonia, T.; Inman, R.; Mushegian, A.; Severinov, K. Genome Sequence and Gene Expression of Bacillus Anthracis Bacteriophage Fah. J. Mol. Biol. 2005, 354, 1–15. [Google Scholar] [CrossRef]
- Fouts, D.E.; Rasko, D.A.; Cer, R.Z.; Jiang, L.; Fedorova, N.B.; Shvartsbeyn, A.; Vamathevan, J.J.; Tallon, L.; Althoff, R.; Arbogast, T.S.; et al. Sequencing Bacillus Anthracis Typing Phages Gamma and Cherry Reveals a Common Ancestry. J. Bacteriol. 2006, 188, 3402–3408. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Saini, T.; Al Qaffas, A.; Erill, I.; Caruso, S.M.; Temple, L.; Johnson, A.A. Evidence of a Set of Core-Function Genes in 16 Bacillus Podoviral Genomes with Considerable Genomic Diversity. Viruses 2023, 15, 276. [Google Scholar] [CrossRef]
- Sauder, A.B.; Quinn, M.R.; Brouillette, A.; Caruso, S.; Cresawn, S.; Erill, I.; Lewis, L.; Loesser-Casey, K.; Pate, M.; Scott, C.; et al. Genomic Characterization and Comparison of Seven Myoviridae Bacteriophage Infecting Bacillus Thuringiensis. Virology 2016, 489, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Miao, J.; Zhang, N.; Wang, X.; Li, Z.; Richard, O.A.; Li, B. The Analysis of the Function, Diversity, and Evolution of the Bacillus Phage Genome. BMC Microbiol. 2023, 23, 170. [Google Scholar] [CrossRef]
- Schuch, R.; Fischetti, V.A. The Secret Life of the Anthrax Agent Bacillus Anthracis: Bacteriophage-Mediated Ecological Adaptations. PLoS ONE 2009, 4, e6532. [Google Scholar] [CrossRef]
- Schwartz, D.A.; Lehmkuhl, B.K.; Lennon, J.T. Phage-Encoded Sigma Factors Alter Bacterial Dormancy. mSphere 2022, 7, e00297-22. [Google Scholar] [CrossRef]
- Butala, M.; Dragoš, A. Unique Relationships between Phages and Endospore-Forming Hosts. Trends Microbiol. 2023, 31, 498–510. [Google Scholar] [CrossRef]
- Bernard, C.; Li, Y.; Lopez, P.; Bapteste, E. Beyond Arbitrium: Identification of a Second Communication System in Bacillus Phage phi3T That May Regulate Host Defense Mechanisms. ISME J. 2021, 15, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Hardies, S.C.; Thomas, J.A.; Serwer, P. Comparative Genomics of Bacillus Thuringiensis Phage 0305φ8-36: Defining Patterns of Descent in a Novel Ancient Phage Lineage. Virol. J. 2007, 4, 97. [Google Scholar] [CrossRef] [PubMed]
- Barylski, J.; Kropinski, A.M.; Alikhan, N.-F.; Adriaenssens, E.M. ICTV Report Consortium ICTV Virus Taxonomy Profile: Herelleviridae. J. Gen. Virol. 2020, 101, 362–363. [Google Scholar] [CrossRef]
- Cresawn, S.G.; Bogel, M.; Day, N.; Jacobs-Sera, D.; Hendrix, R.W.; Hatfull, G.F. Phamerator: A Bioinformatic Tool for Comparative Bacteriophage Genomics. BMC Bioinform. 2011, 12, 395. [Google Scholar] [CrossRef]
- Huson, D.H. SplitsTree: Analyzing and Visualizing Evolutionary Data. Bioinformatics 1998, 14, 68–73. [Google Scholar] [CrossRef]
- Demo, S.; Kapinos, A.; Bernardino, A.; Guardino, K.; Hobbs, B.; Hoh, K.; Lee, E.; Vuong, I.; Reddi, K.; Freise, A.C.; et al. BlueFeather, the Singleton That Wasn’t: Shared Gene Content Analysis Supports Expansion of Arthrobacter Phage Cluster FE. PLoS ONE 2021, 16, e0248418. [Google Scholar] [CrossRef]
- Krumsiek, J.; Arnold, R.; Rattei, T. Gepard: A Rapid and Sensitive Tool for Creating Dotplots on Genome Scale. Bioinformatics 2007, 23, 1026–1028. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, Y.; Yoshida, T.; Kuronishi, M.; Uehara, H.; Ogata, H.; Goto, S. ViPTree: The Viral Proteomic Tree Server. Bioinformatics 2017, 33, 2379–2380. [Google Scholar] [CrossRef] [PubMed]
- Klumpp, J.; Schmuki, M.; Sozhamannan, S.; Beyer, W.; Fouts, D.E.; Bernbach, V.; Calendar, R.; Loessner, M.J. The Odd One out: Bacillus ACT Bacteriophage CP-51 Exhibits Unusual Properties Compared to Related Spounavirinae W.Ph. and Bastille. Virology 2014, 462–463, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Thorne, C.B. Transducing Bacteriophage for Bacillus Cereus. J. Virol. 1968, 2, 657–662. [Google Scholar] [CrossRef]
- Grose, J.H.; Jensen, J.D.; Merrill, B.D.; Fisher, J.N.B.; Burnett, S.H.; Breakwell, D.P. Genome Sequences of Three Novel Bacillus Cereus Bacteriophages. Genome Announc. 2014, 2, e01118-13. [Google Scholar] [CrossRef]
- Taylor, M.J.; Thorne, C.B. Transduction of Bacillus Licheniformis and Bacillus Subtilis by Each of Two Phages. J. Bacteriol. 1963, 86, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.R.; Casjens, S.R.; Cresawn, S.G.; Houtz, J.M.; Smith, A.L.; Ford, M.E.; Peebles, C.L.; Hatfull, G.F.; Hendrix, R.W.; Huang, W.M.; et al. The Genome of Bacillus Subtilis Bacteriophage SPO1. J. Mol. Biol. 2009, 388, 48–70. [Google Scholar] [CrossRef]
- Willms, I.M.; Hoppert, M.; Hertel, R. Characterization of Bacillus Subtilis Viruses vB_BsuM-Goe2 and vB_BsuM-Goe3. Viruses 2017, 9, 146. [Google Scholar] [CrossRef]
- Ackermann, H.W.; Azizbekyan, R.R.; Bernier, R.L.; de Barjac, H.; Saindoux, S.; Valéro, J.R.; Yu, M.X. Phage Typing of Bacillus Subtilis and B. Thuringiensis. Res. Microbiol. 1995, 146, 643–657. [Google Scholar] [CrossRef]
- Foltz, S.; Johnson, A.A.; on behalf of the 2013–2015 VCU Phage Hunters. Complete Genome Sequences of Nine Bacillus Cereus Group Phages. Genome Announc. 2016, 4, e00473-16. [Google Scholar] [CrossRef]
- Barylski, J.; Nowicki, G.; Goździcka-Józefiak, A. The Discovery of phiAGATE, a Novel Phage Infecting Bacillus Pumilus, Leads to New Insights into the Phylogeny of the Subfamily Spounavirinae. PLoS ONE 2014, 9, e86632. [Google Scholar] [CrossRef]
- Thomas, J.A.; Hardies, S.C.; Rolando, M.; Hayes, S.J.; Lieman, K.; Carroll, C.A.; Weintraub, S.T.; Serwer, P. Complete Genomic Sequence and Mass Spectrometric Analysis of Highly Diverse, Atypical Bacillus Thuringiensis Phage 0305ϕ8–36. Virology 2007, 368, 405–421. [Google Scholar] [CrossRef]
- Poxleitner, M.; Pope, W.H.; Jacobs-Sera, D.; Sivanathan, V.; Hatfull, G.F. HHMI SEA-PHAGES Phage Discovery Guide; HHMI: Chevy Chase, MD, USA, 2018. [Google Scholar]
- Serwer, P.; Hayes, S.J.; Thomas, J.A.; Hardies, S.C. Propagating the Missing Bacteriophages: A Large Bacteriophage in a New Class. Virol. J. 2007, 4, 21. [Google Scholar] [CrossRef]
- Krukonis, G.P. Diversity of Naturally Occurring Bacteriophage of Bacillus Subtilis and Their Interactions with Their Hosts; The University of Arizona: Tucson, AZ, USA, 1994. [Google Scholar]
- Chattopadhyay, S.; Puls, R.W. Forces Dictating Colloidal Interactions between Viruses and Soil. Chemosphere 2000, 41, 1279–1286. [Google Scholar] [CrossRef]
- Williamson, K.E.; Wommack, K.E.; Radosevich, M. Sampling Natural Viral Communities from Soil for Culture-Independent Analyses. Appl. Environ. Microbiol. 2003, 69, 6628–6633. [Google Scholar] [CrossRef]
- Gallet, R.; Kannoly, S.; Wang, I.-N. Effects of Bacteriophage Traits on Plaque Formation. BMC Microbiol. 2011, 11, 181. [Google Scholar] [CrossRef] [PubMed]
- Spanakis, E.; Horne, M.T. Co-Adaptation of Escherichia Coli and Coliphage Lambda Vir in Continuous Culture. J. Gen. Microbiol. 1987, 133, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Flores, V.S.; Amgarten, D.E.; Iha, B.K.V.; Ryon, K.A.; Danko, D.; Tierney, B.T.; Mason, C.; da Silva, A.M.; Setubal, J.C. Discovery and Description of Novel Phage Genomes from Urban Microbiomes Sampled by the MetaSUB Consortium. Sci. Rep. 2024, 14, 7913. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, C.M.; Ghai, R.; Rodriguez-Valera, F. Evidence for Metaviromic Islands in Marine Phages. Front. Microbiol. 2014, 5, 27. [Google Scholar] [CrossRef]
- Flores, C.O.; Meyer, J.R.; Valverde, S.; Farr, L.; Weitz, J.S. Statistical Structure of Host–Phage Interactions. Proc. Natl. Acad. Sci. USA 2011, 108, E288–E297. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, K.H.; Rodriguez-Brito, B.; Breitbart, M.; Bangor, D.; Angly, F.; Felts, B.; Nulton, J.; Rohwer, F.; Salamon, P. Power Law Rank–Abundance Models for Marine Phage Communities. FEMS Microbiol. Lett. 2007, 273, 224–228. [Google Scholar] [CrossRef]
- Delesalle, V.A.; Tomko, B.E.; Vill, A.C.; Lichty, K.B.; Krukonis, G.P. Forty Years without Family: Three Novel Bacteriophages with High Similarity to SPP1 Reveal Decades of Evolutionary Stasis since the Isolation of Their Famous Relative. Viruses 2022, 14, 2106. [Google Scholar] [CrossRef] [PubMed]
- Guerin, E.; Shkoporov, A.N.; Stockdale, S.R.; Comas, J.C.; Khokhlova, E.V.; Clooney, A.G.; Daly, K.M.; Draper, L.A.; Stephens, N.; Scholz, D.; et al. Isolation and Characterisation of ΦcrAss002, a crAss-like Phage from the Human Gut That Infects Bacteroides Xylanisolvens. Microbiome 2021, 9, 89. [Google Scholar] [CrossRef] [PubMed]
- Meijer, W.J.; Castilla-Llorente, V.; Villar, L.; Murray, H.; Errington, J.; Salas, M. Molecular Basis for the Exploitation of Spore Formation as Survival Mechanism by Virulent Phage Φ29. EMBO J. 2005, 24, 3647–3657. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, A.A.; Hale, A.; Sehnouni, A.; Gbadamosi, Z.; Boyd, B.M. Probing Viral Dark Matter: Comparative Genomics of Atypical Bacillus Phage YungSlug. Viruses 2025, 17, 1267. https://doi.org/10.3390/v17091267
Johnson AA, Hale A, Sehnouni A, Gbadamosi Z, Boyd BM. Probing Viral Dark Matter: Comparative Genomics of Atypical Bacillus Phage YungSlug. Viruses. 2025; 17(9):1267. https://doi.org/10.3390/v17091267
Chicago/Turabian StyleJohnson, Allison A., Andrew Hale, Amine Sehnouni, Zainab Gbadamosi, and Bret M. Boyd. 2025. "Probing Viral Dark Matter: Comparative Genomics of Atypical Bacillus Phage YungSlug" Viruses 17, no. 9: 1267. https://doi.org/10.3390/v17091267
APA StyleJohnson, A. A., Hale, A., Sehnouni, A., Gbadamosi, Z., & Boyd, B. M. (2025). Probing Viral Dark Matter: Comparative Genomics of Atypical Bacillus Phage YungSlug. Viruses, 17(9), 1267. https://doi.org/10.3390/v17091267