Historical Perspectives in the Development of Antiviral Agents Against Poxviruses
Abstract
:1. Introduction: The thiosemicarbazones
2. The VV pox tail lesion model: the simplest virus mouse model ever described
PAA treatmenta before vaccinia virus infectionb | No. of lesions | Probability (comparison with control group) | |
---|---|---|---|
Per individual mouse | Average | ||
Control | 9, 3, 8, 1, 6, 2, 5, 11, 4, 0, 3, 2, 0, 11, 15, 10, 30, 4 | 6.89 | |
4 weeks before | 0, 1, 0, 5, 1, 0, 2, 0, 3, 1, 0, 2, 1, 3, 0, 11, 4, 3, 7, 1, 0 | 2.14 | 0.005 < P < 0.01 |
3 weeks before | 0, 0, 1, 3, 5, 3, 0, 0, 0, 9, 3, 1, 0, 0, 1 | 1.73 | 0.01 < P < 0.02 |
2 weeks before | 3, 1, 2, 1, 2, 1, 6, 1, 0, 0, 0, 1, 2, 1 | 1.50 | P ~ 0.01 |
1 week before | 0, 1, 1, 0, 0, 3, 2, 1, 1, 0, 2, 2, 1, 0, 1 | 1.00 | 0.001 < P < 0.002 |
3. Substituted 2’-deoxyuridines
4. Nucleoside analogs other than IDU and 5-substituted dUrd analogs
5. The acyclic nucleoside phosphonates
6. Oral alkoxyalkyl prodrugs of acyclic nucleoside phosphonates
7. ST-246, an orally bioavailable antipoxvirus compound, that inhibits extracellular virus formation
8. Cellular kinases as targets for anti-orthopoxvirus therapy
Acknowledgments
References
- Bauer, D.J. Introduction to antiviral chemotherapy. In Chemotherapy of Virus Diseases; Bauer, D.J., Ed.; Pergamon Press: Oxford, UK, 1972. [Google Scholar]
- Domagk, G.; Behnisch, R.; Mietzch, F.; Schmidt, H. Über eine neue, gegen Tuberkelbazillen in vitro wirksame Verbindungsklasse. Naturwissenschaften 1946, 10, 315. [Google Scholar] [CrossRef]
- Hamre, D.; Bernstein, J.; Donovick, R. Activity of p-aminobenzaldehyde, 3-thiosemicarbazone on vaccinia virus in the chick embryo and in the mouse. Proc. Soc. Exp. Biol. Med. 1950, 73, 275–278. [Google Scholar]
- Hamre, D.; Brownlee, K.A.; Donovick, R. Studies on the chemotherapy of vaccinia virus. II. The activity of some thiosemicarbazones. . J. Immunol. 1951, 67, 305–312. [Google Scholar] [PubMed]
- Thompson, R.L.; Price, M.L.; Minton Jr., S.A. Protection of mice against vaccinia virus by administration of benzaldehyde thiosemicarbazone. Proc. Soc. Exp. Biol. Med. 1951, 78, 11–13. [Google Scholar] [PubMed]
- Bauer, D.J. Thiosemicarbazones. In Chemotherapy of Virus Diseases; Bauer, D.J., Ed.; 1972; Pergamon Press: Oxford, UK. [Google Scholar]
- Thompson, R.L.; Minton Jr., S.A.; Officer, J.E.; Hitchings, G.H. Effect of heterocyclic and other thiosemicarbazones on vaccinia infection in the mouse . J. Immunol. 1953, 70, 229–234. [Google Scholar] [PubMed]
- Thompson, R.L.; Davis, J.; Russell, P.B.; Hitchings, G.H. Effect of aliphatic oxime and isatin thiosemicarbazone on vaccinia infection in the mouse and in the rabbit. Proc. Soc. Exp. Biol. Med. 1953, 84, 496–499. [Google Scholar] [PubMed]
- Bauer, D.J. The antiviral and synergic actions of isatin thiosemicarbazone and certain phenoxypyrimidines in vaccinia infection in mice. Br. J. Exp. Pathol. 1955, 36, 105–114. [Google Scholar] [PubMed]
- Bauer, D.J.; St. Vincent, L.; Kempe, C.H.; Downie, A.W. Prophylactic treatment of small pox contacts with N-methylisatin β-thiosemicarbazone (compound 33T57, Marboran). Lancet 1963, 2, 494–496. [Google Scholar] [CrossRef]
- De Clercq, E.; De Somer, P. Effect of interferon, polyacrylic acid, and polymethacrylic acid on tail lesions on mice infected with vaccinia virus. Appl. Microbiol. 1968, 16, 1314–1319. [Google Scholar] [PubMed]
- Boyle, J.J.; Haff, R.F.; Stewart, R.C. 1967. Evaluation of antiviral compounds by suppression of tail lesions in vaccinia-infected mice. Antimicrob. Agents Chemother. 1966, 6, 536–539. [Google Scholar] [PubMed]
- De Clercq, E.; Luczak, M.; Shugar, D.; Torrence, P.F.; Waters, J.A.; Witkop, B. Effect of cytosine, arabinoside, iododeoxyuridine, ethyldeoxyuridine, thiocyanatodeoxyuridine, and ribavirin on tail lesion formation in mice infected with vaccinia virus. Proc. Soc. Exp. Biol. Med. 1976, 151, 487–490. [Google Scholar] [PubMed]
- De Clercq, E.; Bergstrom, D.E.; Holý, A.; Montgomery, J.A. Broad-spectrum antiviral activity of adenosine analogs. Antiviral Res. 1984, 4, 119–133. [Google Scholar] [CrossRef]
- Van Aerschot, A.; Herdewijn, P.; Janssen, G.; Cools, M.; De Clercq, E. Synthesis and antiviral activity evaluation of 3'-fluoro-3'-deoxyribonucleosides: broad-spectrum antiviral activity of 3'-fluoro-3'-deoxyadenosine. Antiviral Res. 1989, 12, 133–150. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E.; Holý, A.; Rosenberg, I. Efficacy of phosphonylmethoxyalkyl derivatives of adenine in experimental herpes simplex virus and vaccinia virus infections in vivo. Antimicrob. Agents Chemother. 1989, 33, 185–191. [Google Scholar] [PubMed]
- De Clercq, E.; Cools, M.; Balzarini, J.; Snoeck, R.; Andrei, G.; Hosoya, M.; Shigeta, S.; Ueda, T.; Minakawa, N.; Matsuda, A. Antiviral activities of 5-ethynyl-1-beta-D-ribofuranosylimidazole-4- carboxamide and related compounds. Antimicrob. Agents Chemother. 1991, 35, 679–684. [Google Scholar] [PubMed]
- Neyts, J.; De Clercq, E. Efficacy of 2-amino-7-(1,3-dihydroxy-2-propoxymethyl)purine for treatment of vaccinia virus (orthopoxvirus) infections in mice. Antimicrob. Agents Chemother. 2001, 45, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Tignor, G.H.; Kende, M.; Hanham, C.A. Chemotherapeutic prevention of complications caused by vaccinia virus-vectored immunogen. Ann. N.Y. Acad. Sci. 1992, 653, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Walton, E.; Jenkins, S.R.; Nutt, R.F.; Holly, F.W. Branched-chain sugar nucleosides. V. Synthesis and antiviral properties of several branched-chain sugar nucleosides. J. Med. Chem. 1969, 12, 306–309. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.K.H.; Marquez, V.E.; Fuller, R.W.; Goldstein, B.M.; Haines, D.R.; McPherson, H.; Parsons, J.L.; Shannon, W.M.; Arnett, G. Synthesis of 3-deazaneplanocin A, a powerful inhibitor of S-adenosylhomocysteine hydrolase with potent and selective in vitro and in vivo antiviral activities. J. Med. Chem. 1989, 32, 1442–1446. [Google Scholar] [CrossRef] [PubMed]
- Smee, D.F.; Sidwell, R.W. A review of compounds exhibiting anti-orthopoxvirus activity in animal models. Antiviral Res. 2003, 57, 41–52. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E. Looking back in 2009 at the dawning of antiviral therapy now 50 years ago: an historical perspective. Adv. Virus Res. 2009, 73, 1–53. [Google Scholar] [PubMed]
- Prusoff, W.H. Synthesis and biological activities of iododeoxyuridine, an analog of thymidine. Biochim. Biophys. Acta 1959, 32, 295–296. [Google Scholar] [CrossRef] [PubMed]
- Herrmann Jr., E.C. Plaque inhibition test for detection of specific inhibitors of DNA containing viruses. Proc. Soc. Exp. Biol. Med. 1961, 107, 142–145. [Google Scholar] [PubMed]
- Kaufman, H.E.; Nesburn, A.B.; Maloney, E.D. Cure of vaccinia infection by 5-iodo-2’-deoxyuridine. Virology 1962, 18, 567–569. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E. Vaccinia virus inhibitors as a paradigm for the chemotherapy of poxvirus infections. Clin. Microbiol. Rev. 2001, 14, 382–397. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E. Antiviral and antitumor activities of 5-substituted 2’-deoxyuridines. Meth. Find. Exptl. Clin. Pharmacol. 1980, 2, 253–267. [Google Scholar]
- De Clercq, E.; Descamps, J.; Huang, G.F.; Torrence, P.F. 5-Nitro-2'-deoxyuridine and 5-nitro-2'-deoxyuridine 5'-monophosphate: antiviral activity and inhibition of thymidylate synthetase in vivo. Mol. Pharmacol. 1978, 14, 422–430. [Google Scholar] [PubMed]
- De Clercq, E.; Descamps, J.; Schmidt, C.L.; Mertes, M.P. Antiviral activity of 5-methylthiomethyl-2'-deoxyuridine and other 5-substituted 2'-deoxyuridines. Biochem. Pharmacol. 1979, 28, 3249–3254. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E.; Descamps, J.; Verhelst, G.; Walker, R.T.; Jones, A.S.; Torrence, P.F.; Shugar, D. Comparative efficacy of antiherpes drugs against different strains of herpes simplex virus. J. Infect. Dis. 1980, 141, 563–574. [Google Scholar] [PubMed]
- Swierkowski, M.; Shugar, D. A nonmutagenic thymidine analog with antiviral activity. 5-Ethyldeoxyuridine. J. Med. Chem. 1969, 12, 533–534. [Google Scholar] [CrossRef] [PubMed]
- Nemes, M.M.; Hilleman, M.R. Effective treatment of experimental herpes simplex keratitis with new derivative, 5-methylamino-2’-deoxyuridine (MADU). Proc. Soc. Exp. Biol. Med. 1965, 119, 515–520. [Google Scholar] [PubMed]
- Offit, P.A. Vaccinated. One Manâs Quest to Defeat the Worldâs Deadliest Diseases; HarperCollins Publishers Inc: New York, NY, USA, 2007; pp. 1–254. [Google Scholar]
- De Clercq, E. Synthetic pyrimidine nucleoside analogs. In Approaches to Antiviral Agents; Harnden, M.R, Ed.; MacMillan: London, United Kingdom, 1985; pp. 57–99. [Google Scholar]
- Neyts, J.; Verbeken, E.; De Clercq, E. Effect of 5-iodo-2’-deoxyuridine on vaccinia virus (orthopoxvirus) infections in mice. Antimicrob. Agents Chemother. 2002, 46, 2842–2847. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E. Antiviral and antimetabolic activities of neplanocins. Antimicrob. Agents Chemother. 1985, 28, 84–89. [Google Scholar] [PubMed]
- De Clercq, E.; Cools, M.; Balzarini, J.; Marquez, V.E.; Borcherding, D.R.; Borchardt, R.T.; Drach, J.C.; Kitaoka, S.; Konno, T. Broad-spectrum antiviral activities of neplanocin A, 3-deazaneplanocin A, and their 5'-nor derivatives. Antimicrob. Agents Chemother. 1989, 33, 1291–1297. [Google Scholar] [PubMed]
- Hasobe, M.; McKee, J.G.; Borcherding, D.R.; Borchardt, R.T. 9-(trans-2',trans-3'-Dihydroxycyclopent-4'-enyl)-adenine and -3-deazaadenine: analogs of neplanocin A which retain potent antiviral activity but exhibit reduced cytotoxicity. Antimicrob. Agents Chemother. 1987, 31, 1849–1851. [Google Scholar] [PubMed]
- Hasobe, M.; Liang, H.; Ault-Riche, D.B.; Borcherding, D.R.; Wolfe, M.S.; Borchardt, R.T. (1’R,2’S,3’R)-9-(2’,3’-Dihydroxycyclopentan-1’-yl)-adenine and -3-deaza-adenine: analogs of aristeromycin which exhibit potent antiviral activity with reduced cytotoxicity. Antiviral Chem. Chemother. 1993, 4, 245–248. [Google Scholar]
- Cools, M.; Balzarini, J.; De Clercq, E. Mechanism of antiviral and cytotoxic action of (±)-6' beta-fluoroaristeromycin, a potent inhibitor of S-adenosylhomocysteine hydrolase. Mol. Pharmacol. 1991, 39, 718–724. [Google Scholar] [PubMed]
- Patil, S.D.; Schneller, S.W.; Hosoya, M.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E. Synthesis and antiviral properties of (±)-5'-noraristeromycin and related purine carbocyclic nucleosides. A new lead for anti-human cytomegalovirus agent design. J. Med. Chem. 1992, 35, 3372–3377. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, S.M.; Chen, X.; Schneller, S.W.; Ikeda, S.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E. Antiviral enantiomeric preference for 5'-noraristeromycin. J. Med. Chem. 1994, 37, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, S.M.; Chen, X.; Schneller, S.W.; Ikeda, S.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E. An epimer of 5â-norartisteromycin and its antiviral properties . J. Med. Chem. 1994, 37, 1382–1384. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, S.M.; Chen, X.; Rao, J.; Schneller, S.W.; Ikeda, S.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E. 3-deaza- and 7-deaza-5'-noraristeromycin and their antiviral properties. J. Med. Chem. 1995, 38, 1035–1038. [Google Scholar] [CrossRef] [PubMed]
- Shuto, S.; Obara, T.; Toriya, M.; Hosoya, M.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E. New neplanocin analogs. 1. Synthesis of 6'-modified neplanocin A derivatives as broad-spectrum antiviral agents. J. Med. Chem. 1992, 35, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Shuto, S.; Obara, T.; Saito, Y.; Andrei, G.; Snoeck, R.; De Clercq, E.; Matsuda, A. New neplanocin analogs. 6. Synthesis and potent antiviral activity of 6'-homoneplanocin A1. J. Med. Chem. 1996, 39, 2392–2399. [Google Scholar] [CrossRef] [PubMed]
- Obara, T.; Shuto, S.; Saito, Y.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E.; Matsuda, A. New neplanocin analogs. 7. Synthesis and antiviral activity of 2-halo derivatives of neplanocin A. J. Med. Chem. 1996, 39, 3847–3852. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E.; Murase, J.; Marquez, V.E. Broad-spectrum antiviral and cytocidal activity of cyclopentenylcytosine, a carbocyclic nucleoside targeted at CTP synthetase. Biochem. Pharmacol. 1991, 41, 1821–1829. [Google Scholar] [CrossRef] [PubMed]
- Marquez, V.E.; Lim, M.I.; Treanor, S.P.; Plowman, J.; Priest, A.; Markovac, A.; Khan, M.S.; Kaskar, B.; Driscoll, J.S. Cyclopentenylcytosine. A carbocyclic nucleoside with antitumor and antiviral properties. J. Med. Chem. 1988, 31, 1687–1694. [Google Scholar] [CrossRef] [PubMed]
- Van Aerschot, A.A.; Mamos, P.; Weyns, N.J.; Ikeda, S; De Clercq, E.; Herdewijn, P.A. Antiviral activity of C-alkylated purine nucleosides obtained by cross-coupling with tetraalkyltin reagents . J. Med. Chem. 1993, 36, 2938–2942. [Google Scholar] [CrossRef] [PubMed]
- Neyts, J.; Andrei, G.; Snoeck, R.; Jähne, G.; Winkler, I.; Helsberg, M.; Balzarini, J.; De Clercq, E. The N-7-substituted acyclic nucleoside analog 2-amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine is a potent and selective inhibitor of herpesvirus replication. Antimicrob. Agents Chemother. 1994, 38, 2710–2716. [Google Scholar] [PubMed]
- Neyts, J.; Balzarini, J.; Andrei, G.; Chaoyong, Z.; Snoeck, R.; Zimmermann, A.; Mertens, T.; Karlsson, A.; De Clercq, E. Intracellular metabolism of the N7-substituted acyclic nucleoside analog 2-amino-7-(1,3-dihydroxy-2-propoxymethyl)purine, a potent inhibitor of herpesvirus replication. Mol. Pharmacol. 1998, 53, 157–165. [Google Scholar] [PubMed]
- Whitley, R.J.; Ch'ien, L.T.; Dolin, R.; Galasso, G.J.; Alford Jr., C.A. Adenine arabinoside therapy of herpes zoster in the immunosuppressed. NIAID collaborative antiviral study. N. Engl. J. Med. 1976, 294, 1193–1199. [Google Scholar] [PubMed]
- De Clercq, E. Another ten stories in antiviral drug discovery (part C): "Old" and "new" antivirals, strategies, and perspectives. Med. Res. Rev. 2009, 29, 611–645. [Google Scholar] [CrossRef] [PubMed]
- Rada, B.; Dragún, M. Antiviral action and selectivity of 6-azauridine. Ann. N.Y. Acad. Sci. 1977, 284, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Rada, B.; Blaškovič, D.; Šorm, F.; Škoda, J. The inhibitory effect of 6-azauracil riboside on the multiplication of vaccinia virus. Experientia 1960, 16, 487–488. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E.; Holý, A.; Rosenberg, I.; Sakuma, T.; Balzarini, J.; Maudgal, P.C. A novel selective broad-spectrum anti-DNA virus agent. Nature 1986, 323, 464–467. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E.; Sakuma, T.; Baba, M.; Pauwels, R.; Balzarini, J.; Rosenberg, I.; Holý, A. Antiviral activity of phosphonylmethoxyalkyl derivatives of purine and pyrimidines. Antiviral Res. 1987, 8, 261–272. [Google Scholar] [CrossRef]
- De Clercq, E. Therapeutic potential of HPMPC as an antiviral drug. Rev. Med. Virol. 1993, 3, 85–96. [Google Scholar] [CrossRef]
- De Clercq, E.; Holý, A. Efficacy of (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine in various models of herpes simplex virus infection in mice. Antimicrob. Agents Chemother. 1991, 35, 701–706. [Google Scholar] [PubMed]
- Neyts, J.; De Clercq, E. Efficacy of (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine for the treatment of lethal vaccinia virus infections in severe combined immune deficiency (SCID) mice. J. Med. Virol. 1993, 41, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Henderson, D.A. Bioterrorism as a public health threat. Emerg. Infect. Dis. 1998, 4, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Breman, J.G.; Henderson, D.A. Poxvirus dilemmas--monkeypox, smallpox, and biologic terrorism. N. Engl. J. Med. 1998, 339, 556–559. [Google Scholar] [CrossRef] [PubMed]
- Bray, M.; Martinez, M.; Smee, D.F.; Kefauver, D.; Thompson, E.; Huggins, J.W. Cidofovir protects mice against lethal aerosol or intranasal cowpox virus challenge. J. Infect. Dis. 2000, 181, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Smee, D.F.; Bailey, K.W.; Wong, M.-H.; Sidwell, R.W. Intranasal treatment of cowpox virus respiratory infections in mice with cidofovir. Antiviral Res. 2000, 47, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Smee, D.F.; Bailey, K.W.; Wong, M.-H.; Sidwell, R.W. Effects of cidofovir on the pathogenesis of a lethal vaccinia virus respiratory infection in mice. Antiviral Res. 2001, 52, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Smee, D.F.; Bailey, K.W.; Sidwell, R.W. Treatment of lethal vaccinia virus respiratory infections in mice with cidofovir. Antiviral Chem. Chemother. 2001, 12, 71–76. [Google Scholar]
- Bray, M.; Martinez, M.; Kefauver, D.; West, M.; Roy, C. Treatment of aerosolized cowpox virus infection in mice with aerosolized cidofovir. Antiviral Res. 2002, 54, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Robbins, S.J.; Jackson, R.J.; Fenner, F.; Beaton, S.; Medveczky, J.; Ramshaw, I.A.; Ramsay, A.J. The efficacy of cidofovir treatment of mice infected with ectromelia (mousepox) virus encoding interleukin-4. Antiviral Res. 2005, 66, 1–7. [Google Scholar] [CrossRef]
- De Clercq, E. Cidofovir in the treatment of poxvirus infections. Antiviral Res. 2002, 55, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Neyts, J.; Leyssen, P.; Verbeken, E.; De Clercq, E. Efficacy of cidofovir in a murine model of disseminated progressive vaccinia. Antimicrob. Agents Chemother. 2004, 48, 2267–2273. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E.; Neyts, J. Therapeutic potential of nucleoside/nucleotide analogs against poxvirus infections. Rev. Med. Virol. 2004, 14, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Geerinck, K.; Lukito, G.; Snoeck, R; De Vos, R.; De Clercq, E.; Vanrenterghem, Y.; Degreef, H.; Maes, B. A case of human orf in an immunocompromised patient treated successfully with cidofovir cream . J. Med. Virol. 2001, 64, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Fery-Blanco, C.; Pelletier, F.; Humbert, P.; Aubin, F. Disseminated molluscum contagiosum during topical treatment of atopic dermatitis with tacrolimus: efficacy of cidofovir. Ann. Dermatol. Venereol. 2007, 134, 457–459. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E.; Holý, A. Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat. Rev. Drug Discov. 2005, 4, 928–940. [Google Scholar] [CrossRef]
- Hostetler, K.Y. Alkoxyalkyl prodrugs of acyclic nucleoside phosphonates enhance oral antiviral activity and reduce toxicity: current state of the art . Antiviral Res. 2009, 82, A84–A98. [Google Scholar] [CrossRef] [PubMed]
- Painter, G.R.; Hostetler, K.Y. Design and development of oral drugs for the prophylaxis and treatment of smallpox infection. Trends Biotechnol. 2004, 22, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Ciesla, S.L.; Trahan, J.; Wan, W.B.; Beadle, J.R.; Aldern, K.A.; Painter, G.R.; Hostetler, K.Y. Esterification of cidofovir with alkoxyalkanols increases oral bioavailability and diminishes drug accumulation in kidney. Antiviral Res. 2003, 59, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Aldern, K.A.; Ciesla, S.L.; Winegarden, K.L.; Hostetler, K.Y. Increased antiviral activity of 1-O-hexadecyloxypropyl-[2-(14)C]cidofovir in MRC-5 human lung fibroblasts is explained by unique cellular uptake and metabolism. Mol. Pharmacol. 2003, 63, 678–681. [Google Scholar] [CrossRef] [PubMed]
- Kern, E.R.; Hartline, C.; Harden, E.; Keith, K.; Rodriguez, N.; Beadle, J.R.; Hostetler, K.Y. Enhanced inhibition of orthopoxvirus replication in vitro by alkoxyalkyl esters of cidofovir and cyclic cidofovir. Antimicrob. Agents Chemother. 2002, 46, 991–995. [Google Scholar] [CrossRef] [PubMed]
- Keith, K.A.; Wan, W.B.; Ciesla, S.L.; Beadle, J.R.; Hostetler, K.Y.; Kern, E.R. Inhibitory activity of alkoxyalkyl and alkyl esters of cidofovir and cyclic cidofovir against orthopoxvirus replication in vitro. Antimicrob. Agents Chemother. 2004, 48, 1869–1871. [Google Scholar] [CrossRef] [PubMed]
- Quenelle, D.C.; Collins, D.J.; Wan, W.B.; Beadle, J.R.; Hostetler, K.Y.; Kern, E.R. Oral treatment of cowpox and vaccinia virus infections in mice with ether lipid esters of cidofovir. Antimicrob. Agents Chemother. 2004, 48, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Buller, R.M.; Owens, G.; Schriewer, J.; Melman, L.; Beadle, J.R.; Hostetler, K.Y. Efficacy of oral active ether lipid analogs of cidofovir in a lethal mousepox model. Virology 2004, 318, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Beadle, J.R.; Wan, W.B.; Ciesla, S.L.; Keith, K.A.; Hartline, C.; Kern, E.R.; Hostetler, K.Y. Synthesis and antiviral evaluation of alkoxyalkyl derivatives of 9-(S)-(3-hydroxy-2-phosphonomethoxypropyl)adenine against cytomegalovirus and orthopoxviruses. J. Med. Chem. 2006, 49, 2010–2015. [Google Scholar] [CrossRef] [PubMed]
- Quenelle, D.C.; Collins, D.J.; Herrod, B.P.; Keith, K.A.; Trahan, J.; Beadle, J.R.; Hostetler, K.Y.; Kern, E.R. Effect of oral treatment with hexadecyloxypropyl-[(S)-9-(3-hydroxy-2- phosphonylmethoxypropyl)adenine] [(S)-HPMPA] or octadecyloxyethyl-(S)-HPMPA on cowpox or vaccinia virus infections in mice. Antimicrob. Agents Chemother. 2007, 51, 3940–3947. [Google Scholar] [CrossRef] [PubMed]
- Byrd, C.M.; Bolken, T.C.; Mjalli, A.M.; Arimilli, M.N.; Andrews, R.C.; Rothlein, R.; Andrea, T.; Rao, M.; Owens, K.L.; Hruby, D.E. New class of orthopoxvirus antiviral drugs that block viral maturation. J. Virol. 2004, 78, 12147–12156. [Google Scholar] [CrossRef] [PubMed]
- Byrd, C.M.; Bolken, T.C.; Hruby, D.E. Molecular dissection of the vaccinia virus I7L core protein proteinase. J. Virol. 2003, 77, 11279–11283. [Google Scholar] [CrossRef] [PubMed]
- Byrd, C.M.; Bolken, T.C.; Hruby, D.E. The vaccinia virus I7L gene product is the core protein proteinase. J. Virol. 2002, 76, 8973–8976. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Pevear, D.C.; Davies, M.H.; Collett, M.S.; Bailey, T.; Rippen, S.; Barone, L.; Burns, C.; Rhodes, G.; Tohan, S.; Huggins, J.W.; Baker, R.O.; Buller, R.L.; Touchette, E.; Waller, K.; Schriewer, J.; Neyts, J.; De Clercq, E.; Jones, K.; Hruby, D.; Jordan, R. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus challenge. J. Virol. 2005, 79, 13139–13149. [Google Scholar] [CrossRef] [PubMed]
- Husain, M.; Weisberg, A.; Moss, B. Topology of epitope-tagged F13L protein, a major membrane component of extracellular vaccinia virions. Virology 2003, 308, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.R.; Rippin, S.R.; Opsitnick, E.; Burns, C.J.; Pevear, D.C.; Collett, M.S.; Rhodes, G.; Tohan, S.; Huggins, J.W.; Baker, R.O.; Kern, E.R.; Keith, K.A.; Dai, D.; Yang, G.; Hruby, D.; Jordan, R. N-(3,3a,4,4a,5,5a,6,6a-Octahydro-1,3-dioxo-4,6- ethenocycloprop[f]isoindol-2-(1H)-yl)carboxamides: Identification of novel orthopoxvirus egress inhibitors. J. Med. Chem. 2007, 50, 1442–1444. [Google Scholar] [CrossRef] [PubMed]
- Duraffour, S.; Snoeck, R.; de Vos, R.; van Den Oord, J.J.; Crance, J.M; Garin, D.; Hruby, D.E.; Jordan, R.; De Clercq, E.; Andrei, G. Activity of the anti-orthopoxvirus compound ST-246 against vaccinia, cowpox and camelpox viruses in cell monolayers and organotypic raft cultures . Antivir. Ther. 2007, 12, 1205–1216. [Google Scholar] [PubMed]
- Quenelle, D.C.; Buller, R.M.; Parker, S.; Keith, K.A.; Hruby, D.E.; Jordan, R.; Kern, E.R. Efficacy of delayed treatment with ST-246 given orally against systemic orthopoxvirus infections in mice. Antimicrob. Agents Chemother. 2007, 51, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Sbrana, E.; Jordan, R.; Hruby, D.E.; Mateo, R.I.; Xiao, S.Y.; Siirin, M.; Newman, P.C.; Travassos Da Rosa, A.P.A.; Tesh, R.B. Efficacy of the antipoxvirus compound ST-246 for treatment of severe orthopoxvirus infection. Am. J. Trop. Med. Hyg. 2007, 76, 768–773. [Google Scholar] [PubMed]
- Nalca, A.; Hatkin, J.M.; Garza, N.L.; Nichols, D.K.; Norris, S.W.; Hruby, D.E.; Jordan, R. Evaluation of orally delivered ST-246 as postexposure prophylactic and antiviral therapeutic in an aerosolized rabbitpox rabbit model. Antiviral Res. 2008, 79, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Quenelle, D.C.; Prichard, M.N.; Keith, K.A.; Hruby, D.E.; Jordan, R.; Painter, G.R.; Robertson, A.; Kern, E.R. Synergistic efficacy of the combination of ST-246 with CMX001 against orthopoxviruses. Antimicrob. Agents Chemother. 2007, 51, 4118–4124. [Google Scholar] [CrossRef] [PubMed]
- Vora, S.; Damon, I.; Fulginiti, V.; Weber, S.G.; Kahana, M.; Stein, S.L.; Gerber, S.I.; Garcia-Houchins, S.; Lederman, E.; Hruby, D.; Collins, L.; Scott, D.; Thompson, K.; Barson, J.V.; Regnery, R.; Hughes, C.; Daum, R.S.; Li, Y.; Zhao, H.; Smith, S.; Braden, Z.; Karem, K.; Olson, V.; Davidson, W.; Trindade, G.; Bolken, T.; Jordan, R.; Tien, D.; Marcinak, J. Severe eczema vaccinatum in a household contact of a smallpox vaccinee. Clin. Infect. Dis. 2008, 46, 1555–1561. [Google Scholar] [CrossRef] [PubMed]
- Huggins, J.; Goff, A.; Hensley, L.; Mucker, E.; Shamblin, J.; Wlazlowski, C.; Johnson, W.; Chapman, J.; Larsen, T.; Twenhafel, N.; Karem, K.; Damon, I.K.; Byrd, C.M.; Bolken, T.C.; Jordan, R.; Hruby, D. Nonhuman primates are protected from smallpox virus or monkeypox virus challenges by the antiviral drug ST-246. Antimicrob. Agents Chemother. 2009, 53, 2620–2625. [Google Scholar] [CrossRef] [PubMed]
- Duraffour, S.; Andrei, G.; Snoeck, R. Tecovirimat, a p37 envelope protein inhibitor for the treatment of smallpox infection. Drugs 2010, 13, 181–191. [Google Scholar]
- Snoeck, R.; Andrei, G.; De Clercq, E. Therapy of poxvirus infections. In Poxviruses; Mercer, A.A., Ed.; 2007; Birkhauser Verlag: Basel, Switzerland. [Google Scholar]
- Yang, H.; Kim, S.K.; Kim, M.; Reche, P.A.; Morehead, T.J.; Damon, I.K.; Welsh, R.M.; Reinherz, E.L. Antiviral chemotherapy facilitates control of poxvirus infections through inhibition of cellular signal transduction. J. Clin. Invest. 2005, 115, 379–387. [Google Scholar] [PubMed]
- Reeves, P.M.; Bommarious, B.; Lebeis, S.; McNulty, S.; Christensen, J.; Swimm, A.; Chahroudi, A.; Chavan, R.; Feinberg, M.B.; Veach, D.; Bornmann, W.; Sherman, M.; Kalman, D. (2005) Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. Nat. Med. 2005, 11, 731–739. [Google Scholar] [CrossRef] [PubMed]
- McFadden, G. Gleevec casts a pox on poxviruses. Nat. Med. 2005, 11, 711–712. [Google Scholar] [CrossRef] [PubMed]
- Gubser, C.; Smith, G.L. The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. J. Gen. Virol. 2002, 83, 855–872. [Google Scholar] [PubMed]
- Smee, D.F.; Sidwell, R.W.; Kefauver, D.; Bray, M.; Huggins, J.W. Characterization of wild-type and cidofovir-resistant strains of camelpox, cowpox, monkeypox, and vaccinia viruses. Antimicrob. Agents Chemother. 2002, 46, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Duraffour, S.; Snoeck, R.; Krečmerová, M.; van den Oord, J.; de Vos, R.; Holý, A.; Crance, J.-M.; Garin, D.; De Clercq, E.; Andrei, G. Activities of several classes of acyclic nucleoside phosphonates against camelpox virus replication in different cell culture models. Antimicrob. Agents Chemother. 2007, 51, 4410–4419. [Google Scholar] [CrossRef] [PubMed]
- Duraffour, S.; Vigne, S.; Vermeire, K.; Garcel, A.; Vanstreels, E.; Daelemans, D.; Yang, G.; Jordan, R.; Hruby, D.E.; Crance, J.-M.; Garin, D.; Andrei, G.; Snoeck, R. Specific targeting of the F13L protein by ST-246 affects orthopoxvirus production differently. Antivir. Ther. 2008, 13, 977–990. [Google Scholar] [PubMed]
- Stittelaar, K.J.; Neyts, J.; Naesens, L.; van Amerongen, G.; van Lavieren, R.F.; Holý, A.; De Clercq, E.; Niesters, H.G.; Fries, E.; Maas, C.; Mulder, P.G.; van der Zeijst, B.A.; Osterhaus, A.D. Antiviral treatment is more effective than smallpox vaccination upon lethal monkeypox virus infection. Nature 2006, 439, 745–748. [Google Scholar] [CrossRef] [PubMed]
© 2010 by the authors; licensee MDPI, Basel, Switzerland This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Share and Cite
De Clercq, E. Historical Perspectives in the Development of Antiviral Agents Against Poxviruses. Viruses 2010, 2, 1322-1339. https://doi.org/10.3390/v2061322
De Clercq E. Historical Perspectives in the Development of Antiviral Agents Against Poxviruses. Viruses. 2010; 2(6):1322-1339. https://doi.org/10.3390/v2061322
Chicago/Turabian StyleDe Clercq, Erik. 2010. "Historical Perspectives in the Development of Antiviral Agents Against Poxviruses" Viruses 2, no. 6: 1322-1339. https://doi.org/10.3390/v2061322