Challenges in the Design of a T Cell Vaccine in the Context of HIV-1 Diversity
Abstract
:1. Introduction
2. HIV-1 Diversity
3. T Cell Immunity to HIV-1
3.1. The Role of T Cells in the Control of HIV-1
3.2. Putting the T Cell Vaccine Concept to the Test
3.3. New Evidence of Protective T Cell Immunity to HIV
4. HIV-1 Vaccines
4.1. HIV-1 Vaccine Development
4.2. T Cell Vaccine Immunogens
4.2.1. Single or Multi-Subtype Vaccines
4.2.2. Centralized Sequences
4.2.3. Mosaic Sequences
4.2.4. Conserved Sequences
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- UNAIDS. AIDS epidemic update 2012. 2012. Available online: http://www.unaids.org (accessed on 30 June 2014).
- Mehta, S.D.; Moses, S.; Agot, K.; Odoyo-June, E.; Li, H.; Maclean, I.; Hedeker, D.; Bailey, R.C. The long term efficacy of medical male circumcision against HIV acquisition. AIDS 2013, 27, 2899–2909. [Google Scholar] [CrossRef] [PubMed]
- Lissouba, P.; Taljaard, D.; Rech, D.; Dermaux-Msimang, V.; Legeai, C.; Lewis, D.; Singh, B.; Puren, A.; Auvert, B. Adult male circumcision as an intervention against HIV: An operational study of uptake in a South African community (ANRS 12126). BMC Infect. Dis. 2011, 11. [Google Scholar] [CrossRef] [PubMed]
- Abdool Karim, Q.; Abdool Karim, S.S.; Frohlich, J.A.; Grobler, A.C.; Baxter, C.; Mansoor, L.E.; Kharsany, A.B.; Sibeko, S.; Mlisana, K.P.; Omar, Z.; et al. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 2010, 329, 1168–1174. [Google Scholar]
- Grant, R.M.; Lama, J.R.; Anderson, P.L.; McMahan, V.; Liu, A.Y.; Vargas, L.; Goicochea, P.; Casapia, M.; Guanira-Carranza, J.V.; Ramirez-Cardich, M.E.; et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N. Engl. J. Med. 2010, 363, 2587–2599. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.S.; Chen, Y.Q.; McCauley, M.; Gamble, T.; Hosseinipour, M.C.; Kumarasamy, N.; Hakim, J.G.; Kumwenda, J.; Grinsztejn, B.; Pilotto, J.H.; et al. Prevention of HIV-1 infection with early antiretroviral therapy. N. Engl. J. Med. 2011, 11, 493–505. [Google Scholar] [CrossRef]
- Gao, F.; Bailes, E.; Robertson, D.L.; Chen, Y.; Rodenburg, C.M.; Michael, S.F.; Cummins, L.B.; Arthur, L.O.; Peeters, M.; Shaw, G.M.; et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 1999, 4, 436–441. [Google Scholar] [CrossRef]
- Santiago, M.L.; Rodenburg, C.M.; Kamenya, S.; Bibollet-Ruche, F.; Gao, F.; Bailes, E.; Meleth, S.; Soong, S.J.; Kilby, J.M.; Moldoveanu, Z.; et al. SIVcpz in wild chimpanzees. Science 2002, 18, 465. [Google Scholar] [CrossRef]
- Keele, B.F.; van Heuverswyn, F.; Li, Y.; Bailes, E.; Takehisa, J.; Santiago, M.L.; Bibollet-Ruche, F.; Chen, Y.; Wain, L.V.; Liegeois, F.; et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 2006, 313, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Van Heuverswyn, F.; Li, Y.; Neel, C.; Bailes, E.; Keele, B.F.; Liu, W.; Loul, S.; Butel, C.; Liegeois, F.; Bienvenue, Y.; et al. Human immunodeficiency viruses: SIV infection in wild gorillas. Nature 2006, 444, 164. [Google Scholar] [CrossRef] [PubMed]
- Robertson, D.L.; Anderson, J.P.; Bradac, J.A.; Carr, J.K.; Foley, B.; Funkhouser, R.K.; Gao, F.; Hahn, B.H.; Kalish, M.L.; Kuiken, C.; et al. HIV-1 nomenclature proposal. Science 2000, 28, 55–56. [Google Scholar] [CrossRef]
- Hemelaar, J.; Gouws, E.; Ghys, P.D.; Osmanov, S. WHO-UNAIDS Network for HIV Isolation and Characterisation. Global trends in molecular epidemiology of HIV-1 during 2000–2007. AIDS 2011, 25, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Mauclere, P.; Loussert-Ajaka, I.; Damond, F.; Fagot, P.; Souquieres, S.; Monny Lobe, M.; Mbopi Keou, F.X.; Barre-Sinoussi, F.; Saragosti, S.; Brun-Vezinet, F.; et al. Serological and virological characterization of HIV-1 group O infection in Cameroon. AIDS 1997, 11, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, J.; Bodelle, P.; Vallari, A.S.; Coffey, R.; McArthur, C.P.; Schochetman, G.; Devare, S.G.; Brennan, C.A. HIV infections in northwestern Cameroon: identification of HIV type 1 group O and dual HIV type 1 group M and group O infections. AIDS Res. Hum. Retrovir. 2004, 20, 944–957. [Google Scholar] [CrossRef] [PubMed]
- Ayouba, A.; Mauclere, P.; Martin, P.M.; Cunin, P.; Mfoupouendoun, J.; Njinku, B.; Souquieres, S.; Simon, F. HIV-1 group O infection in Cameroon; 1986 to 1998. Emerg. Infect. Dis. 2001, 7, 466–467. [Google Scholar] [CrossRef] [PubMed]
- Roques, P.; Robertson, D.L.; Souquiere, S.; Apetrei, C.; Nerrienet, E.; Barre-Sinoussi, F.; Muller-Trutwin, M.; Simon, F. Phylogenetic characteristics of three new HIV-1 N strains and implications for the origin of group N. AIDS 2004, 18, 1371–1381. [Google Scholar] [CrossRef] [PubMed]
- Bodelle, P.; Vallari, A.; Coffey, R.; McArthur, C.P.; Beyeme, M.; Devare, S.G.; Schochetman, G.; Brennan, C.A. Identification and genomic sequence of an HIV type 1 group N isolate from Cameroon. AIDS Res. Hum. Retrovir. 2004, 20, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Plantier, J.C.; Leoz, M.; Dickerson, J.E.; de Oliveira, F.; Cordonnier, F.; Lemee, V.; Damond, F.; Robertson, D.L.; Simon, F. A new human immunodeficiency virus derived from gorillas. Nat. Med. 2009, 15, 871–872. [Google Scholar] [CrossRef] [PubMed]
- Vallari, A.; Holzmayer, V.; Harris, B.; Yamaguchi, J.; Ngansop, C.; Makamche, F.; Mbanya, D.; Kaptue, L.; Ndembi, N.; Gurtler, L.; et al. Confirmation of putative HIV-1 group P in Cameroon. J. Virol. 2011, 85, 1403–1407. [Google Scholar] [CrossRef] [PubMed]
- Carr, J.K.; Wolfe, N.D.; Torimiro, J.N.; Tamoufe, U.; Mpoudi-Ngole, E.; Eyzaguirre, L.; Birx, D.L.; McCutchan, F.E.; Burke, D.S. HIV-1 recombinants with multiple parental strains in low-prevalence; remote regions of Cameroon: evolutionary relics? Retrovirology 2010, 7. [Google Scholar] [CrossRef]
- Tongo, M.; Martin, D.P.; Zembe, L.; Mpoudi-Ngole, E.; Williamson, C.; Burgers, W.A. Characterization of HIV-1 gag and nef in Cameroon: Further evidence of extreme diversity at the origin of the HIV-1 group M epidemic. Virol. J. 2013, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidal, N.; Mulanga, C.; Bazepeo, S.E.; Mwamba, J.K.; Tshimpaka, J.W.; Kashi, M.; Mama, N.; Laurent, C.; Lepira, F.; Delaporte, E.; et al. Distribution of HIV-1 variants in the Democratic Republic of Congo suggests increase of subtype C in Kinshasa between 1997 and 2002. J. Acquir. Immune Defic. Syndr. 2005, 40, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Kalish, M.L.; Robbins, K.E.; Pieniazek, D.; Schaefer, A.; Nzilambi, N.; Quinn, T.C.; St Louis, M.E.; Youngpairoj, A.S.; Phillips, J.; Jaffe, H.W.; et al. Recombinant viruses and early global HIV-1 epidemic. Emerg. Infect. Dis. 2004, 10, 1227–1234. [Google Scholar] [PubMed]
- Korber, B.; Gaschen, B.; Yusim, K.; Thakallapally, R.; Kesmir, C.; Detours, V. Evolutionary and immunological implications of contemporary HIV-1 variation. Br. Med. Bull. 2001, 58, 19–42. [Google Scholar] [CrossRef] [PubMed]
- Altfeld, M.; Allen, T.M.; Yu, X.G.; Johnston, M.N.; Agrawal, D.; Korber, B.T.; Montefiori, D.C.; O’connor, D.H.; Davis, B.T.; Lee, P.K.; et al. HIV-1 superinfection despite broad CD8+ T-cell responses containing replication of the primary virus. Nature 2002, 420, 434–943. [Google Scholar] [CrossRef] [PubMed]
- Boutwell, C.L.; Rolland, M.M.; Herbeck, J.T.; Mullins, J.I.; Allen, T.M. Viral evolution and escape during acute HIV-1 infection. J. Infect. Dis. 2010, 202 (Suppl. 2), S309–S314. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.M.; Vogel, T.U.; Fuller, D.H.; Mothe, B.R.; Steffen, S.; Boyson, J.E.; Shipley, T.; Fuller, J.; Hanke, T.; Sette, A.; et al. Induction of AIDS virus-specific CTL activity in fresh; unstimulated peripheral blood lymphocytes from rhesus macaques vaccinated with a DNA prime/modified vaccinia virus Ankara boost regimen. J. Immunol. 2000, 164, 4968–4978. [Google Scholar] [CrossRef] [PubMed]
- Barouch, D.H.; Kunstman, J.; Kuroda, M.J.; Schmitz, J.E.; Santra, S.; Peyerl, F.W.; Krivulka, G.R.; Beaudry, K.; Lifton, M.A.; Gorgone, D.A.; et al. Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes. Nature 2002, 415, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.H.; Nixon, D.F.; McMichael, A.J. T-cell strategies in AIDS vaccines: MHC-restricted T-cell responses to HIV proteins. AIDS 1989, 3 (Suppl. 1), S101–S110. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.D.; Plata, F. Cytotoxic T lymphocytes against HIV. AIDS 1990, 4, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Berzofsky, J.A. Approaches and issues in the development of vaccines against HIV. J. Acquir. Immune Defic. Syndr. 1991, 4, 451–459. [Google Scholar] [PubMed]
- Johnson, R.P.; Walker, B.D. Identification of HIV-1 cytotoxic T-lymphocyte epitopes and implications for vaccine development. Biotechnol. Ther. 1991, 2, 137–146. [Google Scholar] [PubMed]
- McMichael, A.J.; Callan, M.; Appay, V.; Hanke, T.; Ogg, G.; Rowland-Jones, S.L. The dynamics of the cellular immune response to HIV infection: Implications for vaccination. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000, 355, 1007–1011. [Google Scholar] [CrossRef] [PubMed]
- McMichael, A.J.; Rowland-Jones, S.L. Cellular immune responses to HIV. Nature 2001, 410, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Mudd, P.A.; Martins, M.A.; Ericsen, A.J.; Tully, D.C.; Power, K.A.; Bean, A.T.; Piaskowski, S.M.; Duan, L.; Seese, A.; Gladden, A.D.; et al. Vaccine-induced CD8+ T cells control AIDS virus replication. Nature 2012, 491, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Koup, R.A.; Safrit, J.T.; Cao, Y.; Andrews, C.A.; Mcleod, G.; Borkowsky, W.; Farthing, C.; Ho, D.D. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 1994, 68, 4650–4655. [Google Scholar] [PubMed]
- Borrow, P.; Lewicki, H.; Wei, X.; Horwitz, M.S.; Peffer, N.; Meyers, H.; Nelson, J.A.; Gairin, J.E.; Hahn, B.H.; Oldstone, M.B.; et al. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat. Med. 1997, 3, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Bauer, D.E.; Tuttleton, S.E.; Lewin, S.; Gettie, A.; Blanchard, J.; Irwin, C.E.; Safrit, J.T.; Mittler, J.; Weinberger, L.; et al. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med. 1999, 189, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, J.E.; Kuroda, M.J.; Santra, S.; Sasseville, V.G.; Simon, M.A.; Lifton, M.A.; Racz, P.; Tenner-Racz, K.; Dalesandro, M.; Scallon, B.J.; et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 1999, 283, 857–860. [Google Scholar] [CrossRef] [PubMed]
- Pereyra, F.; Addo, M.M.; Kaufmann, D.E.; Liu, Y.; Miura, T.; Rathod, A.; Baker, B.; Trocha, A.; Rosenberg, R.; Mackey, E.; et al. Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy. J. Infect. Dis. 2008, 197, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Fellay, J.; Shianna, K.V.; Ge, D.; Colombo, S.; Ledergerber, B.; Weale, M.; Zhang, K.; Gumbs, C.; Castagna, A.; Cossarizza, A.; et al. A whole-genome association study of major determinants for host control of HIV-1. Science 2007, 317, 944–977. [Google Scholar] [CrossRef] [PubMed]
- Addo, M.M.; Yu, X.G.; Rathod, A.; Cohen, D.; Eldridge, R.L.; Strick, D.; Johnston, M.N.; Corcoran, C.; Wurcel, A.G.; Fitzpatrick, C.A.; et al. Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses; but no correlation to viral load. J. Virol. 2003, 77, 2081–2092. [Google Scholar] [CrossRef] [PubMed]
- Masemola, A.M.; Mashishi, T.N.; Khoury, G.; Bredell, H.; Paximadis, M.; Mathebula, T.; Barkhan, D.; Puren, A.; Vardas, E.; Colvin, M.; et al. Novel and promiscuous CTL epitopes in conserved regions of Gag targeted by individuals with early subtype C HIV type 1 infection from southern Africa. J. Immunol. 2004, 173, 4607–4677. [Google Scholar] [CrossRef] [PubMed]
- Peretz, Y.; Alter, G.; Boisvert, M.P.; Hatzakis, G.; Tsoukas, C.M.; Bernard, N.F. Human immunodeficiency virus (HIV)-specific gamma interferon secretion directed against all expressed HIV genes: Relationship to rate of CD4 decline. J. Virol. 2005, 79, 4908–4917. [Google Scholar] [CrossRef] [PubMed]
- Gray, C.M.; Mlotshwa, M.; Riou, C.; Mathebula, T.; de Assis Rosa, D.; Mashishi, T.; Seoighe, C.; Ngandu, N.; van Loggerenberg, F.; Morris, L.; et al. Human immunodeficiency virus-specific gamma interferon enzyme-linked immunospot assay responses targeting specific regions of the proteome during primary subtype C infection are poor predictors of the course of viremia and set point. J. Virol. 2009, 83, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Edwards, B.H.; Bansal, A.; Sabbaj, S.; Bakari, J.; Mulligan, M.J.; Goepfert, P.A. Magnitude of functional CD8+ T-cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma. J. Virol. 2002, 76, 2298–2305. [Google Scholar] [CrossRef] [PubMed]
- Masemola, A.; Mashishi, T.; Khoury, G.; Mohube, P.; Mokgotho, P.; Vardas, E.; Colvin, M.; Zijenah, L.; Katzenstein, D.; Musonda, R.; et al. Hierarchical targeting of subtype C human immunodeficiency virus type 1 proteins by CD8+ T cells: correlation with viral load. J. Virol. 2004, 78, 3233–3243. [Google Scholar] [CrossRef] [PubMed]
- Kiepiela, P.; Ngumbela, K.; Thobakgale, C.; Ramduth, D.; Honeyborne, I.; Moodley, E.; Reddy, S.; de Pierres, C.; Mncube, Z.; Mkhwanazi, N.; et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat. Med. 2007, 13, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Mudd, P.A.; Ericsen, A.J.; Burwitz, B.J.; Wilson, N.A.; O’Connor, D.H.; Hughes, A.L.; Watkins, D.I. Escape from CD8(+) T cell responses in Mamu-B * 00801(+) macaques differentiates progressors from elite controllers. J. Immunol. 2012, 188, 3364–3370. [Google Scholar] [CrossRef] [PubMed]
- Navis, M.; Schellens, I.M.; van Swieten, P.; Borghans, J.A.; Miedema, F.; Kootstra, N.A.; van Baarle, D.; Schuitemaker, H. A nonprogressive clinical course in HIV-infected individuals expressing human leukocyte antigen B57/5801 is associated with preserved CD8+ T lymphocyte responsiveness to the HW9 epitope in Nef. J. Infect. Dis. 2008, 197, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Mwimanzi, P.; Markle, T.J.; Martin, E.; Ogata, Y.; Kuang, X.T.; Tokunaga, M.; Mahiti, M.; Pereyra, F.; Miura, T.; Walker, B.D.; et al. Attenuation of multiple Nef functions in HIV-1 elite controllers. Retrovirology 2013, 10. [Google Scholar] [CrossRef] [PubMed]
- Adland, E.; Carlson, J.M.; Paioni, P.; Kløverpris, H.; Shapiro, R.; Ogwu, A.; Riddell, L.; Luzzi, G.; Chen, F.; Balachandran, T.; et al. Nef-specific CD8+ T cell responses contribute to HIV-1 immune control. PLoS One 2013, 8, e73117. [Google Scholar] [CrossRef] [PubMed]
- De La Cruz, J.; Vollbrecht, T.; Frohnen, P.; Ng, H.L.; Daar, E.S.; Yang, O.O.; Lewis, M.J. Ineffectual Targeting of HIV-1 Nef by Cytotoxic T Lymphocytes in Acute Infection Results in No Functional Impairment or Viremia Reduction. J. Virol. 2014, 88, 7881–7892. [Google Scholar] [CrossRef] [PubMed]
- Buchbinder, S.P.; Mehrotra, D.V.; Duerr, A.; Fitzgerald, D.W.; Mogg, R.; Li, D.; Gilbert, P.B.; Lama, J.R.; Marmor, M.; del Rio, C.; et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): A double-blind; randomised; placebo-controlled; test-of-concept trial. Lancet 2008, 372, 1881–1893. [Google Scholar] [CrossRef] [PubMed]
- Betts, M.R.; Nason, M.C.; West, S.M.; de Rosa, S.C.; Migueles, S.A.; Abraham, J.; Lederman, M.M.; Benito, J.M.; Goepfert, P.A.; Connors, M.; et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 2006, 107, 4781–4789. [Google Scholar] [CrossRef] [PubMed]
- Hersperger, A.R.; Pereyra, F.; Nason, M.; Demers, K.; Sheth, P.; Shin, L.Y.; Kovacs, C.M.; Rodriguez, B.; Sieg, S.F.; Teixeira-Johnson, L.; et al. Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control. PLoS Pathog. 2010, 6, e1000917. [Google Scholar] [CrossRef] [PubMed]
- Day, C.L.; Kaufmann, D.E.; Kiepiela, P.; Brown, J.A.; Moodley, E.S.; Reddy, S.; Mackey, E.W.; Miller, J.D.; Leslie, A.J.; Depierres, C.; et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 2006, 443, 350–354. [Google Scholar] [CrossRef] [PubMed]
- McKinnon, L.R.; Kaul, R.; Kimani, J.; Nagelkerke, N.J.; Wachihi, C.; Fowke, K.R.; Ball, T.B.; Plummer, F.A. HIV-specific CD8+ T-cell proliferation is prospectively associated with delayed disease progression. Immunol. Cell Biol. 2012, 90, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Riou, C.; Burgers, W.A.; Mlisana, K.; Koup, R.A.; Roederer, M.; Abdool Karim, S.S.; Williamson, C.; Gray, C.M. Differential impact of magnitude; polyfunctional capacity and specificity of HIV-specific CD8+ T cell responses on HIV viral set point. J. Virol. 2013, 88, 1819–1824. [Google Scholar] [CrossRef] [PubMed]
- Mothe, B.; Llano, A.; Ibarrondo, J.; Zamarreno, J.; Schiaulini, M.; Miranda, C.; Ruiz-Riol, M.; Berger, C.T.; Herrero, M.J.; Palou, E.; et al. CTL responses of high functional avidity and broad variant cross-reactivity are associated with HIV control. PLoS One 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Addo, M.M.; Draenert, R.; Rathod, A.; Verrill, C.L.; Davis, B.T.; Gandhi, R.T.; Robbins, G.K.; Basgoz, N.O.; Stone, D.R.; Cohen, D.E.; et al. Fully differentiated HIV-1 specific CD8+ T effector cells are more frequently detectable in controlled than in progressive HIV-1 infection. PLoS One 2007, 2, e321. [Google Scholar] [CrossRef] [PubMed]
- Northfield, J.W.; Loo, C.P.; Barbour, J.D.; Spotts, G.; Hecht, F.M.; Klenerman, P.; Nixon, D.F.; Michaelsson, J. Human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T(EMRA) cells in early infection are linked to control of HIV-1 viremia and predict the subsequent viral load set point. J. Virol. 2007, 81, 5759–5765. [Google Scholar] [CrossRef] [PubMed]
- Burgers, W.A.; Riou, C.; Mlotshwa, M.; Maenetje, P.; de Assis Rosa, D.; Brenchley, J.; Mlisana, K.; Douek, D.C.; Koup, R.; Roederer, M.; et al. Association of HIV-specific and total CD8+ T memory phenotypes in subtype C HIV-1 infection with viral set point. J. Immunol. 2009, 182, 4751–4761. [Google Scholar] [CrossRef] [PubMed]
- Fauce, S.R.; Yang, O.O.; Effros, R.B. Autologous CD4/CD8 co-culture assay: A physiologically-relevant composite measure of CD8+ T lymphocyte function in HIV-infected persons. J. Immunol. Methods 2007, 327, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Spentzou, A.; Bergin, P.; Gill, D.; Cheeseman, H.; Ashraf, A.; Kaltsidis, H.; Cashin-Cox, M.; Anjarwalla, I.; Steel, A.; Higgs, C.; et al. Viral inhibition assay: A CD8 T cell neutralization assay for use in clinical trials of HIV-1 vaccine candidates. J. Infect. Dis. 2010, 201, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.S.; Ng, H.L.; Ali, A.; Yang, O.O. Cross-clade detection of HIV-1-specific cytotoxic T lymphocytes does not reflect cross-clade antiviral activity. J. Infect. Dis. 2008, 197, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Valentine, L.E.; Piaskowski, S.M.; Rakasz, E.G.; Henry, N.L.; Wilson, N.A.; Watkins, D.I. Recognition of escape variants in ELISPOT does not always predict CD8+ T-cell recognition of simian immunodeficiency virus-infected cells expressing the same variant sequences. J. Virol. 2008, 82, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wu, H.; Hancock, G.; Clutton, G.; Sande, N.; Xu, X.; Yan, H.; Huang, X.; Angus, B.; Kuldanek, K.; et al. Antiviral inhibitory capacity of CD8+ T cells predicts the rate of CD4+ T-cell decline in HIV-1 infection. J. Infect. Dis. 2012, 206, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, D.; Migueles, S.A.; Rood, J.E.; Peterson, B.; Johnson, S.; Doria-Rose, N.; Schneider, D.; Rakasz, E.; Trivett, M.T.; Trubey, C.M.; et al. Cytotoxic capacity of SIV-specific CD8(+) T cells against primary autologous targets correlates with immune control in SIV-infected rhesus macaques. PLoS Pathog. 2013, 9, e1003195. [Google Scholar] [CrossRef] [PubMed]
- Freel, S.A.; Lamoreaux, L.; Chattopadhyay, P.K.; Saunders, K.; Zarkowsky, D.; Overman, R.G.; Ochsenbauer, C.; Edmonds, T.G.; Kappes, J.C.; Cunningham, C.K.; et al. Phenotypic and functional profile of HIV-inhibitory CD8 T cells elicited by natural infection and heterologous prime/boost vaccination. J. Virol. 2010, 84, 4998–5006. [Google Scholar] [CrossRef] [PubMed]
- Freel, S.A.; Picking, R.A.; Ferrari, G.; Ding, H.; Ochsenbauer, C.; Kappes, J.C.; Kirchherr, J.L.; Soderberg, K.A.; Weinhold, K.J.; Cunningham, C.K.; et al. Initial HIV-1 antigen-specific CD8+ T cells in acute HIV-1 infection inhibit transmitted/founder virus replication. J. Virol. 2012, 86, 835–846. [Google Scholar] [CrossRef] [PubMed]
- Gray, G.E.; Allen, M.; Moodie, Z.; Churchyard, G.; Bekker, L.G.; Nchabeleng, M.; Mlisana, K.; Metch, B.; de Bruyn, G.; Latka, M.H.; et al. Safety and efficacy of the HVTN 503/Phambili study of a clade-B-based HIV-1 vaccine in South Africa: A double-blind; randomised; placebo-controlled test-of-concept phase 2b study. Lancet Infect. Dis. 2011, 11, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, D.W.; Janes, H.; Robertson, M.; Coombs, R.; Frank, I.; Gilbert, P.; Loufty, M.; Mehrotra, D.; Duerr, A. Step Study Protocol Team. An Ad5-vectored HIV-1 vaccine elicits cell-mediated immunity but does not affect disease progression in HIV-1-infected male subjects: Results from a randomized placebo-controlled trial (the Step study). J. Infect. Dis. 2011, 203, 765–772. [Google Scholar] [CrossRef] [PubMed]
- McElrath, M.J.; de Rosa, S.C.; Moodie, Z.; Dubey, S.; Kierstead, L.; Janes, H.; Defawe, O.D.; Carter, D.K.; Hural, J.; Akondy, R.; et al. HIV-1 vaccine-induced immunity in the test-of-concept Step Study: A case-cohort analysis. Lancet 2008, 372, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Duerr, A.; Huang, Y.; Buchbinder, S.; Coombs, R.W.; Sanchez, J.; del Rio, C.; Casapia, M.; Santiago, S.; Gilbert, P.; Corey, L.; et al. Extended follow-up confirms early vaccine-enhanced risk of HIV acquisition and demonstrates waning effect over time among participants in a randomized trial of recombinant adenovirus HIV vaccine (Step Study). J. Infect. Dis. 2012, 206, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Migueles, S.A.; Rood, J.E.; Berkley, A.M.; Guo, T.; Mendoza, D.; Patamawenu, A.; Hallahan, C.W.; Cogliano, N.A.; Frahm, N.; Duerr, A.; et al. Trivalent adenovirus type 5 HIV recombinant vaccine primes for modest cytotoxic capacity that is greatest in humans with protective HLA class I alleles. PLoS Pathog. 2011, 7, e1002002. [Google Scholar] [CrossRef] [PubMed]
- Rolland, M.; Tovanabutra, S.; decamp, A.C.; Frahm, N.; Gilbert, P.B.; Sanders-Buell, E.; Heath, L.; Magaret, C.A.; Bose, M.; Bradfield, A.; et al. Genetic impact of vaccination on breakthrough HIV-1 sequences from the Step trial. Nat. Med. 2011, 17, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Janes, H.; Frahm, N.; DeCamp, A.; Rolland, M.; Gabriel, E.; Wolfson, J.; Hertz, T.; Kallas, E.; Goepfert, P.; Friedrich, D.P.; et al. MRKAd5 HIV-1 Gag/Pol/Nef vaccine-induced T-cell responses inadequately predict distance of breakthrough HIV-1 sequences to the vaccine or viral load. PLoS One 2012, 7, e43396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janes, H.; Friedrich, D.P.; Krambrink, A.; Smith, R.J.; Kallas, E.G.; Horton, H.; Casimiro, D.R.; Carrington, M.; Geraghty, D.E.; Gilbert, P.B.; et al. Vaccine-induced gag-specific T cells are associated with reduced viremia after HIV-1 infection. J. Infect. Dis. 2013, 208, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Hammer, S.M.; Sobieszczyk, M.E.; Janes, H.; Karuna, S.T.; Mulligan, M.J.; Grove, D.; Koblin, B.A.; Buchbinder, S.P.; Keefer, M.C.; Tomaras, G.D.; et al. Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N. Engl. J. Med. 2013, 369, 2083–2092. [Google Scholar] [CrossRef] [PubMed]
- Rerks-Ngarm, S.; Pitisuttithum, P.; Nitayaphan, S.; Kaewkungwal, J.; Chiu, J.; Paris, R.; Premsri, N.; Namwat, C.; de Souza, M.; Adams, E.; et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 2009, 361, 2209–2220. [Google Scholar] [CrossRef] [PubMed]
- Haynes, B.F.; Kelsoe, G.; Harrison, S.C.; Kepler, T.B. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat. Biotechnol. 2012, 30, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Remmerswaal, E.B.; Havenith, S.H.; Idu, M.M.; van Leeuwen, E.M.; van Donselaar, K.A.; Ten Brinke, A.; van der Bom-Baylon, N.; Bemelman, F.J.; van Lier, R.A.; Ten Berge, I.J. Human virus-specific effector-type T cells accumulate in blood but not in lymph nodes. Blood 2012, 119, 1702–1712. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.G.; Sacha, J.B.; Hughes, C.M.; Ford, J.C.; Burwitz, B.J.; Scholz, I.; Gilbride, R.M.; Lewis, M.S.; Gilliam, A.N.; Ventura, A.B.; et al. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 2013, 340, 1237874. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.G.; Ford, J.C.; Lewis, M.S.; Ventura, A.B.; Hughes, C.M.; Coyne-Johnson, L.; Whizin, N.; Oswald, K.; Shoemaker, R.; Swanson, T.; et al. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 2011, 473, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.G.; Piatak, M., Jr.; Ventura, A.B.; Hughes, C.M.; Gilbride, R.M.; Ford, J.C.; Oswald, K.; Shoemaker, R.; LI, Y.; Lewis, M.S.; et al. Immune clearance of highly pathogenic SIV infection. Nature 2013, 502, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Barouch, D.H.; Liu, J.; Peter, L.; Abbink, P.; Iampietro, M.J.; Cheung, A.; Alter, G.; Chung, A.; Dugast, A.S.; Frahm, N.; et al. Characterization of humoral and cellular immune responses elicited by a recombinant adenovirus serotype 26 HIV-1 Env vaccine in healthy adults (IPCAVD 001). J. Infect. Dis. 2013, 207, 48–56. [Google Scholar] [CrossRef]
- Girard, P.M. HIV infection: How to live and age (as best as possible) with the virus. Rev. Prat. 2006, 56, 941–943. [Google Scholar]
- Letvin, N.L. Progress and obstacles in the development of an AIDS vaccine. Nat. Rev. Immunol. 2006, 6, 930–939. [Google Scholar] [CrossRef] [PubMed]
- Burgers, W.A.; Williamson, C. The challenges of HIV vaccine development and testing. Best Pract. Res. Clin. Obstet. Gynaecol. 2005, 19, 277–291. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, P.B.; Peterson, M.L.; Follmann, D.; Hudgens, M.G.; Francis, D.P.; Gurwith, M.; Heyward, W.L.; Jobes, D.V.; Popovic, V.; Self, S.G.; et al. Correlation between immunologic responses to a recombinant glycoprotein 120 vaccine and incidence of HIV-1 infection in a phase 3 HIV-1 preventive vaccine trial. J. Infect. Dis. 2005, 191, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Flynn, N.M.; Forthal, D.N.; Harro, C.D.; Judson, F.N.; Mayer, K.H.; Para, M.F. rgp120 HIV Vaccine Study Group. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J. Infect. Dis. 2005, 191, 654–665. [Google Scholar] [CrossRef] [PubMed]
- Pitisuttithum, P.; Gilbert, P.; Gurwith, M.; Heyward, W.; Martin, M.; van Griensven, F.; Hu, D.; Tappero, J.W.; Choopanya, K.; Bangkok Vaccine Evaluation Group. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J. Infect. Dis. 2006, 15, 1661–1671. [Google Scholar] [CrossRef]
- Zembe, L.; Burgers, W.A.; Jaspan, H.B.; Bekker, L.G.; Bredell, H.; Stevens, G.; Gilmour, J.; Cox, J.H.; Fast, P.; Hayes, P.; et al. Intra- and inter-clade cross-reactivity by HIV-1 Gag specific T-cells reveals exclusive and commonly targeted regions: Implications for current vaccine trials. PLoS One 2011, 6, e26096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aidoo, M.; Sawadogo, S.; Bile, E.C.; Yang, C.; Nkengasong, J.N.; McNicholl, J.M. Viral, HLA and T cell elements in cross-reactive immune responses to HIV-1 subtype A, CRF01_AE and CRF02_AG vaccine sequence in Ivorian blood donors. Vaccine 2008, 26, 4830–4839. [Google Scholar] [CrossRef] [PubMed]
- Currier, J.R.; Galley, L.M.; Wenschuh, H.; Morafo, V.; Ratto-Kim, S.; Gray, C.M.; Maboko, L.; Hoelscher, M.; Marovich, M.A.; Cox, J.H. Peptide impurities in commercial synthetic peptides and their implications for vaccine trial assessment. Clin. Vaccine Immunol. 2008, 15, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, G.M.; Kaul, R.; Dong, T.; Yang, H.B.; Rostron, T.; Bwayo, J.J.; Kiama, P.; Peto, T.; Plummer, F.A.; McMichael, A.J.; et al. Cross-reactive cytotoxic T lymphocytes against a HIV-1 p24 epitope in slow progressors with B * 57. AIDS 2002, 16, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Keating, S.M.; Bollinger, R.C.; Quinn, T.C.; Jackson, J.B.; Carruth, L.M. Cross-clade T lymphocyte-mediated immunity to HIV type 1: Implications for vaccine design and immunodetection assays. AIDS. Res. Hum. Retrovir. 2002, 18, 1067–1079. [Google Scholar] [CrossRef] [PubMed]
- Coplan, P.M.; Gupta, S.B.; Dubey, S.A.; Pitisuttithum, P.; Nikas, A.; Mbewe, B.; Vardas, E.; Schechter, M.; Kallas, E.G.; Freed, D.C.; et al. Cross-reactivity of anti-HIV-1 T cell immune responses among the major HIV-1 clades in HIV-1-positive individuals from 4 continents. J. Infect. Dis. 2005, 191, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.B.; Mast, C.T.; Wolfe, N.D.; Novitsky, V.; Dubey, S.A.; Kallas, E.G.; Schechter, M.; Mbewe, B.; Vardas, E.; Pitisuttithum, P.; et al. Cross-clade reactivity of HIV-1-specific T-cell responses in HIV-1-infected individuals from Botswana and Cameroon. J. Acquir. Immune Defic. Syndr. 2006, 42, 135–139. [Google Scholar] [CrossRef] [PubMed]
- P5 Partnership, Global HIV Vaccine Enterprise. Available online: http://www.vaccineenterprise.org/content/P5Partnership (accessed on 30 June 2014).
- Doria-Rose, N.A.; Learn, G.H.; Rodrigo, A.G.; Nickle, D.C.; Li, F.; Mahalanabis, M.; Hensel, M.T.; Mclaughlin, S.; Edmonson, P.F.; Montefiori, D.; et al. Human immunodeficiency virus type 1 subtype B ancestral envelope protein is functional and elicits neutralizing antibodies in rabbits similar to those elicited by a circulating subtype B envelope. J. Virol. 2005, 79, 11214–11224. [Google Scholar] [CrossRef] [PubMed]
- Kothe, D.L.; Li, Y.; Decker, J.M.; Bibollet-Ruche, F.; Zammit, K.P.; Salazar, M.G.; Chen, Y.; Weng, Z.; Weaver, E.A.; Gao, F.; et al. Ancestral and consensus envelope immunogens for HIV-1 subtype C. Virology 2006, 352, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Nickle, D.C.; Jensen, M.A.; Gottlieb, G.S.; Shriner, D.; Learn, G.H.; Rodrigo, A.G.; Mullins, J.I. Consensus and ancestral state HIV vaccines. Science 2003, 299, 1515–1518. [Google Scholar] [CrossRef] [PubMed]
- Nickle, D.C.; Rolland, M.; Jensen, M.A.; Pond, S.L.; Deng, W.; Seligman, M.; Heckerman, D.; Mullins, J.I.; Jojic, N. Coping with viral diversity in HIV vaccine design. PLoS Comput. Biol. 2007, 3, e75. [Google Scholar] [CrossRef] [PubMed]
- Rolland, M.; Nickle, D.C.; Mullins, J.I. HIV-1 group M conserved elements vaccine. PLoS Pathog. 2007, 3, e157. [Google Scholar] [CrossRef] [PubMed]
- Gaschen, B.; Taylor, J.; Yusim, K.; Foley, B.; Gao, F.; Lang, D.; Novitsky, V.; Haynes, B.; Hahn, B.H.; Bhattacharya, T.; et al. Diversity considerations in HIV-1 vaccine selection. Science 2002, 296, 2354–2360. [Google Scholar] [CrossRef] [PubMed]
- IAVI. Available online: https://www.iavi.org/ (accessed on 30 June 2014).
- Gao, F.; Weaver, E.A.; Lu, Z.; Li, Y.; Liao, H.X.; Ma, B.; Alam, S.M.; Scearce, R.M.; Sutherland, L.L.; Yu, J.S.; et al. Antigenicity and immunogenicity of a synthetic human immunodeficiency virus type 1 group m consensus envelope glycoprotein. J. Virol. 2005, 79, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Weaver, E.A.; Camacho, Z.T.; Gao, F. Similar T-cell immune responses induced by group M consensus env immunogens with wild-type or minimum consensus variable regions. AIDS Res. Hum. Retrovir. 2010, 26, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Weaver, E.A.; Lu, Z.; Camacho, Z.T.; Moukdar, F.; Liao, H.X.; Ma, B.J.; Muldoon, M.; Theiler, J.; Nabel, G.J.; Letvin, N.L.; et al. Cross-subtype T-cell immune responses induced by a human immunodeficiency virus type 1 group m consensus env immunogen. J. Virol. 2006, 80, 6745–6756. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Gough, E.; Ritter, D.; Wilson, C.; Mulenga, J.; Allen, S.; Goepfert, P.A. Group M-based HIV-1 Gag peptides are frequently targeted by T cells in chronically infected US and Zambian patients. AIDS 2006, 20, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, U.; Nolin, J.; Mullins, J.I.; McElrath, M.J. Comprehensive epitope analysis of cross-clade Gag-specific T-cell responses in individuals with early HIV-1 infection in the US epidemic. Vaccine 2007, 25, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Frahm, N.; Nickle, D.C.; Linde, C.H.; Cohen, D.E.; Zuniga, R.; Lucchetti, A.; Roach, T.; Walker, B.D.; Allen, T.M.; Korber, B.T.; et al. Increased detection of HIV-specific T cell responses by combination of central sequences with comparable immunogenicity. AIDS 2008, 22, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Cortes, F.H.; Bello, G.; Vorsatz, C.; Pilotto, J.H.; Guimaraes, M.L.; Grinsztejn, B.; Veloso, V.G.; Pinto, A.R.; Morgado, M.G. Higher cross-subtype IFN-gamma ELISpot responses to Gag and Nef peptides in Brazilian HIV-1 subtype B- and F1- than in C-infected subjects. Vaccine 2003, 31, 1106–1112. [Google Scholar] [CrossRef]
- Tongo, M.; Zembe, L.; Ebong, E.; Roux, S.; Bekker, L.G.; Williamson, C.; Mpoudi-Ngole, E.; Burgers, W.A. Striking lack of T cell immunodominance in both a multiclade and monoclade HIV-1 epidemic: Implications for vaccine development. Vaccine 2010, 32, 2328–2336. [Google Scholar] [CrossRef]
- Korber, B.T.; Letvin, N.L.; Haynes, B.F. T-cell vaccine strategies for human immunodeficiency virus; the virus with a thousand faces. J. Virol. 2009, 83, 8300–8314. [Google Scholar] [CrossRef] [PubMed]
- Fischer, W.; Perkins, S.; Theiler, J.; Bhattacharya, T.; Yusim, K.; Funkhouser, R.; Kuiken, C.; Haynes, B.; Letvin, N.L.; Walker, B.D.; et al. Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants. Nat. Med. 2007, 13, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Fischer, W.; Liao, H.X.; Haynes, B.F.; Letvin, N.L.; Korber, B. Coping with viral diversity in HIV vaccine design: A response to Nickle et al. PLoS Comput. Biol. 2008, 4, e15. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.P.; Wu, L.; Wallstrom, T.C.; Fischer, W.; Yang, Z.Y.; Ko, S.Y.; Letvin, N.L.; Haynes, B.F.; Hahn, B.H.; Korber, B.; et al. Expanded breadth of the T-cell response to mosaic human immunodeficiency virus type 1 envelope DNA vaccination. J. Virol. 2009, 83, 2201–2215. [Google Scholar] [PubMed]
- Barouch, D.H.; O’brien, K.L.; Simmons, N.L.; King, S.L.; Abbink, P.; Maxfield, L.F.; Sun, Y.H.; La Porte, A.; Riggs, A.M.; Lynch, D.M.; et al. Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys. Nat. Med. 2010, 16, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Santra, S.; Liao, H.X.; Zhang, R.; Muldoon, M.; Watson, S.; Fischer, W.; Theiler, J.; Szinger, J.; Balachandran, H.; Buzby, A.; et al. Mosaic vaccines elicit CD8+ T lymphocyte responses that confer enhanced immune coverage of diverse HIV strains in monkeys. Nat. Med. 2010, 16, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, U.; Li, F.; Nolin, J.; Allison, M.; Zhao, H.; Mullins, J.I.; Self, S.; McElrath, M.J. Enhanced detection of human immunodeficiency virus type 1 (HIV-1) Nef-specific T cells recognizing multiple variants in early HIV-1 infection. J. Virol. 2007, 81, 5225–5237. [Google Scholar] [CrossRef] [PubMed]
- Tongo, M.; Riou, C.; Crunchant, E.; Muller, T.L.; Strickland, N.; Mpoudi-Ngole, E.; Burgers, W.A. Evaluating potential T-cell epitope (PTE) peptides for detecting HIV-specific T cell responses in a highly diverse HIV-1 epidemic from Cameroon. Submitted for publication.
- Fernandez, C.S.; Stratov, I.; de Rose, R.; Walsh, K.; Dale, C.J.; Smith, M.Z.; Agy, M.B.; Hu, S.L.; Krebs, K.; Watkins, D.I.; et al. Rapid viral escape at an immunodominant simian-human immunodeficiency virus cytotoxic T-lymphocyte epitope exacts a dramatic fitness cost. J. Virol. 2005, 79, 5721–5731. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Picado, J.; Prado, J.G.; Fry, E.E.; Pfafferott, K.; Leslie, A.; Chetty, S.; Thobakgale, C.; Honeyborne, I.; Crawford, H.; Matthews, P.; et al. Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. J. Virol. 2006, 80, 3617–3623. [Google Scholar] [CrossRef] [PubMed]
- Yang, O.O.; Daar, E.S.; Ng, H.L.; Shih, R.; Jamieson, B.D. Increasing CTL targeting of conserved sequences during early HIV-1 infection is correlated to decreasing viremia. AIDS Res. Hum. Retrovir. 2011, 27, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Finnefrock, A.C.; Dubey, S.A.; Korber, B.T.; Szinger, J.; Cole, S.; McElrath, M.J.; Shiver, J.W.; Casimiro, D.R.; Corey, L.; et al. Mapping HIV-1 vaccine induced T-cell responses: Bias towards less-conserved regions and potential impact on vaccine efficacy in the Step study. PLoS One 2011, 9, e1003404. [Google Scholar]
- Kopycinski, J.; Hayes, P.; Ashraf, A.; Cheeseman, H.; Lala, F.; Czyzewska-Khan, J.; Spentzou, A.; Gill, D.K.; Keefer, M.C.; Excler, J.L.; et al. Broad HIV epitope specificity and viral inhibition induced by multigenic HIV-1 adenovirus subtype 35 vector vaccine in healthy uninfected adults. PLoS One 2014, 9, e90378. [Google Scholar] [CrossRef] [PubMed]
- Letourneau, S.; Im, E.J.; Mashishi, T.; Brereton, C.; Bridgeman, A.; Yang, H.; Dorrell, L.; Dong, T.; Korber, B.; McMichael, A.J.; et al. Design and pre-clinical evaluation of a universal HIV-1 vaccine. PLoS One 2007, 2, e984. [Google Scholar] [CrossRef] [PubMed]
- Borthwick, N.; Ahmed, T.; Ondondo, B.; Hayes, P.; Rose, A.; Ebrahimsa, U.; Hayton, E.J.; Black, A.; Bridgeman, A.; Rosario, M.; et al. Vaccine-elicited Human T Cells Recognizing Conserved Protein Regions Inhibit HIV-1. Mol. Ther. 2013, 22, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Hertz, T.; Ahmed, H.; Friedrich, D.P.; Casimiro, D.R.; Self, S.G.; Corey, L.; McElrath, M.J.; Buchbinder, S.; Horton, H.; Frahm, N.; et al. HIV-1 vaccine-induced T-cell responses cluster in epitope hotspots that differ from those induced in natural infection with HIV-1. PLoS Pathog. 2013, 9, e1003404. [Google Scholar] [CrossRef] [PubMed]
- Locci, M.; Havenar-Daughton, C.; Landais, E.; Wu, J.; Kroenke, M.A.; Arlehamn, C.L.; Su, L.F.; Cubas, R.; Davis, M.M.; Sette, A.; et al. Human circulating PD-⁺1CXCR3⁻CXCR5⁺ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity 2013, 39, 758–769. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tongo, M.; Burgers, W.A. Challenges in the Design of a T Cell Vaccine in the Context of HIV-1 Diversity. Viruses 2014, 6, 3968-3990. https://doi.org/10.3390/v6103968
Tongo M, Burgers WA. Challenges in the Design of a T Cell Vaccine in the Context of HIV-1 Diversity. Viruses. 2014; 6(10):3968-3990. https://doi.org/10.3390/v6103968
Chicago/Turabian StyleTongo, Marcel, and Wendy A. Burgers. 2014. "Challenges in the Design of a T Cell Vaccine in the Context of HIV-1 Diversity" Viruses 6, no. 10: 3968-3990. https://doi.org/10.3390/v6103968
APA StyleTongo, M., & Burgers, W. A. (2014). Challenges in the Design of a T Cell Vaccine in the Context of HIV-1 Diversity. Viruses, 6(10), 3968-3990. https://doi.org/10.3390/v6103968