Resistance Analyses of Integrase Strand Transfer Inhibitors within Phase 3 Clinical Trials of Treatment-Naive Patients
Abstract
:1. Introduction
1.2. INSTI Resistance
2. Clinical Trials of INSTI-Based First-Line Regimens
2.1. Resistance Exclusion Criteria in Clinical Studies
2.2. Viral Load Tests
2.3. Primary Efficacy Outcomes in INSTI Trials
INSTI | Clinical Trial | Treatment Groups (n) | Week 48 Treatment Outcome (HIV-1 RNA <50 Copies/mL) | Interpretation | Reference |
---|---|---|---|---|---|
RAL | STARTMRK | RAL (BID) + FTC/TDF (n = 281) vs. EFV + FTC/TDF (n = 282) | 86.1% vs. 81.9% (difference 4.2%, 95% CI −1.9 to 10.3) | Non-inferiority | [29] |
QDMRK | RAL (QD) + FTC/TDF (n = 382) vs. RAL (BID) + FTC/TDF (n = 388) | 83.2% vs. 88.9% (difference −5.7%, 95% CI −10.7 to −0.83) | Not non-inferiority | [30] | |
EVG | GS-US-236-0102 | EVG/COBI/FTC/TDF (n = 348) vs. EFV/FTC/TDF (n = 352) | 87.6% vs. 84.1% (difference 3.6%, 95% CI –1.6 to 8.8) | Non-inferiority | [31] |
GS-US-236-0103 | EVG/COBI/FTC/TDF (n = 353) vs. ATV + RTV + FTC/TDF (n = 355) | 89.5% vs. 86.8% (difference 3.0%, 95% CI –1.9 to 7.8). | Non-inferiority | [32] | |
DTG | SPRING-2 | DTG + [FTC/TDF or ABC/3TC] (n = 411) vs. RAL + [FTC/TDF or ABC/3TC] (n = 411) | 87.8% vs. 85.4% (difference 2.5%; 95% CI –2.2 to 7.1). | Non-inferiority | [33] |
SINGLE | DTG + ABC/3TC (n = 414) vs. EFV/FTC/TDF (n = 419) | 87.9% vs. 80.7% (difference 7%, 95% CI 2 to 12) | Non-inferiority with secondary superiority | [34] | |
FLAMINGO | DTG + [FTC/TDF or ABC/3TC] (n = 242) vs. DRV + RTV + [FTC/TDF or ABC/3TC] (n = 242) | 89.7% vs. 82.6% (difference 7.1%, 95% CI 0.9 to 13.2) | Non-inferiority with secondary superiority | [35] |
2.4. Definitions of the Resistance Analysis Population and Resistance Testing Assays
INSTI | Clinical Trial | Resistance Analysis Population | HIV-1 RNA Assay | Management of Patients with VF | Reference |
---|---|---|---|---|---|
RAL | STARTMRK and QDMRK |
| COBAS Amplicor Monitor assay (v1.5) | Decision to discontinue by the Investigator | [29,30] |
EVG | GS-US-236-0102 and GS-US-236-0103 |
| COBAS Amplicor Monitor assay (v1.5) | Continue study drug if no resistance detected, at the discretion of the Investigator | [31,32] |
DTG | SPRING-2 and SINGLE |
| RealTime HIV-1 PCR assay | Withdrawal from study required | [33,34] |
FLAMINGO |
| RealTime HIV-1 PCR assay | Withdrawal from study required | [35] |
2.5. Development of Resistance in Clinical Trials of INSTIs
INSTI | Clinical Trial | Treatment Group | Resistance Analysis Population; n (%) a | Emergent INSTI Resistance; n (%) | Emergent Other Resistance; n (%) | Reference |
---|---|---|---|---|---|---|
RAL | STARTMRK | RAL (BID) + FTC/TDF | 9 (3.2%) | 4 (1.4%) | 3 (1.1%) | [29] |
EFV + FTC/TDF | 7 (2.5%) | na | 3 (1.1%) | |||
QDMRK | RAL (QD) + FTC/TDF | 30 (7.9%) | 9 (2.4%) | 20 (5.2%) | [30] | |
RAL (BID) + FTC/TDF | 16 (4.1%) | 2 (0.5%) | 6 (1.5%) | |||
EVG | GS-US-236-0102 | EVG/COBI/FTC/TDF | 14 (4.0%) | 7 (2.0%) | 8 (2.3%) | [31] |
EFV/FTC/TDF | 17 (4.8%) | na | 8 (2.3%) | |||
GS-US-236-0103 | EVG/COBI/FTC/TDF | 12 (3.4%) | 4 (1.1%) | 4 (1.1%) | [32] | |
ATV + RTV + FTC/TDF | 8 (2.3%) | 0 | 0 | |||
DTG | SPRING-2 | DTG + [FTC/TDF or ABC/3TC] | 20 (4.9%) | 0 | 0 | [33] |
RAL + [FTC/TDF or ABC/3TC] | 28 (6.8%) | 1 (0.2%) | 4 (1.0%) | |||
SINGLE | DTG + ABC/3TC | 18 (4.3%) | 0 | 0 | [34] | |
EFV/FTC/TDF | 17 (4.1%) | na | 4 (1.0%) | |||
FLAMINGO | DTG + [FTC/TDF or ABC/3TC] | 2 (0.8%) | 0 | 0 | [35] | |
DRV + RTV + [FTC/TDF or ABC/3TC] | 2 (0.8%) | 0 | 0 |
3. Clinical Virology Case Studies
3.1. Case 1: Virologic Success
3.2. Case 2: Suboptimal Virologic Response
3.3. Case 3: Virologic Rebound Prior to Week 24
3.4. Case 4: Virologic Rebound at/after Week 24
3.5. Case 5: Virologic Rebound with Low-Level Viremia
3.6. Case 6: Virologic Rebound with Persistent Viremia
3.7. Case 7: Virologic Success, but Detectable Viremia at Week 24
3.8. Case 8: Virologic Failure, No Resistance, Virologic Success at Week 48
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Metifiot, M.; Marchand, C.; Maddali, K.; Pommier, Y. Resistance to integrase inhibitors. Viruses 2010, 2, 1347–1366. [Google Scholar] [CrossRef] [PubMed]
- Messiaen, P.; Wensing, A.M.; Fun, A.; Nijhuis, M.; Brusselaers, N.; Vandekerckhove, L. Clinical use of HIV integrase inhibitors: A systematic review and meta-analysis. PLoS One 2013, 8, e52562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Guidance for Industry Human Immunodeficiency Virus-1 Infection: Developing Antiretroviral Drugs for Treatment. In DRAFT GUIDANCE; Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration: Silver Spring, MD, USA, 2013; pp. 1–43. [Google Scholar]
- European Medicines Agency (EMEA). Committee for Medicinal Products for Human Use (CHMP). Guideline on the Clinical Development of Medicinal Products for the Treatment of HIV Infection. Doc Ref. EMEA/CPMP/EWP/633/02 Revision 2; 20 November 2008; London, UK. [Google Scholar]
- British HIV Association. British HIV Association guidelines for the treatment of HIV-1-positive Adults with Antiretroviral Therapy 2012. pp. 1–85. Available online: http://www.bhiva.org/TreatmentofHIV1_2012.aspx (accessed on 17 April 2014).
- Lundgren, J.D.; Clumeck, N.; Rockstroh, J.; Ryom, L. European AIDS Clinical Society (EACS) Guidelines; Version 7.0; European AIDS Clinical Society (EACS): Brussels, Belgium, 2013. [Google Scholar]
- Thompson, M.A.; Aberg, J.A.; Hoy, J.F.; Telenti, A.; Benson, C.; Cahn, P.; Andrade-Villanueva, J.; Arribas, J.R.; Gatell, J.M.; Lama, J.R. Antiretroviral Treatment of Adult HIV Infection: 2012 Recommendations of the International Antiviral Society-USA Panel. JAMA 2012, 308, 387–402. [Google Scholar] [PubMed]
- Department of Health and Human Services (DHHS). Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. Developed by the HHS Panel on Antiretroviral Guidelines for Adults and Adolescents–A Working Group of the Office of AIDS Research Advisory Council (OARAC). Revised 12 February 2013. Available online: http://aidsinfo.nih.gov/guidelines (accessed on 12 February 2013).
- Department of Health and Human Services (DHHS). Recommendation on Integrase Inhibitor Use in Antiretroviral Treatment-Naive HIVInfected Individuals from the HHS Panel on Antiretroviral Guidelines for Adults and Adolescents [Addendum to Department of Health and Human Services (DHHS). Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents.] . Developed by the HHS Panel on Antiretroviral Guidelines for Adults and Adolescents–A Working Group of the Office of AIDS Research Advisory Council (OARAC). Revised 12 February 2013. Available online: http://aidsinfo.nih.gov/guidelines (accessed on 28 February 2013).
- World Health Organization (WHO) HIV/AIDS Programme. Recommendations for A Public Health Approach. In Consolidated Guidelines On The Use Of Antiretroviral Drugs For Treating and Preventing HIV Infection; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- McColl, D.J.; Chen, X. Strand transfer inhibitors of HIV-1 integrase: Bringing IN a new era of antiretroviral therapy. Antivir. Res. 2010, 85, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Hazuda, D.J. HIV integrase as a target for antiretroviral therapy. Curr. Opin. HIV AIDS 2012, 7, 383–389. [Google Scholar] [PubMed]
- Mesplede, T.; Quashie, P.K.; Wainberg, M.A. Resistance to HIV integrase inhibitors. Curr. Opin. HIV AIDS 2012, 7, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Abram, M.E.; Hluhanich, R.M.; Goodman, D.D.; Andreatta, K.N.; Margot, N.A.; Ye, L.; Niedziela-Majka, A.; Barnes, T.L.; Novikov, N.; Chen, X.; et al. Impact of primary elvitegravir resistance-associated mutations in HIV-1 integrase on drug susceptibility and viral replication fitness. Antimicrob. Agents Chemother. 2013, 57, 2654–2663. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.A.; Steigbigel, R.T.; Gatell, J.; Rockstroh, J.; Katlama, C.; Yeni, P.; Lazzarin, A.; Chen, J.; Isaacs, R.; Teppler, H.; et al. Subgroup and Resistance Analyses of Raltegravir for Resistance HIV-1 Infection. N. Engl. J. Med. 2008, 359, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Zolopa, A.R.; Berger, D.S.; Lampiris, H.; Zhong, L.; Chuck, S.L.; Enejosa, J.V.; Kearney, B.P.; Cheng, A.K. Activity of elvitegravir, a once-daily integrase inhibitor, against resistant HIV Type 1: Results of a phase 2, randomized, controlled, dose-ranging clinical trial. J. Infect. Dis. 2010, 201, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Hare, S.; Smith, S.J.; Metifiot, M.; Jaxa-Chamiec, A.; Pommier, Y.; Hughes, S.H.; Cherepanov, P. Structural and functional analyses of the second-generation integrase strand transfer inhibitor dolutegravir (S/GSK1349572). Mol. Pharmacol. 2011, 80, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Frentz, D.; Boucher, C.A.; van de Vijver, D.A. Temporal changes in the epidemiology of transmission of drug-resistant HIV-1 across the world. AIDS Rev. 2012, 14, 17–27. [Google Scholar] [PubMed]
- Young, B.; Fransen, S.; Greenberg, K.S.; Thomas, A.; Martens, S.; St Clair, M.; Petropoulos, C.J.; Ha, B. Transmission of integrase strand-transfer inhibitor multidrug-resistant HIV-1: Case report and response to raltegravir-containing antiretroviral therapy. Antivir. Ther. 2011, 16, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Boyd, S.D.; Maldarelli, F.; Sereti, I.; Ouedraogo, G.L.; Rehm, C.A.; Boltz, V.; Shoemaker, D.; Pau, A.K. Transmitted raltegravir resistance in an HIV-1 CRF_AG-infected patient. Antivir. Ther. 2011, 16, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Walworth, C.; Ward, D.; Napolitano, C.; Petropoulos, C.; Volpe, J. Horizontal transmission of HIV-1 exhibiting resistance to four antiretroviral drug classes, including integrase inhibitors. In Proceedings of the 19th International AIDS Conference, Washington, DC, USA, 21–27 July 2012. abstract THPE063.
- Varghese, V.; Liu, T.F.; Rhee, S.Y.; Libiran, P.; Trevino, C.; Fessel, W.J.; Shafer, R.W. HIV-1 integrase sequence variability in antiretroviral naive patients and in triple-class experienced patients subsequently treated with raltegravir. AIDS Res. Hum. Retrovirus. 2010, 26, 1323–1326. [Google Scholar]
- Rhee, S.Y.; Liu, T.F.; Kiuchi, M.; Zioni, R.; Gifford, R.J.; Holmes, S.P.; Shafer, R.W. Natural variation of HIV-1 group M integrase: Implications for a new class of antiretroviral inhibitors. Retrovirology 2008, 5, 74. [Google Scholar] [PubMed]
- Santoro, M.M.; Perno, C.F. HIV-1 Genetic Variability and Clinical Implications. ISRN Microbiol. 2013, 2013, 1–20. [Google Scholar] [CrossRef]
- Megens, S.; Laethem, K.V. HIV-1 genetic variation and drug resistance development. Expert Rev. Anti Infect. Ther. 2013, 11, 1159–1178. [Google Scholar] [CrossRef] [PubMed]
- Abravaya, K.; Huff, J.; Marshall, R.; Merchant, B.; Mullen, C.; Schneider, G.; Robinson, J.J. Molecular beacons as diagnostic tools: Technology and applications. Clin. Chem. Lab Med. 2003, 41, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Cobb, B.R.; Vaks, J.E.; Do, T.; Vilchez, R.A. Evolution in the sensitivity of quantitative HIV-1 viral load tests. J. Clin. Virol. 2011, 52, S77–S82. [Google Scholar] [CrossRef] [PubMed]
- Ribaudo, H.J.; Kuritzkes, D.R.; Schackman, B.R.; Acosta, E.P.; Shikuma, C.M.; Gulick, R.M. Design issues in initial HIV-treatment trials: Focus on ACTG A5095. Antivir. Ther. 2006, 11, 751–760. [Google Scholar] [PubMed]
- Lennox, J.L.; DeJesus, E.; Lazzarin, A.; Pollard, R.B.; Madruga, J.V.; Berger, D.S.; Zhao, J.; Xu, X.; Williams-Diaz, A.; Rodgers, A.J.; et al. Safety and efficacy of raltegravir-based vs. efavirenz-based combination therapy in treatment-naive patients with HIV-1 infection: A multicentre, double-blind randomised controlled trial. Lancet 2009, 374, 796–806. [Google Scholar] [PubMed]
- Eron, J.J., Jr.; Rockstroh, J.K.; Reynes, J.; Andrade-Villanueva, J.; Ramalho-Madruga, J.V.; Bekker, L.G.; Young, B.; Katlama, C.; Gatell-Artigas, J.M.; Arribas, J.R.; et al. Raltegravir once daily or twice daily in previously untreated patients with HIV-1: A randomised, active-controlled, phase 3 non-inferiority trial. Lancet Infect. Dis. 2011, 11, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Sax, P.E.; DeJesus, E.; Mills, A.; Zolopa, A.; Cohen, C.; Wohl, D.; Gallant, J.E.; Liu, H.C.; Zhong, L.; Yale, K.; et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir vs. co-formulated efavirenz, emtricitabine, and tenofovir for initial treatment of HIV-1 infection: A randomised, double-blind, phase 3 trial, analysis of results after 48 weeks. Lancet 2012, 379, 2439–2448. [Google Scholar] [CrossRef] [PubMed]
- DeJesus, E.; Rockstroh, J.; Henry, K.; Molina, J.-M.; Gathe, J.; Ramanathan, S.; Wei, X.; Yale, K.; Szwarcberg, J.; White, K. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir disoproxil fumarate vs. ritonavir-boosted atazanavir plus co-formulated emtricitabine and tenofovir disoproxil fumarate for initial treatment of HIV-1 infection: A randomised, double-blind, phase 3, non-inferiority trial. Lancet 2012, 379, 2429–2438. [Google Scholar] [CrossRef] [PubMed]
- Raffi, F.; Rachlis, A.; Stellbrink, H.J.; Hardy, W.D.; Torti, C.; Orkin, C.; Bloch, M.; Podzamczer, D.; Pokrovsky, V.; Pulido, F.; et al. Once-daily dolutegravir vs. raltegravir in antiretroviral-naive adults with HIV-1 infection: 48 week results from the randomised, double-blind, non-inferiority SPRING-2 study. Lancet 2013, 381, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Walmsley, S.L.; Antela, A.; Clumeck, N.; Duiculescu, D.; Eberhard, A.; Gutierrez, F.; Hocqueloux, L.; Maggiolo, F.; Sandkovsky, U.; Granier, C.; et al. Dolutegravir plus abacavir-lamivudine for the treatment of HIV-1 infection. N. Engl. J. Med. 2013, 369, 1807–1818. [Google Scholar] [CrossRef] [PubMed]
- Clotet, B.; Feinberg, J.; van Lunzen, J.; Khuong-Josses, M.A.; Antinori, A.; Dumitru, I.; Pokrovskiy, V.; Fehr, J.; Ortiz, R.; Saag, M.; et al. Once-daily dolutegravir versus darunavir plus ritonavir in antiretroviral-naive adults with HIV-1 infection (FLAMINGO): 48 week results from the randomised open-label phase 3b study. Lancet 2014, 383, 2222–2231. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, C.J.; Parkin, N.T.; Limoli, K.L.; Lie, Y.S.; Wrin, T.; Huang, W.; Tian, H.; Smith, D.; Winslow, G.A.; Capon, D.J.; et al. A novel phenotypic drug susceptibility assay for human immunodeficiency virus type 1. Antimicrob. Agents Chemother. 2000, 44, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Wohl, D.A.; Cohen, C.; Gallant, J.E.; Mills, A.; Sax, P.E.; Dejesus, E.; Zolopa, A.; Liu, H.C.; Plummer, A.; White, K.L.; et al. A Randomized, Double-Blind Comparison of Single-Tablet Regimen Elvitegravir/Cobicistat/Emtricitabine/Tenofovir DF vs. Single-Tablet Regimen Efavirenz/Emtricitabine/Tenofovir DF for Initial Treatment of HIV-1 Infection: Analysis of Week 144 Results. J. Acquir. Immune Defic. Syndr. 2014, 65, e118–e121. [Google Scholar] [PubMed]
- Clumeck, N.; Molina, J.M.; Henry, K.; Gathe, J.; Rockstroh, J.K.; Dejesus, E.; Wei, X.; White, K.; Fordyce, M.W.; Rhee, M.S.; et al. A Randomized, Double-blind Comparison of Single-Tablet Regimen Elvitegravir/Cobicistat/Emtricitabine/Tenofovir DF vs. Ritonavir-Boosted Atazanavir Plus Emtricitabine/Tenofovir DF for Initial Treatment of HIV-1 Infection: Analysis of Week 144 Results. J. Acquir. Immune Defic. Syndr. 2014, 65, e121–e124. [Google Scholar] [CrossRef] [PubMed]
- Zolopa, A.; Sax, P.E.; DeJesus, E.; Mills, A.; Cohen, C.; Wohl, D.; Gallant, J.E.; Liu, H.C.; Plummer, A.; White, K.L.; et al. A randomized double-blind comparison of coformulated elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate vs. efavirenz/emtricitabine/tenofovir disoproxil fumarate for initial treatment of HIV-1 infection: Analysis of week 96 results. J. Acquir. Immune Defic. Syndr. 2013, 63, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Rockstroh, J.K.; Dejesus, E.; Henry, K.; Molina, J.M.; Gathe, J.; Ramanathan, S.; Wei, X.; Yale, K.; Szwarcberg, J.; White, K.; et al. A randomized, double-blind comparison of co-formulated elvitegravir/cobicistat/emtricitabine/tenofovir vs. ritonavir-boosted atazanavir plus co-formulated emtricitabine and tenofovir DF for initial treatment of HIV-1 infection: Analysis of week 96 results. J. Acquir. Immune Defic. Syndr. 2013, 62, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Lennox, J.L.; Dejesus, E.; Berger, D.S.; Lazzarin, A.; Pollard, R.B.; Ramalho Madruga, J.V.; Zhao, J.; Wan, H.; Gilbert, C.L.; Teppler, H.; et al. Raltegravir vs. Efavirenz regimens in treatment-naive HIV-1-infected patients: 96-week efficacy, durability, subgroup, safety, and metabolic analyses. J. Acquir. Immune Defic. Syndr. 2010, 55, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.M.; Lamarca, A.; Andrade-Villanueva, J.; Clotet, B.; Clumeck, N.; Liu, Y.P.; Zhong, L.; Margot, N.; Cheng, A.K.; Chuck, S.L.; et al. Efficacy and safety of once daily elvitegravir vs. twice daily raltegravir in treatment-experienced patients with HIV-1 receiving a ritonavir-boosted protease inhibitor: Randomised, double-blind, phase 3, non-inferiority study. Lancet Infect. Dis. 2012, 12, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Cahn, P.; Pozniak, A.L.; Mingrone, H.; Shuldyakov, A.; Brites, C.; Andrade-Villanueva, J.F.; Richmond, G.; Buendia, C.B.; Fourie, J.; Ramgopal, M.; et al. Dolutegravir vs. raltegravir in antiretroviral-experienced, integrase-inhibitor-naive adults with HIV: Week 48 results from the randomised, double-blind, non-inferiority SAILING study. Lancet 2013, 382, 700–708. [Google Scholar] [CrossRef] [PubMed]
- White, K.; Kulkarni, R.; Abram, M.; Rhee, M.; Fordyce, M.; Szwarcberg, J.; Miller, M.D. Longitudinal Resistance Anaylsis of the Phase 3 EVG/COBI/FTC/TDF Studies [Poster O_12]. In Proceedings of the 12th European Meeting on HIV & Hepatitis Treatment Strategies & Antiviral Drug Resistance, Barcelona, Spain, 3–6 March 2014; p. 1.
- Winters, M.A.; Lloyd, R.M., Jr.; Shafer, R.W.; Kozal, M.J.; Miller, M.D.; Holodniy, M. Development of elvitegravir resistance and linkage of integrase inhibitor mutations with protease and reverse transcriptase resistance mutations. PLoS One 2012, 7, e40514. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.M.; Fabeni, L.; Armenia, D.; Alteri, C.; di Pinto, D.; Forbici, F.; Bertoli, A.; di Carlo, D.; Gori, C.; Carta, S.; et al. Reliability and Clinical Relevance of the HIV-1 Drug Resistance Test in Patients With Low Viremia Levels. Clin. Infect. Dis. 2014, 58, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- Ryscavage, P.; Kelly, S.; Li, J.Z.; Harrigan, P.R.; Taiwo, B. Significance and clinical management of persistent low level viremia and very low level viremia in HIV-1 infected patients. Antimicrob. Agents Chemother. 2014; in press. [Google Scholar]
- Delaugerre, C.; Gallien, S.; Flandre, P.; Mathez, D.; Amarsy, R.; Ferret, S.; Timsit, J.; Molina, J.M.; de Truchis, P. Impact of low-level-viremia on HIV-1 drug-resistance evolution among antiretroviral treated-patients. PLoS One 2012, 7, e36673. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
White, K.L.; Raffi, F.; Miller, M.D. Resistance Analyses of Integrase Strand Transfer Inhibitors within Phase 3 Clinical Trials of Treatment-Naive Patients. Viruses 2014, 6, 2858-2879. https://doi.org/10.3390/v6072858
White KL, Raffi F, Miller MD. Resistance Analyses of Integrase Strand Transfer Inhibitors within Phase 3 Clinical Trials of Treatment-Naive Patients. Viruses. 2014; 6(7):2858-2879. https://doi.org/10.3390/v6072858
Chicago/Turabian StyleWhite, Kirsten L., Francois Raffi, and Michael D. Miller. 2014. "Resistance Analyses of Integrase Strand Transfer Inhibitors within Phase 3 Clinical Trials of Treatment-Naive Patients" Viruses 6, no. 7: 2858-2879. https://doi.org/10.3390/v6072858