Therapeutic Use of Native and Recombinant Enteroviruses
Abstract
:1. Introduction
2. Modification of Enterovirus Genome Is Complicated due to Technical and Space Limitations
3. Recombinant Enterovirus Vectors
3.1. Poliovirus Vectors
3.2. Coxsackievirus Vectors (CV-B3, CV-B4 and CV-A9)
4. Enteroviruses in Oncolytic Virotherapy
4.1. Poliovirus (PV)
4.2. Coxsackievirus 21 (CV-A21)
4.3. Other Enteroviruses
5. Future Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tuthill, T.J.; Groppelli, E.; Hogle, J.M.; Rowlands, D.J. Picornaviruses. Curr. Top. Microbiol. Immunol. 2010, 343, 43–89. [Google Scholar] [PubMed]
- Hulo, C.; de Castro, E.; Masson, P.; Bougueleret, L.; Bairoch, A.; Xenarios, I.; le Mercier, P. ViralZone: A knowledge resource to understand virus diversity. Nucleic Acids Res. 2011, 39, D576–D582. [Google Scholar] [CrossRef] [PubMed]
- Whitton, J.L.; Cornell, C.T.; Feuer, R. Host and virus determinants of picornavirus pathogenesis and tropism. Nat. Rev. Microbiol. 2005, 3, 765–776. [Google Scholar] [CrossRef] [PubMed]
- Van der Linden, L.; Wolthers, K.C.; van Kuppeveld, F.J. Replication and Inhibitors of Enteroviruses and Parechoviruses. Viruses 2015, 7, 4529–4562. [Google Scholar] [CrossRef] [PubMed]
- Rossmann, M.G.; He, Y.; Kuhn, R.J. Picornavirus-receptor interactions. Trends Microbiol. 2002, 10, 324–331. [Google Scholar] [CrossRef]
- Merilahti, P.; Koskinen, S.; Heikkila, O.; Karelehto, E.; Susi, P. Endocytosis of integrin-binding human picornaviruses. Adv. Virol. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Chapman, N.M.; Kim, K.S.; Tracy, S.; Jackson, J.; Hofling, K.; Leser, J.S.; Malone, J.; Kolbeck, P. Coxsackievirus expression of the murine secretory protein interleukin-4 induces increased synthesis of immunoglobulin G1 in mice. J. Virol. 2000, 74, 7952–7962. [Google Scholar] [CrossRef] [PubMed]
- Hughes, P.J.; Horsnell, C.; Hyypia, T.; Stanway, G. The coxsackievirus A9 RGD motif is not essential for virus viability. J. Virol. 1995, 69, 8035–8040. [Google Scholar] [PubMed]
- Lim, B.K.; Shin, J.O.; Lee, S.C.; Kim, D.K.; Choi, D.J.; Choe, S.C.; Knowlton, K.U.; Jeon, E.S. Long-term cardiac gene expression using a coxsackieviral vector. J. Mol. Cell. Cardiol. 2005, 38, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Slifka, M.K.; Pagarigan, R.; Mena, I.; Feuer, R.; Whitton, J.L. Using recombinant coxsackievirus B3 to evaluate the induction and protective efficacy of CD8+ T cells during picornavirus infection. J. Virol. 2001, 75, 2377–2387. [Google Scholar] [CrossRef] [PubMed]
- Meyer, R.G.; Meyer-Ficca, M.L.; Kaiser, H.; Selinka, H.C.; Kandolf, R.; Kupper, J.H. Plasmid-based generation of recombinant coxsackievirus B3 particles carrying capsid gene replacement replicons. Virus Res. 2004, 104, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Gullberg, M.; Tolf, C.; Jonsson, N.; Polacek, C.; Precechtelova, J.; Badurova, M.; Sojka, M.; Mohlin, C.; Israelsson, S.; Johansson, K.; et al. A single coxsackievirus B2 capsid residue controls cytolysis and apoptosis in rhabdomyosarcoma cells. J. Virol. 2010, 84, 5868–5879. [Google Scholar] [CrossRef] [PubMed]
- Israelsson, S.; Gullberg, M.; Jonsson, N.; Roivainen, M.; Edman, K.; Lindberg, A.M. Studies of Echovirus 5 interactions with the cell surface: Heparan sulfate mediates attachment to the host cell. Virus Res. 2010, 151, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Gow, J.W.; McGill, M.M.; Behan, W.M.; Behan, P.O. Long RT-PCR amplification of full-length enterovirus genome. BioTechniques 1996, 20, 582–584. [Google Scholar] [PubMed]
- Leister, D.; Thompson, R. Production of full-length cDNA from a picornaviral genome by RT-PCR. Trends Genet. 1996, 12. [Google Scholar] [CrossRef]
- Tellier, R.; Bukh, J.; Emerson, S.U.; Purcell, R.H. Amplification of the full-length hepatitis A virus genome by long reverse transcription-PCR and transcription of infectious RNA directly from the amplicon. Proc. Natl. Acad. Sci. USA 1996, 93, 4370–4373. [Google Scholar] [CrossRef] [PubMed]
- Tellier, R.; Bukh, J.; Emerson, S.U.; Miller, R.H.; Purcell, R.H. Long PCR and its application to hepatitis viruses: Amplification of hepatitis A, hepatitis B, and hepatitis C virus genomes. J. Clin. Microbiol. 1996, 34, 3085–3091. [Google Scholar] [PubMed]
- Heikkila, O.; Kainulainen, M.; Susi, P. A combined method for rescue of modified enteroviruses by mutagenic primers, long PCR and T7 RNA polymerase-driven in vivo transcription. J. Virol. Methods 2011, 171, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Boot, H.J.; Schepp, R.M.; van Nunen, F.J.; Kimman, T.G. Rapid RT-PCR amplification of full-length poliovirus genomes allows rapid discrimination between wild-type and recombinant vaccine-derived polioviruses. J. Virol. Methods 2004, 116, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Poirier, J.T.; Reddy, P.S.; Idamakanti, N.; Li, S.S.; Stump, K.L.; Burroughs, K.D.; Hallenbeck, P.L.; Rudin, C.M. Characterization of a full-length infectious cDNA clone and a GFP reporter derivative of the oncolytic picornavirus SVV-001. J. Gen. Virol. 2012, 93, 2606–2613. [Google Scholar] [CrossRef] [PubMed]
- Tan le, V.; Tuyen, N.T.; Thanh, T.T.; Ngan, T.T.; van, H.M.; Sabanathan, S.; van, T.T.; Thanh le, T.M.; Nguyet, L.A.; Geoghegan, J.L.; et al. A generic assay for whole-genome amplification and deep sequencing of enterovirus A71. J. Virol. Methods 2015, 215, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Herold, J.; Andino, R. Poliovirus requires a precise 5′ end for efficient positive-strand RNA synthesis. J. Virol. 2000, 74, 6394–6400. [Google Scholar] [CrossRef] [PubMed]
- Israelsson, S.; Savneby, A.; Ekstrom, J.O.; Jonsson, N.; Edman, K.; Lindberg, A.M. Improved replication efficiency of echovirus 5 after transfection of colon cancer cells using an authentic 5′ RNA genome end methodology. Investig. New Drugs 2014, 32, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, J.; Sonenberg, N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 1988, 334, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, N.; Semler, B.L.; Rothberg, P.G.; Larsen, G.R.; Adler, C.J.; Dorner, A.J.; Emini, E.A.; Hanecak, R.; Lee, J.J.; van der Werf, S.; et al. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature 1981, 291, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Arnold, G.F.; Resnick, D.A.; Smith, A.D.; Geisler, S.C.; Holmes, A.K.; Arnold, E. Chimeric rhinoviruses as tools for vaccine development and characterization of protein epitopes. Intervirology. 1996, 39, 72–78. [Google Scholar] [PubMed]
- Burke, K.L.; Evans, D.J.; Jenkins, O.; Meredith, J.; D’Souza, E.D.; Almond, J.W. A cassette vector for the construction of antigen chimaeras of poliovirus. J. Gen. Virol. 1989, 70, 2475–2479. [Google Scholar] [CrossRef] [PubMed]
- Halim, S.S.; Ostrowski, S.E.; Lee, W.T.; Ramsingh, A.I. Immunogenicity of a foreign peptide expressed within a capsid protein of an attenuated coxsackievirus. Vaccine 2000, 19, 958–965. [Google Scholar] [CrossRef]
- Evans, D.J.; McKeating, J.; Meredith, J.M.; Burke, K.L.; Katrak, K.; John, A.; Ferguson, M.; Minor, P.D.; Weiss, R.A.; Almond, J.W. An engineered poliovirus chimaera elicits broadly reactive HIV-1 neutralizing antibodies. Nature 1989, 339, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Crotty, S.; Miller, C.J.; Lohman, B.L.; Neagu, M.R.; Compton, L.; Lu, D.; Lu, F.X.; Fritts, L.; Lifson, J.D.; Andino, R. Protection against simian immunodeficiency virus vaginal challenge by using Sabin poliovirus vectors. J. Virol. 2001, 75, 7435–7452. [Google Scholar] [CrossRef] [PubMed]
- Dobrikova, E.Y.; Broadt, T.; Poiley-Nelson, J.; Yang, X.; Soman, G.; Giardina, S.; Harris, R.; Gromeier, M. Recombinant oncolytic poliovirus eliminates glioma in vivo without genetic adaptation to a pathogenic phenotype. Mol. Ther. 2008, 16, 1865–1872. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.P.; Lee, B.; Min, M.K. Recombinant polioviruses expressing hepatitis B virus-specific cytotoxic T-lymphocyte epitopes. Vaccine 2000, 18, 2878–2885. [Google Scholar] [CrossRef]
- Kim, D.S.; Cho, Y.J.; Kim, B.G.; Lee, S.H.; Nam, J.H. Systematic analysis of attenuated Coxsackievirus expressing a foreign gene as a viral vaccine vector. Vaccine 2010, 28, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Liang, F.; Ohka, S.; Nomoto, A.; Hashikawa, T. Expression of brain-derived neurotrophic factor in the central nervous system of mice using a poliovirus-based vector. J. Neurovirol. 2002, 8, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Dobrikova, E.Y.; Florez, P.; Gromeier, M. Structural determinants of insert retention of poliovirus expression vectors with recombinant IRES elements. Virology 2003, 311, 241–253. [Google Scholar] [CrossRef]
- Jackson, C.A.; Messinger, J.; Peduzzi, J.D.; Ansardi, D.C.; Morrow, C.D. Enhanced functional recovery from spinal cord injury following intrathecal or intramuscular administration of poliovirus replicons encoding IL-10. Virology 2005, 336, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Smythies, L.E.; Novak, M.J.; Waites, K.B.; Lindsey, J.R.; Morrow, C.D.; Smith, P.D. Poliovirus replicons encoding the B subunit of Helicobacter pylori urease protect mice against H. pylori infection. Vaccine 2005, 23, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Van Kuppeveld, F.J.; de Jong, A.; Dijkman, H.B.; Andino, R.; Melchers, W.J. Studies towards the potential of poliovirus as a vector for the expression of HPV 16 virus-like-particles. FEMS Immunol. Med. Microbiol. 2002, 34, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Hofling, K.; Tracy, S.; Chapman, N.; Kim, K.S.; Smith Leser, J. Expression of an antigenic adenovirus epitope in a group B coxsackievirus. J. Virol. 2000, 74, 4570–4578. [Google Scholar] [CrossRef] [PubMed]
- Feuer, R.; Mena, I.; Pagarigan, R.; Slifka, M.K.; Whitton, J.L. Cell cycle status affects coxsackievirus replication, persistence, and reactivation in vitro. J. Virol. 2002, 76, 4430–4440. [Google Scholar] [CrossRef] [PubMed]
- Halim, S.S.; Collins, D.N.; Ramsingh, A.I. A therapeutic HIV vaccine using coxsackie-HIV recombinants: A possible new strategy. AIDS Res. Hum. Retroviruses. 2000, 16, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Alexander, L.; Lu, H.H.; Gromeier, M.; Wimmer, E. Dicistronic polioviruses as expression vectors for foreign genes. AIDS Res. Hum. Retroviruses. 1994, 10, S57–S60. [Google Scholar] [PubMed]
- Choi, W.S.; Pal-Ghosh, R.; Morrow, C.D. Expression of human immunodeficiency virus type 1 (HIV-1) gag, pol, and env proteins from chimeric HIV-1-poliovirus minireplicons. J. Virol. 1991, 65, 2875–2883. [Google Scholar]
- Dufresne, A.T.; Dobrikova, E.Y.; Schmidt, S.; Gromeier, M. Genetically stable picornavirus expression vectors with recombinant internal ribosomal entry sites. J. Virol. 2002, 76, 8966–8972. [Google Scholar] [CrossRef] [PubMed]
- Yim, T.J.; Tang, S.; Andino, R. Poliovirus recombinants expressing hepatitis B virus antigens elicited a humoral immune response in susceptible mice. Virology 1996, 218, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; van Rij, R.; Silvera, D.; Andino, R. Toward a poliovirus-based simian immunodeficiency virus vaccine: Correlation between genetic stability and immunogenicity. J. Virol. 1997, 71, 7841–7850. [Google Scholar] [PubMed]
- Bledsoe, A.W.; Gillespie, G.Y.; Morrow, C.D. Targeted foreign gene expression in spinal cord neurons using poliovirus replicons. J. Neurovirol. 2000, 6, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Nam, J.H. Characterization of attenuated coxsackievirus B3 strains and prospects of their application as live-attenuated vaccines. Expert Opin. Biol. Ther. 2010, 10, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Reimann, B.Y.; Zell, R.; Kandolf, R. Mapping of a neutralizing antigenic site of Coxsackievirus B4 by construction of an antigen chimera. J. Virol. 1991, 65, 3475–3480. [Google Scholar] [PubMed]
- Miller, J.P.; Geng, Y.; Ng, H.L.; Yang, O.O.; Krogstad, P. Packaging limits and stability of HIV-1 sequences in a coxsackievirus B vector. Vaccine 2009, 27, 3992–4000. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Berg, A.K.; Tuvemo, T.; Frisk, G. Enterovirus RNA is found in peripheral blood mononuclear cells in a majority of type 1 diabetic children at onset. Diabetes 2002, 51, 1964–1971. [Google Scholar] [CrossRef] [PubMed]
- Moya-Suri, V.; Schlosser, M.; Zimmermann, K.; Rjasanowski, I.; Gurtler, L.; Mentel, R. Enterovirus RNA sequences in sera of schoolchildren in the general population and their association with type 1-diabetes-associated autoantibodies. J. Med. Microbiol. 2005, 54, 879–883. [Google Scholar] [CrossRef] [PubMed]
- Roivainen, M.; Piirainen, L.; Hovi, T.; Virtanen, I.; Riikonen, T.; Heino, J.; Hyypia, T. Entry of coxsackievirus A9 into host cells: Specific interactions with alpha v beta 3 integrin, the vitronectin receptor. Virology 1994, 203, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.H.; Kajander, T.; Hyypia, T.; Jackson, T.; Sheppard, D.; Stanway, G. Integrin αvβ6 is an RGD-dependent receptor for coxsackievirus A9. J. Virol. 2004, 78, 6967–6973. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, F.; Chen, X. Integrin αvβ3 Targeted Cancer Therapy. Drug Dev. Res. 2008, 69, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Dey, M.; Auffinger, B.; Lesniak, M.S.; Ahmed, A.U. Antiglioma oncolytic virotherapy: Unattainable goal or a success story in the making? Future Virol. 2013, 8, 675–693. [Google Scholar] [CrossRef] [PubMed]
- Kelly, E.; Russell, S.J. History of oncolytic viruses: Genesis to genetic engineering. Mol. Ther. 2007, 15, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Shimada, H.; Hiroshima, K.; Tada, Y.; Suzuki, N.; Tagawa, M. Gene medicine for cancer treatment: Commercially available medicine and accumulated clinical data in China. Drug Des. Devel.Ther. 2009, 2, 115–122. [Google Scholar] [PubMed]
- Donina, S.; Strele, I.; Proboka, G.; Auzins, J.; Alberts, P.; Jonsson, B.; Venskus, D.; Muceniece, A. Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study. Melanoma Res. 2015, 25, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Goetz, C.; Gromeier, M. Preparing an oncolytic poliovirus recombinant for clinical application against glioblastoma multiforme. Cytokine Growth Factor Rev. 2010, 21, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Atsumi, S.; Matsumine, A.; Toyoda, H.; Niimi, R.; Iino, T.; Nakamura, T.; Matsubara, T.; Asanuma, K.; Komada, Y.; Uchida, A.; Sudo, A. Oncolytic virotherapy for human bone and soft tissue sarcomas using live attenuated poliovirus. Int. J. Oncol. 2012, 41, 893–902. [Google Scholar] [PubMed]
- Merrill, M.K.; Bernhardt, G.; Sampson, J.H.; Wikstrand, C.J.; Bigner, D.D.; Gromeier, M. Poliovirus receptor CD155-targeted oncolysis of glioma. Neuro. Oncol. 2004, 6, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, H.; Moore, S.A.; Archer, G.E.; Okamura, T.; Chewning, T.A.; Marks, J.R.; Sampson, J.H.; Gromeier, M. Treatment of intracerebral neoplasia and neoplastic meningitis with regional delivery of oncolytic recombinant poliovirus. Clin. Cancer. Res. 2004, 10, 4831–4838. [Google Scholar] [CrossRef] [PubMed]
- Gromeier, M.; Alexander, L.; Wimmer, E. Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc. Natl. Acad. Sci. USA 1996, 93, 2370–2375. [Google Scholar] [CrossRef] [PubMed]
- Gromeier, M.; Bossert, B.; Arita, M.; Nomoto, A.; Wimmer, E. Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J. Virol. 1999, 73, 958–964. [Google Scholar] [PubMed]
- Gromeier, M.; Lachmann, S.; Rosenfeld, M.R.; Gutin, P.H.; Wimmer, E. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc. Natl. Acad. Sci. USA 2000, 97, 6803–6808. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, H.; Campbell, S.A.; Archer, G.E.; Chewning, T.A.; Dragunsky, E.; Ivanov, A.; Gromeier, M.; Sampson, J.H. Targeted therapy for glioblastoma multiforme neoplastic meningitis with intrathecal delivery of an oncolytic recombinant poliovirus. Clin. Cancer. Res. 2006, 12, 1349–1354. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, H.; Yin, J.; Mueller, S.; Wimmer, E.; Cello, J. Oncolytic treatment and cure of neuroblastoma by a novel attenuated poliovirus in a novel poliovirus-susceptible animal model. Cancer Res. 2007, 67, 2857–2864. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, H.; Wimmer, E.; Cello, J. Oncolytic poliovirus therapy and immunization with poliovirus-infected cell lysate induces potent antitumor immunity against neuroblastoma in vivo. Int. J. Oncol. 2011, 38, 81–87. [Google Scholar] [PubMed]
- Shafren, D.R.; Au, G.G.; Nguyen, T.; Newcombe, N.G.; Haley, E.S.; Beagley, L.; Johansson, E.S.; Hersey, P.; Barry, R.D. Systemic therapy of malignant human melanoma tumors by a common cold-producing enterovirus, coxsackievirus a21. Clin. Cancer. Res. 2004, 10, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Skelding, K.A.; Barry, R.D.; Shafren, D.R. Systemic targeting of metastatic human breast tumor xenografts by Coxsackievirus A21. Breast Cancer Res. Treat. 2009, 113, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Johansson, E.S.; Xing, L.; Cheng, R.H.; Shafren, D.R. Enhanced cellular receptor usage by a bioselected variant of coxsackievirus a21. J. Virol. 2004, 78, 12603–12612. [Google Scholar] [CrossRef] [PubMed]
- Berry, L.J.; Au, G.G.; Barry, R.D.; Shafren, D.R. Potent oncolytic activity of human enteroviruses against human prostate cancer. Prostate 2008, 68, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Skelding, K.A.; Barry, R.D.; Shafren, D.R. Enhanced oncolysis mediated by Coxsackievirus A21 in combination with doxorubicin hydrochloride. Invest. New. Drugs 2012, 30, 568–581. [Google Scholar] [CrossRef] [PubMed]
- Hadac, E.M.; Kelly, E.J.; Russell, S.J. Myeloma xenograft destruction by a nonviral vector delivering oncolytic infectious nucleic acid. Mol. Ther. 2011, 19, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, S.; Inoue, H.; Nakamura, T.; Yamada, M.; Sakamoto, C.; Urata, Y.; Okazaki, T.; Marumoto, T.; Takahashi, A.; Takayama, K.; Nakanishi, Y.; Shimizu, H.; Tani, K. Coxsackievirus B3 is an oncolytic virus with immunostimulatory properties that is active against lung adenocarcinoma. Cancer Res. 2012, 72, 2609–2621. [Google Scholar] [CrossRef] [PubMed]
- Shafren, D.R.; Sylvester, D.; Johansson, E.S.; Campbell, I.G.; Barry, R.D. Oncolysis of human ovarian cancers by echovirus type 1. Int. J. Cancer. 2005, 115, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Haley, E.S.; Au, G.G.; Carlton, B.R.; Barry, R.D.; Shafren, D.R. Regional administration of oncolytic Echovirus 1 as a novel therapy for the peritoneal dissemination of gastric cancer. J. Mol. Med. 2009, 87, 385–399. [Google Scholar] [CrossRef] [PubMed]
- Israelsson, S.; Jonsson, N.; Gullberg, M.; Lindberg, A.M. Cytolytic replication of echoviruses in colon cancer cell lines. Virol. J. 2011, 8. [Google Scholar] [CrossRef] [PubMed]
- Au, G.G.; Beagley, L.G.; Haley, E.S.; Barry, R.D.; Shafren, D.R. Oncolysis of malignant human melanoma tumors by Coxsackieviruses A13, A15 and A18. Virol. J. 2011, 8. [Google Scholar] [CrossRef] [PubMed]
Virus Type (and Receptor) | Strain | Insert | Site of Insertion | Reference |
---|---|---|---|---|
Poliovirus 1; PV-1 (CD155/Neclin-5) | Mahoney | BDNF with 3Cpr° | Between 5′ UTR and VP4 gene | [34] |
PV-1 | Attenuated Sabin | RV-A2 IRES site with either E. coli FimH antigen, HIV Tat, SIV p17 or eGFP gene flanked by 2Apr° | Replacing poliovirus’s IRES region | [35] |
PV-1 | Mahoney | MIL-10 flanked by FMDV self-cleavage site and 2Apr° | Replacing VP3 and VP1 genes | [36] |
PV-1 | Mahoney | Helicobacter pyroli UreB gene | Replacing VP2-, VP3 and VP1 genes | [37] |
PV-1 | Mahoney | HPV-16 L1 shell protein as a whole (1600 nt) or partially (about 270 nt) flanked by 2Apr° | Between VP1 and 2A genes | [38] |
Coxsackievirus B3; CV-B3 (CAR) | Attenuated CV-B3/0 | MIL-4 flanked by 2Apr° | Between VP1 ja 2Apr° genes | [7] |
CV-B3 | CV-B3/0 | HAdV-2′s L1 hexon antigen | Between VP1 and 2Apr° genes | [39] |
CV-B3 | CV-B3 H3 | GFP | Between 5′ UTR region and VP4 gene | [40] |
CV-B3 | CV-B3 H3 | GFP | Between 5′ UTR and VP4 gene | [9] |
Coxsackievirus B4; CV-B4 (CAR) | Attenuated CV-B4 JVB | Ovalbumin gene | DE loop of the VP1 gene | [28] |
CV-B4 | Attenuated CV-B4 JVB | HIV-1 p24gag gene fragments | Between 5′ UTR region and VP4 gene and within VP1 gene | [41] |
Coxsackievirus A9; CV-A9 (αVβ3, αVβ6, β2M) | Griggs | eGFP | Between VP1 and 2A gene | [18] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ylä-Pelto, J.; Tripathi, L.; Susi, P. Therapeutic Use of Native and Recombinant Enteroviruses. Viruses 2016, 8, 57. https://doi.org/10.3390/v8030057
Ylä-Pelto J, Tripathi L, Susi P. Therapeutic Use of Native and Recombinant Enteroviruses. Viruses. 2016; 8(3):57. https://doi.org/10.3390/v8030057
Chicago/Turabian StyleYlä-Pelto, Jani, Lav Tripathi, and Petri Susi. 2016. "Therapeutic Use of Native and Recombinant Enteroviruses" Viruses 8, no. 3: 57. https://doi.org/10.3390/v8030057
APA StyleYlä-Pelto, J., Tripathi, L., & Susi, P. (2016). Therapeutic Use of Native and Recombinant Enteroviruses. Viruses, 8(3), 57. https://doi.org/10.3390/v8030057