Constraints on the Genetic and Antigenic Variability of Measles Virus
Abstract
:1. Introduction
2. Genotypic Heterogeneity in Measles Virus
3. Serology, Genotypes, and Antigenic Diversity
4. High Genetic Stability of MeV in the Lab and in the Field
5. Mechanisms of Mutagenesis and Constraints on Mutation
6. Variation in the Mutational Tolerance across Coding Regions
6.1. The N Protein
6.2. The P/V/C Proteins
6.3. The M Protein
6.4. The F and H Proteins
6.5. The L Protein
7. Variation in Mutational Tolerance across Non-Coding Regions
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bellini, W.J.; Englund, G.; Rozenblatt, S.; Arnheiter, H.; Richardson, C.D. Measles virus P gene codes for two proteins. J. Virol. 1985, 53, 908–919. [Google Scholar] [PubMed]
- Cattaneo, R.; Kaelin, K.; Baczko, K.; Billeter, M.A. Measles virus editing provides an additional cysteine-rich protein. Cell 1989, 56, 759–764. [Google Scholar] [CrossRef]
- WHO Global Surveillance. Weekly Epidemiological Record Relevé Épidémiologique Hebdomadaire; World Health Organization: Geneva, Switzerland, 2012; Volume 204, pp. 73–80. [Google Scholar]
- Rota, P.A.; Brown, K.; Mankertz, A.; Santibanez, S.; Shulga, S.; Muller, C.P.; Hübschen, J.M.; Siqueira, M.; Beirnes, J.; Ahmed, H.; et al. Global Distribution of Measles Genotypes and Measles Molecular Epidemiology. J. Infect. Dis. 2011, 204, S514–S523. [Google Scholar] [CrossRef] [PubMed]
- Rota, P.A.; Bellini, W.J. Update on the global distribution of genotypes of wild type measles viruses. J. Infect. Dis. 2003, 187 (Suppl. S1), S270–S276. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Immunization, Vaccines and Biologicals—Measles Surveillance Data. Regional Summary of Reported Measles Cases. Available online: http://www.who.int/immunization/monitoring_surveillance/burden/vpd/surveillance_type/active/measles_monthlydata/en/index1.html (accessed on 30 March 2016).
- Tamin, A.; Rota, P.A.; Wang, Z.D.; Heath, J.L.; Anderson, L.J.; Bellini, W.J. Antigenic analysis of current wild type and vaccine strains of measles virus. J. Infect. Dis. 1994, 170, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Santibanez, S.; Niewiesk, S.; Heider, A.; Schneider-Schaulies, J.; Berbers, G.A.M.; Zimmermann, A.; Halenius, A.; Wolbert, A.; Deitemeier, I.; Tischer, A.; et al. Probing neutralizing-antibody responses against emerging measles viruses (MVs): Immune selection of MV by H protein-specific antibodies? J. Gen. Virol. 2005, 86, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Kühne, M.; Brown, D.W.G.; Jin, L. Genetic variability of measles virus in acute and persistent infections. Infect. Genet. Evol. 2006, 6, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Riddell, M.A.; Rota, J.S.; Rota, P.A. Review of the temporal and geographical distribution of measles virus genotypes in the prevaccine and postvaccine eras. Virol. J. 2005, 2. [Google Scholar] [CrossRef] [PubMed]
- Schneider-Schaulies, J.; Niewiesk, S.; Schneider-Schaulies, S.; ter Meulen, V. Measles virus in the CNS: The role of viral and host factors for the establishment and maintenance of a persistent infection. J. Neurovirol. 1999, 5, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Bellini, W.J.; Rota, J.S.; Lowe, L.E.; Katz, R.S.; Dyken, P.R.; Zaki, S.R.; Shieh, W.-J.; Rota, P.A. Subacute sclerosing panencephalitis: More cases of this fatal disease are prevented by measles immunization than was previously recognized. J. Infect. Dis. 2005, 192, 1686–1693. [Google Scholar] [CrossRef] [PubMed]
- Bitnun, A.; Shannon, P.; Durward, A.; Rota, P.A.; Bellini, W.J.; Graham, C.; Wang, E.; Ford-Jones, E.L.; Cox, P.; Becker, L.; et al. Measles inclusion-body encephalitis caused by the vaccine strain of measles virus. Clin. Infect. Dis. 1999, 29, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Hardie, D.R.; Albertyn, C.; Heckmann, J.M.; Smuts, H.E.M. Molecular characterisation of virus in the brains of patients with measles inclusion body encephalitis (MIBE). Virol. J. 2013, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivancic-Jelecki, J.; Baricevic, M.; Santak, M.; Harcet, M.; Tešović, G.; Marusic Della Marina, B.; Forcic, D. The first genetic characterization of a D4 measles virus strain derived from a patient with subacute sclerosing panencephalitis. Infect. Genet. Evol. 2013, 17, 71–78. [Google Scholar] [PubMed]
- Jiang, D.-P.; Ide, Y.-H.; Nagano-Fujii, M.; Shoji, I.; Hotta, H. Single-point mutations of the M protein of a measles virus variant obtained from a patient with subacute sclerosing panencephalitis critically affect solubility and subcellular localization of the M protein and cell-free virus production. Microbes Infect. 2009, 11, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Hotta, H.; Nihei, K.; Abe, Y.; Kato, S.; Jiang, D.-P.; Nagano-Fujii, M.; Sada, K. Full-length sequence analysis of subacute sclerosing panencephalitis (SSPE) virus, a mutant of measles virus, isolated from brain tissues of a patient shortly after onset of SSPE. Microbiol. Immunol. 2006, 50, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Miki, K.; Komase, K.; Mgone, C.S.; Kawanishi, R.; Iijima, M.; Mgone, J.M.; Asuo, P.G.; Alpers, M.P.; Takasu, T.; Mizutani, T. Molecular analysis of measles virus genome derived from SSPE and acute measles patients in Papua, New Guinea. J. Med. Virol. 2002, 68, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Woelk, C.H.; Pybus, O.G.; Jin, L.; Brown, D.W.G.; Holmes, E.C. Increased positive selection pressure in persistent (SSPE) versus acute measles virus infections. J. Gen. Virol. 2002, 83, 1419–1430. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Beard, S.; Hunjan, R.; Brown, D.W.; Miller, E. Characterization of measles virus strains causing SSPE: A study of 11 cases. J. Neurovirol. 2002, 8, 335–344. [Google Scholar] [PubMed]
- Schönberger, K.; Ludwig, M.S.; Wildner, M.; Weissbrich, B. Epidemiology of Subacute Sclerosing Panencephalitis (SSPE) in Germany from 2003 to 2009: A Risk Estimation. PLoS ONE 2013, 8, e68909. [Google Scholar] [CrossRef] [PubMed]
- Klingele, M.; Hartter, H.K.; Adu, F.; Ammerlaan, W.; Ikusika, W.; Muller, C.P. Resistance of recent measles virus wild-type isolates to antibody-medicated neutralization by vaccinees with antibody. J. Med. Virol. 2000, 62, 91–98. [Google Scholar] [CrossRef]
- Perry, R.T.; Gacic-Dobo, M.; Dabbagh, A.; Mulders, M.N.; Strebel, P.M.; Okwo-Bele, J.-M.; Rota, P.A.; Goodson, J.L. Global control and regional elimination of measles, 2000–2012. MMWR Morb. Mortal. Wkly. Rep. 2014, 63, 103–107. [Google Scholar] [PubMed]
- Muscat, M.; Bang, H.; Wohlfahrt, J.; Glismann, S.; Mølbak, K. Measles in Europe: An epidemiological assessment. Lancet 2009, 373, 383–389. [Google Scholar] [CrossRef]
- Bouche, F.B.; Ertl, O.T.; Muller, C.P. Neutralizing B cell response in measles. Viral Immunol. 2002, 15, 451–471. [Google Scholar] [CrossRef] [PubMed]
- Ertl, O.T.; Wenz, D.C.; Bouche, F.B.; Berbers, G.A.M.; Muller, C.P. Immunodominant domains of the Measles virus hemagglutinin protein eliciting a neutralizing human B cell response. Arch. Virol. 2003, 148, 2195–2206. [Google Scholar] [CrossRef] [PubMed]
- Fournier, P.; Brons, N.H.C.; Berbers, G.A.M.; Wiesmüller, K.H.; Fleckenstein, B.T.; Schneider, F.; Jung, G.; Muller, C.P. Antibodies to a new linear site at the topographical or functional interface between the haemagglutinin and fusion proteins protect against measles encephalitis. J. Gen. Virol. 1997, 78, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, D.; Fournier, P.; Berbers, G.A.; Steuer, H.; Wiesmüller, K.H.; Fleckenstein, B.; Schneider, F.; Jung, G.; King, C.C.; Muller, C.P. Protection against measles virus encephalitis by monoclonal antibodies binding to a cystine loop domain of the H protein mimicked by peptides which are not recognized by maternal antibodies. J. Gen. Virol. 1996, 77, 2479–2489. [Google Scholar] [CrossRef] [PubMed]
- Liebert, U.G.; Flanagan, S.G.; Löffler, S.; Baczko, K.; ter Meulen, V.; Rima, B.K. Antigenic determinants of measles virus hemagglutinin associated with neurovirulence. J. Virol. 1994, 68, 1486–1493. [Google Scholar] [PubMed]
- Hu, A.; Sheshberadaran, H.; Norrby, E.; Kövamees, J. Molecular characterization of epitopes on the measles virus hemagglutinin protein. Virology 1993, 192, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.J.; Willcocks, M.M.; Löffler, S.; ter Meulen, V. Relationships between Monocional Antibody-binding Sites on the Measles Virus Haemagglutinin. J.Gen. Virol. 1982, 63, 113–120. [Google Scholar] [CrossRef] [PubMed]
- De Swart, R.L.; Yüksel, S.; Osterhaus, A.D.M.E. Relative contributions of measles virus hemagglutinin- and fusion protein-specific serum antibodies to virus neutralization. J. Virol. 2005, 79, 11547–11551. [Google Scholar] [CrossRef] [PubMed]
- Tahara, M.; Ito, Y.; Brindley, M.A.; Ma, X.; He, J.; Xu, S.; Fukuhara, H.; Sakai, K.; Komase, K.; Rota, P.A.; et al. Functional and structural characterization of neutralizing epitopes of measles virus hemagglutinin protein. J. Virol. 2013, 87, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Tahara, M.; Ohno, S.; Sakai, K.; Ito, Y.; Fukuhara, H.; Komase, K.; Brindley, M.A.; Rota, P.A.; Plemper, R.K.; Maenaka, K.; et al. The receptor-binding site of the measles virus hemagglutinin protein itself constitutes a conserved neutralizing epitope. J. Virol. 2013, 87, 3583–3586. [Google Scholar] [CrossRef] [PubMed]
- Lech, P.J.; Tobin, G.J.; Bushnell, R.; Gutschenritter, E.; Pham, L.D.; Nace, R.; Verhoeyen, E.; Cosset, F.L.; Muller, C.P.; Russell, S.J.; et al. Epitope Dampening Monotypic Measles Virus Hemagglutinin Glycoprotein Results in Resistance to Cocktail of Monoclonal Antibodies. PLoS ONE 2013, 8, e52306. [Google Scholar] [CrossRef] [PubMed]
- Fulton, B.O.; Sachs, D.; Beaty, S.M.; Won, S.T.; Lee, B.; Palese, P.; Heaton, N.S. Mutational Analysis of Measles Virus Suggests Constraints on Antigenic Variation of the Glycoproteins. Cell Rep. 2015, 11, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Borges, M.B.; Caride, E.; Jabor, A.V.; Malachias, J.M.N.; Freire, M.S.; Homma, A.; Galler, R. Study of the genetic stability of measles virus CAM-70 vaccine strain after serial passages in chicken embryo fibroblasts primary cultures. Virus Genes 2008, 36, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Baricević, M.; Forcić, D.; Gulija, T.K.; Jug, R.; Mazuran, R. Determination of the coding and non-coding nucleotide sequences of genuine Edmonston-Zagreb master seed and current working seed lot. Vaccine 2005, 23, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Rima, B.K.; Earle, J.A.; Yeo, R.P.; Herlihy, L.; Baczko, K.; ter Meulen, V.; Carabaña, J.; Caballero, M.; Celma, M.L.; Fernandez-Muñoz, R. Temporal and geographical distribution of measles virus genotypes. J. Gen. Virol. 1995, 76 Pt 5, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Rota, P.; Featherstone, D.; Bellini, W. Molecular epidemiology of measles virus. Curr. Top. Microbiol. Immunol. 2009, 330, 129–150. [Google Scholar]
- Rima, B.K.; Mcferran, N.V. Dinucleotide and stop codon frequencies in single-stranded RNA viruses. J. Gen. Virol. 1997, 78, 2859–2870. [Google Scholar] [CrossRef] [PubMed]
- El Mubarak, H.S.; van de Bildt, M.W.G.; Mustafa, O.A.; Vos, H.W.; Mukhtar, M.M.; Ibrahim, S.A.; Andeweg, A.C.; El Hassan, A.M.; Osterhaus, A.D.M.E.; de Swart, R.L. Genetic characterization of wild-type measles viruses circulating in suburban Khartoum, 1997–2000. J. Gen. Virol. 2002, 83, 1437–1443. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, G.M.; Rambaut, A.; Pybus, O.G.; Holmes, E.C. Rates of molecular evolution in RNA viruses: A quantitative phylogenetic analysis. J. Mol. Evol. 2002, 54, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Gojobori, T.; Moriyama, E.N.; Kimura, M. Molecular clock of viral evolution, and the neutral theory. Proc. Natl. Acad. Sci. USA 1990, 87, 10015–10018. [Google Scholar] [CrossRef] [PubMed]
- Leitner, T.; Albert, J. The molecular clock of HIV-1 unveiled through analysis of a known transmission history. Proc. Natl. Acad. Sci. USA 1999, 96, 10752–10757. [Google Scholar] [CrossRef] [PubMed]
- Gorman, O.T.; Bean, W.J.; Kawaoka, Y.; Webster, R.G. Evolution of the nucleoprotein gene of influenza A virus. J. Virol. 1990, 64, 1487–1497. [Google Scholar] [PubMed]
- Martínez, M.A.; Dopazo, J.; Hernández, J.; Mateu, M.G.; Sobrino, F.; Domingo, E.; Knowles, N.J. Evolution of the capsid protein genes of foot-and-mouth disease virus: Antigenic variation without accumulation of amino acid substitutions over six decades. J. Virol. 1992, 66, 3557–3565. [Google Scholar] [PubMed]
- Rima, B.K.; Earle, J.A.; Baczko, K.; ter Meulen, V.; Liebert, U.G.; Carstens, C.; Carabaña, J.; Caballero, M.; Celma, M.L.; Fernandez-Muñoz, R. Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. J. Gen. Virol. 1997, 78 Pt 1, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Furuse, Y.; Suzuki, A.; Oshitani, H. Origin of measles virus: Divergence from rinderpest virus between the 11th and 12th centuries. Virol. J. 2010, 7. [Google Scholar] [CrossRef] [PubMed]
- Pomeroy, L.W.; Bjørnstad, O.N.; Holmes, E.C. The evolutionary and epidemiological dynamics of the paramyxoviridae. J. Mol. Evol. 2008, 66, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Saitoh, M.; Kobayashi, M.; Ishii, H.; Saraya, T.; Kurai, D.; Tsukagoshi, H.; Shirabe, K.; Nishina, A.; Kozawa, K.; et al. Molecular evolution of haemagglutinin (H) gene in measles virus. Sci. Rep. 2015, 5, 11648. [Google Scholar] [CrossRef] [PubMed]
- Monne, I.; Fusaro, A.; Valastro, V.; Citterio, C.; Pozza, M.D.; Obber, F.; Trevisiol, K.; Cova, M.; De Benedictis, P.; Bregoli, M.; et al. A distinct CDV genotype causing a major epidemic in Alpine wildlife. Vet. Microbiol. 2011, 150, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Padhi, A.; Ma, L. Genetic and epidemiological insights into the emergence of peste des petits ruminants virus (PPRV) across Asia and Africa. Sci. Rep. 2014, 4, 7040. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.J.; Kim, L.M.; Ip, H.S.; Afonso, C.L. Evolutionary dynamics of Newcastle disease virus. Virology 2009, 391, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Ramey, A.M.; Reeves, A.B.; Ogawa, H.; Ip, H.S.; Imai, K.; Bui, V.N.; Yamaguchi, E.; Silko, N.Y.; Afonso, C.L. Genetic diversity and mutation of avian paramyxovirus serotype 1 (Newcastle disease virus) in wild birds and evidence for intercontinental spread. Arch. Virol. 2013, 158, 2495–2503. [Google Scholar] [CrossRef] [PubMed]
- Chong, Y.L.; Padhi, A.; Hudson, P.J.; Poss, M. The effect of vaccination on the evolution and population dynamics of avian paramyxovirus-1. PLoS Pathog. 2010, 6, e1000872. [Google Scholar] [CrossRef] [PubMed]
- Beck, E.T.; He, J.; Nelson, M.I.; Bose, M.E.; Fan, J.; Kumar, S.; Henrickson, K.J. Genome sequencing and phylogenetic analysis of 39 human parainfluenza virus type 1 strains isolated from 1997–2010. PLoS ONE 2012, 7, e46048. [Google Scholar] [CrossRef] [PubMed]
- Mizuta, K.; Saitoh, M.; Kobayashi, M.; Tsukagoshi, H.; Aoki, Y.; Ikeda, T.; Abiko, C.; Katsushima, N.; Itagaki, T.; Noda, M.; et al. Detailed genetic analysis of hemagglutinin-neuraminidase glycoprotein gene in human parainfluenza virus type 1 isolates from patients with acute respiratory infection between 2002 and 2009 in Yamagata prefecture, Japan. Virol. J. 2011, 8. [Google Scholar] [CrossRef] [PubMed]
- Kiptinness, J.K.; Wurapa, E.K.; Wamunyokoli, F.; Bulimo, W.D. Molecular characterization of human parainfluenza virus type 1 in infants attending Mbagathi District Hospital, Nairobi, Kenya: A retrospective study. Virus Genes 2013, 47, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Mizuta, K.; Tsukagoshi, H.; Ikeda, T.; Aoki, Y.; Abiko, C.; Itagaki, T.; Nagano, M.; Noda, M.; Kimura, H. Molecular evolution of the haemagglutinin-neuraminidase gene in human parainfluenza virus type 3 isolates from children with acute respiratory illness in Yamagata prefecture, Japan. J. Med. Microbiol. 2014, 63, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.A.; Hassan, S.S.; Olival, K.J.; Mohamed, M.; Chang, L.Y.; Hassan, L.; Saad, N.M.; Shohaimi, S.A.; Mamat, Z.C.; Naim, M.S.; et al. Characterization of Nipah virus from naturally infected Pteropus vampyrus bats, Malaysia. Emerg. Infect. Dis. 2010, 16, 1990–1993. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-F.; Wang, C.K.; Tollefson, S.J.; Piyaratna, R.; Lintao, L.D.; Chu, M.; Liem, A.; Mark, M.; Spaete, R.R.; Crowe, J.E.; et al. Genetic diversity and evolution of human metapneumovirus fusion protein over twenty years. Virol. J. 2009, 6. [Google Scholar] [CrossRef] [PubMed]
- De Graaf, M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M.; Holmes, E.C. Evolutionary dynamics of human and avian metapneumoviruses. J. Gen. Virol. 2008, 89, 2933–2942. [Google Scholar] [CrossRef] [PubMed]
- Padhi, A.; Verghese, B. Positive natural selection in the evolution of human metapneumovirus attachment glycoprotein. Virus Res. 2008, 131, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Coenjaerts, F.E.J.; Houspie, L.; Viveen, M.C.; van Bleek, G.M.; Wiertz, E.J.H.J.; Martin, D.P.; Lemey, P. The comparative genomics of human respiratory syncytial virus subgroups A and B: Genetic variability and molecular evolutionary dynamics. J. Virol. 2013, 87, 8213–8226. [Google Scholar] [CrossRef] [PubMed]
- Zlateva, K.T.; Lemey, P.; Vandamme, A.; Van Ranst, M. Molecular Evolution and Circulation Patterns of Human Respiratory Syncytial Virus Subgroup A: Positively Selected Sites in the Attachment G Glycoprotein Molecular Evolution and Circulation Patterns of Human Respiratory Syncytial Virus Subgroup A: Positi. J. Virol. 2004, 78, 4675–4683. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Kiyota, N.; Kobayashi, M.; Nishimura, K.; Tsutsui, R.; Tsukagoshi, H.; Hirano, E.; Yamamoto, N.; Ryo, A.; Saitoh, M.; et al. Molecular epidemiology of the attachment glycoprotein (G) gene in respiratory syncytial virus in children with acute respiratory infection in Japan in 2009/2010. J. Med. Microbiol. 2012, 61, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Matheson, J.W.; Rich, F.J.; Cohet, C.; Grimwood, K.; Huang, Q.S.; Penny, D.; Hendy, M.D.; Kirman, J.R.; Bobek, V.; Kolostova, K.; et al. Distinct Patterns of Evolution Between Respiratory Syncytial Virus Subgroups A and B From New Zealand Isolates Collected Over Thirty-Seven Years. Anticancer Res. 2006, 30, 4799–4804. [Google Scholar] [CrossRef] [PubMed]
- Tsukagoshi, H.; Yokoi, H.; Kobayashi, M.; Kushibuchi, I.; Okamoto-Nakagawa, R.; Yoshida, A.; Morita, Y.; Noda, M.; Yamamoto, N.; Sugai, K.; et al. Genetic analysis of attachment glycoprotein (G) gene in new genotype ON1 of human respiratory syncytial virus detected in Japan. Microbiol. Immunol. 2013, 57, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Kushibuchi, I.; Kobayashi, M.; Kusaka, T.; Tsukagoshi, H.; Ryo, A.; Yoshida, A.; Ishii, H.; Saraya, T.; Kurai, D.; Yamamoto, N.; et al. Molecular evolution of attachment glycoprotein (G) gene in human respiratory syncytial virus detected in Japan 2008–2011. Infect. Genet. Evol. 2013, 18, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Pretorius, M.A.; Van Niekerk, S.; Tempia, S.; Moyes, J.; Cohen, C.; Madhi, S.A.; Venter, M. Replacement and positive evolution of subtype A and B respiratory syncytial virus G-protein genotypes from 1997–2012 in South Africa. J. Infect. Dis. 2013, 208, S227–S237. [Google Scholar] [CrossRef] [PubMed]
- Malasao, R.; Okamoto, M.; Chaimongkol, N.; Imamura, T.; Tohma, K.; Dapat, I.; Dapat, C.; Suzuki, A.; Saito, M.; Saito, M.; et al. Molecular characterization of human respiratory syncytial virus in the Philippines, 2012–2013. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Trento, A.; Viegas, M.; Galiano, M.; Carballal, G.; Mistchenko, A.S.; Melero, A.; Videla, C. Natural History of Human Respiratory Syncytial Virus Inferred from Phylogenetic Analysis of the Attachment (G) Glycoprotein with a 60-Nucleotide Duplication. J. Viol. 2006, 80, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Buonagurio Nakada, S.; PArvin, J.D.; Krystal, M.; Palese, P.; Fitch, W.M.D.A. Evolution of human influenza A viruses over 50 years: Rapid, uniform rate of change in NS gene. Science 1986, 232, 980–982. [Google Scholar] [CrossRef]
- Hanada, K.; Suzuki, Y.; Gojobori, T. A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes. Mol. Biol. Evol. 2004, 21, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Rima, B.K.; Duprex, W.P. Molecular mechanisms of measles virus persistence. Virus Res. 2005, 111, 132–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rima, B.K.; Gatherer, D.; Young, D.F.; Norsted, H.; Randall, R.E.; Davison, A.J. Stability of the Parainfluenza Virus 5 Genome Revealed by Deep Sequencing of Strains Isolated from Different Hosts and following Passage in Cell Culture. J. Virol. 2014, 88, 3826–3836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, L.; Örvell, C.; Myers, R.; Rota, P.A.; Nakayama, T.; Forcic, D.; Hiebert, J.; Brown, K.E. Genomic diversity of mumps virus and global distribution of the 12 genotypes. Rev. Med. Virol. 2015, 25, 85–101. [Google Scholar] [CrossRef] [PubMed]
- Cui, A.; Brown, D.W.G.; Xu, W.; Jin, L. Genetic Variation in the HN and SH Genes of Mumps Viruses: A Comparison of Strains from Mumps Cases with and without Neurological Symptoms. PLoS ONE 2013, 8, e61791. [Google Scholar] [CrossRef] [PubMed]
- Halpin, K.; Young, P.L.; Field, H.E.; Mackenzie, J.S. Isolation of Hendra virus from pteropid bats: A natural reservoir of Hendra virus. J. Gen. Virol. 2000, 81, 1927–1932. [Google Scholar] [CrossRef] [PubMed]
- AbuBakar, S.; Chang, L.-Y.; Ali, A.R.M.; Sharifah, S.H.; Yusoff, K.; Zamrod, Z. Isolation and molecular identification of Nipah virus from pigs. Emerg. Infect. Dis. 2004, 10, 2228–2230. [Google Scholar] [CrossRef] [PubMed]
- Chua, K.B.; Lek Koh, C.; Hooi, P.S.; Wee, K.F.; Khong, J.H.; Chua, B.H.; Chan, Y.P.; Lim, M.E.; Lam, S.K. Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infect. 2002, 4, 145–151. [Google Scholar] [CrossRef]
- Drake, J.W.; Holland, J.J. Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. USA 1999, 96, 13910–13913. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.J.; De La Torre, J.C.; Steinhauer, D.A. RNA virus populations as quasispecies. Curr. Top. Microbiol. Immunol. 1992, 176, 1–20. [Google Scholar] [PubMed]
- Cattaneo, R.; Billeter, M.A. Genetic Diversity of RNA Viruses; Holland, J.J., Ed.; Current Topics in Microbiology and Immunology; Springer: Berlin, Germany; Heidelberg, Germany, 1992; Volume 176. [Google Scholar]
- Zhang, X.; Rennick, L.J.; Duprex, W.P.; Rima, B.K. Determination of spontaneous mutation frequencies in measles virus under nonselective conditions. J. Virol. 2013, 87, 2686–2692. [Google Scholar] [CrossRef] [PubMed]
- Schrag, S.J.; Rota, P.A.; Bellini, W.J. Spontaneous mutation rate of measles virus: Direct estimation based on mutations conferring monoclonal antibody resistance. J. Virol. 1999, 73, 51–54. [Google Scholar] [PubMed]
- Hughes, A.L.; Hughes, M.A.K. More effective purifying selection on RNA viruses than in DNA viruses. Gene 2007, 404, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Kolakofsky, D.; Pelet, T.; Garcin, D.; Hausmann, S.; Curran, J.; Roux, L. Paramyxovirus RNA synthesis and the requirement for hexamer genome length: The rule of six revisited. J. Virol. 1998, 72, 891–899. [Google Scholar] [PubMed]
- Bankamp, B.; Liu, C.; Rivailler, P.; Bera, J.; Shrivastava, S.; Kirkness, E.F.; Bellini, W.J.; Rota, P.A. Wild-type measles viruses with non-standard genome lengths. PLoS ONE 2014, 9, e95470. [Google Scholar] [CrossRef] [PubMed]
- Cordey, S.; Roux, L. Further characterization of a paramyxovirus transcription initiation signal: Search for required nucleotides upstream and importance of the N phase context. J. Gen. Virol. 2007, 88, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.M. RNA recombination in animal and plant viruses. Microbiol. Rev. 1992, 56, 61–79. [Google Scholar] [PubMed]
- Han, G.Z.; Worobey, M. Homologous recombination in negative sense RNA viruses. Viruses 2011, 3, 1358–1373. [Google Scholar] [CrossRef] [PubMed]
- Schierup, M.H.; Mordhorst, C.H.; Muller, C.P.; Christensen, L.S. Evidence of recombination among early-vaccination era measles virus strains. BMC Evol. Biol. 2005, 5. [Google Scholar] [CrossRef] [PubMed]
- Chare, E.R.; Gould, E.A.; Holmes, E.C. Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J. Gen. Virol. 2003, 84, 2691–2703. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Kao, E.; Gao, X.; Sandig, H.; Limmer, K.; Pavon-Eternod, M.; Jones, T.E.; Landry, S.; Pan, T.; Weitzman, M.D.; et al. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature 2012, 491, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Rima, B.K. Nucleotide sequence conservation in paramyxoviruses; the concept of codon constellation. J. Gen. Virol. 2015, 96, 939–955. [Google Scholar] [CrossRef] [PubMed]
- Bass, B.L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 2002, 71, 817–846. [Google Scholar] [CrossRef] [PubMed]
- Woelk, C.H.; Jin, L.; Holmes, E.C.; Brown, D.W. Immune and artificial selection in the haemagglutinin (H) glycoprotein of measles virus. J. Gen. Virol. 2001, 82, 2463–2474. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, R.; Schmid, A.; Rebmann, G.; Baczko, K.; ter Meulen, V.; Bellini, W.J.; Rozenblatt, S.; Billeter, M.A. Accumulated measles virus mutations in a case of subacute sclerosing panencephalitis: Interrupted matrix protein reading frame and transcription alteration. Virology 1986, 154, 97–107. [Google Scholar] [CrossRef]
- Li, Z.; Okonski, K.M.; Samuel, C.E. Adenosine Deaminase Acting on RNA 1 (ADAR1) Suppresses the Induction of Interferon by Measles Virus. J. Virol. 2012, 86, 3787–3794. [Google Scholar] [CrossRef] [PubMed]
- Toth, A.M.; Li, Z.; Cattaneo, R.; Samuel, C.E. RNA-specific adenosine deaminase ADAR1 suppresses measles virus-induced apoptosis and activation of protein kinase PKR. J. Biol. Chem. 2009, 284, 29350–29356. [Google Scholar] [CrossRef] [PubMed]
- Chambers, P.; Rima, B.K.; Duprex, W.P. Molecular differences between two Jeryl Lynn mumps virus vaccine component strains, JL5 and JL2. J. Gen. Virol. 2009, 90, 2973–2981. [Google Scholar] [CrossRef] [PubMed]
- Martínez, I.; Dopazo, J.; Melero, J.A. Antigenic structure of the human respiratory syncytial virus G glycoprotein and relevance of hypermutation events for the generation of antigenic variants. J. Gen. Virol. 1997, 78, 2419–2429. [Google Scholar] [CrossRef] [PubMed]
- Seki, F.; Yamada, K.; Nakatsu, Y.; Okamura, K.; Yanagi, Y.; Nakayama, T.; Komase, K.; Takeda, M. The SI Strain of Measles Virus Derived from a Patient with Subacute Sclerosing Panencephalitis Possesses Typical Genome Alterations and Unique Amino Acid Changes That Modulate Receptor Specificity and Reduce Membrane Fusion Activity. J. Virol. 2011, 85, 11871–11882. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, R.; Schmid, A.; Eschle, D.; Baczko, K.; ter Meulen, V.; Billeter, M.A. Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 1988, 55, 255–265. [Google Scholar] [CrossRef]
- Baczko, K.; Lampe, J.; Liebert, U.G.; Brinckmann, U.; ter Meulen, V.; Pardowitz, I.; Budka, H.; Cosby, S.L.; Isserte, S.; Rima, B.K. Clonal expansion of hypermutated measles virus in a SSPE brain. Virology 1993, 197, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.C.; Ayata, M.; Ueda, S.; Hirano, A. Role of biased hypermutation in evolution of subacute sclerosing panencephalitis virus from progenitor acute measles virus. J. Virol. 1991, 65, 2191–2199. [Google Scholar] [PubMed]
- Ahmad, S.B.; Tan, C.T. Nipah encephalitis—An update. Med. J. Malays. 2014, 69, 103–111. [Google Scholar]
- Abdullah, S.; Chang, L.Y.; Rahmat, K.; Goh, K.J.; Tan, C.T. Late-onset Nipah virus encephalitis 11 years after the initial outbreak: A case report. Neurol. Asia 2012, 17, 71–74. [Google Scholar]
- Shu, Y.; Habchi, J.; Costanzo, S.; Padilla, A.; Brunel, J.; Gerlier, D.; Oglesbee, M.; Longhi, S. Plasticity in structural and functional interactions between the phosphoprotein and nucleoprotein of measles virus. J. Biol. Chem. 2012, 287, 11951–11967. [Google Scholar] [CrossRef] [PubMed]
- Longhi, S.; Receveur-Bréchot, V.; Karlin, D.; Johansson, K.; Darbon, H.; Bhella, D.; Yeo, R.; Finet, S.; Canard, B. The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. J. Biol. Chem. 2003, 278, 18638–18648. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.R.; Communie, G.; Ribeiro, E.A.; Martinez, N.; Desfosses, A.; Salmon, L.; Mollica, L.; Gabel, F.; Jamin, M.; Longhi, S.; et al. Intrinsic disorder in measles virus nucleocapsids. Proc. Natl. Acad. Sci. USA 2011, 108, 9839–9844. [Google Scholar] [CrossRef] [PubMed]
- Karlin, D.; Ferron, F.; Canard, B.; Longhi, S. Structural disorder and modular organization in Paramyxovirinae N and P. J. Gen. Virol. 2003, 84, 3239–3252. [Google Scholar] [CrossRef] [PubMed]
- Bourhis, J.M.; Canard, B.; Longhi, S. Structural disorder within the replicative complex of measles virus: Functional implications. Virology 2006, 344, 94–110. [Google Scholar] [CrossRef] [PubMed]
- Bankamp, B.; Takeda, M.; Zhang, Y.; Xu, W.; Rota, P.A. Genetic characterization of measles vaccine strains. J. Infect. Dis. 2011, 204, 533–548. [Google Scholar] [CrossRef] [PubMed]
- Bankamp, B.; Lopareva, E.N.; Kremer, J.R.; Tian, Y.; Clemens, M.S.; Patel, R.; Fowlkes, A.L.; Kessler, J.R.; Muller, C.P.; Bellini, W.J.; et al. Genetic variability and mRNA editing frequencies of the phosphoprotein genes of wild-type measles viruses. Virus Res. 2008, 135, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Baczko, K.; Pardowitz, I.; Rima, B.K.; ter Meulen, V. Constant and variable regions of measles virus proteins encoded by the nucleocapsid and phosphoprotein genes derived from lytic and persistent viruses. Virology 1992, 190, 469–474. [Google Scholar] [CrossRef]
- Bankamp, B.; Fontana, J.M.; Bellini, W.J.; Rota, P.A. Adaptation to cell culture induces functional differences in measles virus proteins. Virol. J. 2008, 5. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M.; Kato, A.; Kobune, F.; Sakata, H.; Li, Y.; Shioda, T.; Sakai, Y.; Asakawa, M.; Nagai, Y. Measles virus attenuation associated with transcriptional impediment and a few amino acid changes in the polymerase and accessory proteins. J. Virol. 1998, 72, 8690–8696. [Google Scholar] [PubMed]
- Takeda, M.; Sakaguchi, T.; Li, Y.; Kobune, F.; Kato, A.; Nagai, Y. The genome nucleotide sequence of a contemporary wild strain of measles virus and its comparison with the classical Edmonston strain genome. Virology 1999, 256, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Devaux, P.; Cattaneo, R. Measles Virus Phosphoprotein Gene Products: Conformational Flexibility of the P/V Protein Amino-Terminal Domain and C Protein Infectivity Factor Function Measles Virus Phosphoprotein Gene Products: Conformational Flexibility of the P/V Protein Amino. J. Virol. 2004, 78, 11632–11640. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, A.; Srinivasan, N.; Shamala, N.; Shaila, M.S.; Castagne, N.; Barbier, A.; Bernard, J.; Rezaei, H.; Huet, J.-C.; Henry, C.; et al. Paramyxovirus Phosphoproteins Form Homotrimers as Determined by an Epitope Dilution Assay, via Predicted Coiled Coils. Virology 2004, 279, 23606–23614. [Google Scholar]
- Gely, S.; Lowry, D.F.; Bernard, C.; Jensen, M.R.; Blackledge, M.; Costanzo, S.; Bourhis, J.M.; Darbon, H.; Daughdrill, G.; Longhi, S. Solution structure of the C-terminal X domain of the measles virus phosphoprotein and interaction with the intrinsically disordered C-terminal domain of the nucleoprotein. J. Mol. Recognit. 2010, 23, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Melin, L.; Persson, R.; Andersson, A.; Bergstrm, A.; Rnnholrn, R.; Pettersson, R.F. Protein interactions entered into by the measles virus P, V, and C proteins. Virus Res. 1995, 36, 49–66. [Google Scholar] [CrossRef]
- Lo, M.K.; Søgaard, T.M.; Karlin, D.G. Evolution and structural organization of the C proteins of paramyxovirinae. PLoS ONE 2014, 9, e90003. [Google Scholar] [CrossRef] [PubMed]
- Kai, C.; Yamanouchi, K.; Sakata, H.; Miyashita, N.; Takahashi, H.; Fumio, K. Nucleotide Sequences of the M Gene of Prevailing Wild Measles Viruses and a Comparison with Subacute Sclerosing Panencephalitis Virus. Virus Genes 1996, 12, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Seal, B.S. Analysis of matrix protein gene nucleotide sequence diversity among Newcastle disease virus isolates demonstrates that recent disease outbreaks are caused by viruses of psittacine origin. Virus Genes 1995, 11, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.A.; Pickford, A.R.; Yates, P.J.; Forsey, T.; Minor, P.D. Matrix protein gene sequence of vaccine and vaccine-associated strains of mumps virus. J. Gen. Virol. 1994, 75, 1169–1172. [Google Scholar] [CrossRef] [PubMed]
- Cathomen, T.; Mrkic, B.; Spehner, D.; Drillien, R.; Naef, R.; Pavlovic, J.; Aguzzi, A.; Billeter, M.A.; Cattaneo, R. A matrix-less measles virus is infectious and elicits extensive cell fusion: Consequences for propagation in the brain. EMBO J. 1998, 17, 3899–3908. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, K.; Miyajima, N.; Kobune, F.; Tashiro, M. Comparative nucleotide sequence analyses of the entire genomes of B95a cell-isolated and Vero cell-isolated measles viruses from the same patient. Virus Genes 2000, 20, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Kweder, H.; Ainouze, M.; Cosby, S.L.; Muller, C.P.; Lévy, C.; Verhoeyen, E.; Cosset, F.L.; Manet, E.; Buckland, R. Mutations in the H, F, or M proteins can facilitate resistance of measles virus to neutralizing human anti-MV sera. Adv. Virol. 2014, 2014, 205617. [Google Scholar] [CrossRef] [PubMed]
- Bellini, W.J.; Rota, P.A. Genetic diversity of wild-type measles viruses: Implications for global measles elimination programs. Emerg. Infect. Dis. 1998, 4, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Santiago, C.; Celma, M.L.; Stehle, T.; Casasnovas, J.M. Structure of the measles virus hemagglutinin bound to the CD46 receptor. Nat. Struct. Mol. Biol. 2010, 17, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Tatsuo, H.; Ono, N.; Tanaka, K.; Yanagi, Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature 2000, 406, 893–897. [Google Scholar] [PubMed]
- Mühlebach, M.D.; Mateo, M.; Sinn, P.L.; Prüfer, S.; Uhlig, K.M.; Leonard, V.H.J.; Navaratnarajah, C.K.; Frenzke, M.; Wong, X.X.; Sawatsky, B.; et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 2011, 480, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Naniche, D.; Varior-krishnan, G.; Cervoni, F.; Wild, T.F.; Rossi, B.; Rabourdin-combe, C.; Gerlierl, D. Human Membrane Cofactor Protein (CD46) Acts as a Cellular Receptor for Measles Virus. J. Virol. 1993, 67, 6025–6032. [Google Scholar] [PubMed]
- Buchholz, C.J.; Koller, D.; Devaux, P.; Mumenthaler, C.; Schneider-Schaulies, J.; Braun, W.; Gerlier, D.; Cattaneo, R. Mapping of the primary binding sites of measles virus to its receptor CD46. J. Biol. Chem. 1997, 272, 22072–22079. [Google Scholar] [CrossRef] [PubMed]
- Noyce, R.S.; Bondre, D.G.; Ha, M.N.; Lin, L.T.; Sisson, G.; Tsao, M.S.; Richardson, C.D. Tumor cell marker pvrl4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog. 2011, 7, e1002240. [Google Scholar] [CrossRef] [PubMed]
- Schneider, U.; Von Messling, V.; Devaux, P.; Cattaneo, R. Efficiency of Measles Virus Entry and Dissemination through Different Receptors Efficiency of Measles Virus Entry and Dissemination through Different Receptors. Society 2002, 76, 7460–7467. [Google Scholar]
- Santiago, C.; Björling, E.; Stehle, T.; Casasnovas, J.M. Distinct kinetics for binding of the CD46 and SLAM receptors to overlapping sites in the measles virus hemagglutinin protein. J. Biol. Chem. 2002, 277, 32294–32301. [Google Scholar] [CrossRef] [PubMed]
- Leonard, V.H.J.; Sinn, P.L.; Hodge, G.; Miest, T.; Devaux, P.; Oezguen, N.; Braun, W.; McCray, P.B.; McChesney, M.B.; Cattaneo, R. Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J. Clin. Investig. 2008, 118, 2448–2458. [Google Scholar] [CrossRef] [PubMed]
- Tahara, M.; Takeda, M.; Shirogane, Y.; Hashiguchi, T.; Ohno, S.; Yanagi, Y. Measles virus infects both polarized epithelial and immune cells by using distinctive receptor-binding sites on its hemagglutinin. J. Virol. 2008, 82, 4630–4637. [Google Scholar] [CrossRef] [PubMed]
- Leonard, V.H.J.; Hodge, G.; Reyes-Del Valle, J.; McChesney, M.B.; Cattaneo, R. Measles virus selectively blind to signaling lymphocytic activation molecule (SLAM; CD150) is attenuated and induces strong adaptive immune responses in rhesus monkeys. J. Virol. 2010, 84, 3413–3420. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lu, G.; Qi, J.; Li, Y.; He, Y.; Xu, X.; Shi, J.; Zhang, C.W.-H.; Yan, J.; Gao, G.F. Structure of measles virus hemagglutinin bound to its epithelial receptor nectin-4. Nat. Struct. Mol. Biol. 2013, 20, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Chatziandreou, N.; Stock, N.; Young, D.; Andrejeva, J.; Hagmaier, K.; McGeoch, D.J.; Randall, R.E. Relationships and host range of human, canine, simian and porcine isolates of simian virus 5 (parainfluenza virus 5). J. Gen. Virol. 2004, 85, 3007–3016. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Jardetzky, T.S.; Lamb, R.A. Timing is everything: Fine-tuned molecular machines orchestrate paramyxovirus entry. Virology 2015, 479–480, 518–531. [Google Scholar] [CrossRef] [PubMed]
- Plattet, P.; Plemper, R.K. Envelope protein dynamics in paramyxovirus entry. MBio 2013, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Dochow, M.; Krumm, S.A.; Crowe, J.E.; Moore, M.L.; Plemper, R.K. Independent structural domains in Paramyxovirus polymerase protein. J. Biol. Chem. 2012, 287, 6878–6891. [Google Scholar] [CrossRef] [PubMed]
- Parks, C.L.; Lerch, R.A.; Walpita, P.; Wang, H.P.; Sidhu, M.S.; Udem, S.A. Comparison of predicted amino acid sequences of measles virus strains in the Edmonston vaccine lineage. J. Virol. 2001, 75, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Wise, M.G.; Sellers, H.S.; Alvarez, R.; Seal, B.S. RNA-dependent RNA polymerase gene analysis of worldwide Newcastle disease virus isolates representing different virulence types and their phylogenetic relationship with other members of the paramyxoviridae. Virus Res. 2004, 104, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Horikami, S.M.; Smallwood, S.; Bankamp, B.; Moyer, S.A. An amino-proximal domain of the L protein binds to the P protein in the measles virus RNA polymerase complex. Virology 1994, 205, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, M.S.; Menonna, J.P.; Cook, S.D.; Dowling, P.C.; Udem, S.A. Canine distemper virus L gene: Sequence and comparison with related viruses. Virology 1993, 193, 50–65. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Lin, C.; Wang, X. [Nucleotide sequence of the noncoding regions of measles virus stain CC-47 and comparison with other measles viruses]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 2001, 15, 327–331. [Google Scholar] [PubMed]
- Parks, C.L.; Lerch, R.A.; Walpita, P.; Wang, H.; Sidhu, M.S.; Udem, S.A. Analysis of the Noncoding Regions of Measles Virus Strains in the Edmonston Vaccine Lineage. Society 2001, 75, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Bankamp, B.; Hodge, G.; McChesney, M.B.; Bellini, W.J.; Rota, P.A. Genetic changes that affect the virulence of measles virus in a rhesus macaque model. Virology 2008, 373, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Bankamp, B.; Xu, W.; Bellini, W.J.; Rota, P.A. The genomic termini of wild-type and vaccine strains of measles virus. Virus Res. 2006, 122, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Skiadopoulos, M.H.; Surman, S.; Tatem, J.M.; Paschalis, M.; Wu, S.L.; Udem, S.A.; Durbin, A.P.; Collins, P.L.; Murphy, B.R. Identification of mutations contributing to the temperature-sensitive, cold-adapted, and attenuation phenotypes of the live-attenuated cold-passage 45 (cp45) human parainfluenza virus 3 candidate vaccine. J. Virol. 1999, 73, 1374–1381. [Google Scholar] [PubMed]
- Kim, S.-H.; Samal, S.K. Role of untranslated regions in regulation of gene expression, replication, and pathogenicity of Newcastle disease virus expressing green fluorescent protein. J. Virol. 2010, 84, 2629–2634. [Google Scholar] [CrossRef] [PubMed]
- Rennick, L.J.; Duprex, W.P.; Rima, B.K. Measles virus minigenomes encoding two autofluorescent proteins reveal cell-to-cell variation in reporter expression dependent on viral sequences between the transcription units. J. Gen. Virol. 2007, 88, 2710–2718. [Google Scholar] [CrossRef] [PubMed]
- Edworthy, N.L.; Easton, A.J. Mutational analysis of the avian pneumovirus conserved transcriptional gene start sequence identifying critical residues. J. Gen. Virol. 2005, 86, 3343–3347. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.E.; von Messling, V. Region between the canine distemper virus M and F genes modulates virulence by controlling fusion protein expression. J. Virol. 2008, 82, 10510–10518. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M.; Ohno, S.; Seki, F.; Nakatsu, Y.; Tahara, M.; Yanagi, Y. Long untranslated regions of the measles virus M and F genes control virus replication and cytopathogenicity. J. Virol. 2005, 79, 14346–14354. [Google Scholar] [CrossRef] [PubMed]
- Sinitsyna, O.A.; Khudaverdyan, O.E.; Steinberg, L.L.; Nagieva, F.G.; Lotte, V.D.; Dorofeeva, L.V.; Rozina, E.E.; Boriskin, Y.S. Further-attenuated measles vaccine: Virus passages affect viral surface protein expression, immunogenicity and histopathology pattern in vivo. Res. Virol. 1990, 141, 517–531. [Google Scholar] [CrossRef]
- Valsamakis, A.; Schneider, H.; Auwaerter, P.G.; Kaneshima, H.; Billeter, M.A.; Griffin, D.E. Recombinant measles viruses with mutations in the C, V, or F gene have altered growth phenotypes in vivo. J. Virol. 1998, 72, 7754–7761. [Google Scholar] [PubMed]
- Heider, A.; Santibanez, S.; Tischer, A.; Gerike, E.; Tikhonova, N.; Ignatyev, G.; Mrazova, M.; Enders, G.; Schreier, E. Comparative investigation of the long non-coding M-F genome region of wild-type and vaccine measles viruses. Arch. Virol. 1997, 142, 2521–2528. [Google Scholar] [CrossRef] [PubMed]
- Baricevic, M.; Forcic, D.; Santak, M.; Mazuran, R. A comparison of complete untranslated regions of measles virus genomes derived from wild-type viruses and SSPE brain tissues. Virus Genes 2007, 35, 17–27. [Google Scholar] [CrossRef] [PubMed]
Family or Subfamily | Genus/Species | Substitution Rate Substitutions/Base/Year (× 10−4) | References |
---|---|---|---|
Paramyxovirinae | Morbillivirus | ||
MeV | 3.4–9.02 | [19,43,48,49,50,51] | |
CDV | 10.53–11.65 | [50,52] | |
PPRV | 6.9–13.4 | [53] | |
Rubulavirus | |||
MuV | 2.5–9.168 | [43,50] | |
Avulavirus | |||
NDV | 5.04–13.5 | [54,55,56] | |
Respirovirus | |||
HPIV-1 | 2.2–13.7 | [43,57,58,59] | |
HPIV-3 | 11.0 | [60] | |
Henipavirus | |||
NiV | 5 | [61] | |
Pneumovirinae | Metapneumovirus | ||
HMPV | 7.12–64.9 | [62,63,64] | |
Pneumovirus | |||
HRSV-A | 6.47–63.0 | [43,65,66,67,68,69,70,71,72] | |
HRSV-B | 2.7–96.2 | [43,65,67,68,70,71,72,73] | |
Orthomyxoviridae | IFVA | 13.9–131.0 | [43,44,46,74] |
IFVB | 16–32.0 | [43,75] | |
Picornaviridae | FMDV | 14 | [43,47] |
EV71 | 34 | [43] | |
Retroviridae ** | HIV-1 | 25–130.8 | [43,44,45] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beaty, S.M.; Lee, B. Constraints on the Genetic and Antigenic Variability of Measles Virus. Viruses 2016, 8, 109. https://doi.org/10.3390/v8040109
Beaty SM, Lee B. Constraints on the Genetic and Antigenic Variability of Measles Virus. Viruses. 2016; 8(4):109. https://doi.org/10.3390/v8040109
Chicago/Turabian StyleBeaty, Shannon M., and Benhur Lee. 2016. "Constraints on the Genetic and Antigenic Variability of Measles Virus" Viruses 8, no. 4: 109. https://doi.org/10.3390/v8040109
APA StyleBeaty, S. M., & Lee, B. (2016). Constraints on the Genetic and Antigenic Variability of Measles Virus. Viruses, 8(4), 109. https://doi.org/10.3390/v8040109