The Interplay between Natural Killer Cells and Human Herpesvirus-6
Abstract
:1. Introduction
2. HHV-6 Epidemiology and Infection
3. HHV-6 Proteins
4. Interactions with the Immune System
5. NK Cells and HHV-6 Infection
5.1. NK Cells
5.2. NK Cells Role in HHV Infections
5.3. NK Cells in HHV-6 Infections
6. HHV-6 Control of NK Cell Responses
7. HHV-6 Infection and NK Cell “Memory”
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ablashi, D.; Agut, H.; Alvarez-Lafuente, R.; Clark, D.A.; Dewhurst, S.; di Luca, D.; Flamand, L.; Frenkel, N.; Gallo, R.; Gompels, U.A.; et al. Classification of HHV-6A and HHV-6B as distinct viruses. Arch. Virol. 2014, 159, 863–870. [Google Scholar] [CrossRef] [PubMed]
- De Bolle, L.; Naesens, L.; de Clercq, E. Update on human herpesvirus 6 biology, clinical features, and therapy. Clin. Microbiol. Rev. 2005, 18, 217–245. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.K.; Dominguez, G.; Pellett, P.E. Human herpesvirus 6. Clin. Microbiol. Rev. 2017, 10, 521–567. [Google Scholar]
- Santoro, F.; Kennedy, P.E.; Locatelli, G.; Malnati, M.S.; Berger, E.A.; Lusso, P. CD46 is a cellular receptor for human herpesvirus 6. Cell 1999, 99, 817–827. [Google Scholar] [CrossRef]
- Tang, H.; Serada, S.; Kawabata, A.; Ota, M.; Hayashi, E.; Naka, T.; Yamanishi, K.; Mori, Y. CD134 is a cellular receptor specific for human herpesvirus- 6B entry. Proc. Natl. Acad. Sci. USA 2013, 110, 9096–9099. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, R.; Soffritti, I.; D’Accolti, M.; Bortolotti, D.; di Luca, D.; Caselli, E. HHV-6A/6B infection of NK cells modulates the expression of miRNAs and transcription factors potentially associated to impaired NK activity. Front. Microbiol. 2017, 8, 2143. [Google Scholar] [CrossRef] [PubMed]
- Caruso, A.; Favilli, F.; Rotola, A.; Comar, M.; Horejsh, D.; Alessandri, G.; Grassi, M.; di Luca, D.; Fiorentini, S. Human herpesvirus-6 modulates RANTES production in primary human endothelial cell cultures. J. Med. Virol. 2003, 70, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Caruso, A.; Caselli, E.; Fiorentini, S.; Rotola, A.; Prandini, A.; Garrafa, E.; Saba, E.; Alessandri, G.; Cassai, E.; di Luca, D. U94 of human herpesvirus 6 inhibits in vitro angiogenesis and lymphangiogenesis. Proc. Natl. Acad. Sci. USA 2009, 106, 20446–20451. [Google Scholar] [CrossRef] [PubMed]
- Caselli, E.; Campioni, D.; Cavazzini, F.; Gentili, V.; Bortolotti, D.; Cuneo, A.; di Luca, D.; Rizzo, R. Acute human herpesvirus-6A infection of human mesothelial cells modulates HLA molecules. Arch. Virol. 2015, 160, 2141–2149. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Zhang, G.F.; Li, L.Y.; Zhou, F.; Feng, D.J.; Ding, C.L.; Chi, J.; Zhang, C.; Guo, D.D.; Wang, J.F.; et al. Human herpesvirus 6A induces apoptosis of primary human fetal astrocytes via both caspase-dependent and -independent pathways. Virol. J. 2011, 8, 530. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Goodrich, J.M.; Yang, X. Interferon-gamma (IFN-gamma) regulates production of IL-10 and IL-12 in human herpesvirus-6 (HHV-6)-infected monocyte/macrophage lineage. Clin. Exp. Immunol. 1997, 109, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Harberts, E.; Yao, K.; Wohler, J.E.; Maric, D.; Ohayon, J.; Henkin, R.; Jacobson, S. Human herpesvirus-6 entry into the central nervous system through the olfactory pathway. Proc. Natl. Acad. Sci. USA 2011, 108, 13734–13739. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Aubin, J.T.; Visse, B.; Fillet, A.M.; Huraux, J.M.; Agut, H. Difference in permissiveness of human fibroblast cells to variants A and B of human herpesvirus-6. Res. Virol. 1996, 147, 219–225. [Google Scholar] [CrossRef]
- Donati, D.; Akhyani, N.; Fogdell-Hahn, A.; Cermelli, C.; Cassiani-Ingoni, R.; Vortmeyer, A.; Heiss, J.D.; Cogen, P.; Gaillard, W.D.; Sato, S.; et al. Detection of human herpesvirus-6 in mesial temporal lobe epilepsy surgical brain resections. Neurology 2003, 61, 1405–1411. [Google Scholar] [CrossRef] [PubMed]
- Roush, K.S.; Domiati-Saad, R.K.; Margraf, L.R.; Krisher, K.; Scheuermann, R.H.; Rogers, B.B.; Dawson, D.B. Prevalence and cellular reservoir of latent human herpesvirus 6 in tonsillar lymphoid tissue. Am. J. Clin. Pathol. 2001, 116, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.D.; Briggs, M.; Ward, P.A.; Tedder, R.S. Human herpesvirus 6 in salivary glands. Lancet 1990, 336, 590–593. [Google Scholar] [CrossRef]
- Kondo, K.; Kondo, T.; Okuno, T.; Takahashi, M.; Yamanishi, K. Latent human herpesvirus 6 infection of human monocytes/macrophages. J. Gen. Virol. 1991, 72, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Luppi, M.; Barozzi, P.; Maiorana, A.; Marasca, R.; Torelli, G. Human herpesvirus 6 infection in normal human brain tissue. J. Infect. Dis. 1994, 169, 943–944. [Google Scholar] [CrossRef] [PubMed]
- Luppi, M.; Barozzi, P.; Morris, C.; Maiorana, A.; Garber, R.; Bonacorsi, G.; Donelli, A.; Marasca, R.; Tabilio, A.; Torelli, G. Human herpesvirus 6 latently infects early bone marrow progenitors in vivo. J. Virol. 1999, 73, 754–759. [Google Scholar] [PubMed]
- Arbuckle, J.H.; Medveczky, P.G. The molecular biology of human herpesvirus-6 latency and telomere integration. Microbes Infect. 2011, 13, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Marci, R.; Gentili, V.; Bortolotti, D.; Lo Monte, G.; Caselli, E.; Bolzani, S.; Rotola, A.; di Luca, D.; Rizzo, R. Presence of HHV-6A in endometrial epithelial cells from women with primary unexplained infertility. PLoS ONE 2016, 11, e0158304. [Google Scholar] [CrossRef] [PubMed]
- Pilmore, H.; Collins, J.; Dittmer, I.; Williams, L.; Carpenter, L.; Thomas, S.; Croxson, M.; Thomas, M. Fatal human herpesvirus-6 infection after renal transplantation. Transplantation 2009, 88, 762–765. [Google Scholar] [CrossRef] [PubMed]
- Halme, L.; Loginov, R.; Arola, J.; Turunen, U.; Lautenschlager, I. HHV-6 antigen and HHV-6 DNA expression in sporadic adenomatous polyps of the colon. Scand. J. Gastroenterol. 2013, 48, 1423–1427. [Google Scholar] [CrossRef] [PubMed]
- Helanterä, I.; Loginov, R.; Koskinen, P.; Lautenschlager, I. Demonstration of HHV-6 antigens in biopsies of kidney transplant recipients with cytomegalovirus infection. Transpl. Int. 2008, 21, 980–984. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, Y.; Tajiri, H.; Tanaka-Taya, K.; Mushiake, S.; Kimoto, A.; Yamanishi, K.; Okada, S. Frequent detection of the human herpesvirus 6-specific genomes in the livers of children with various liver diseases. J. Clin. Microbiol. 2001, 39, 2173–2177. [Google Scholar] [CrossRef] [PubMed]
- Kuribayashi, K.; Matsunaga, T.; Iyama, S.; Takada, K.; Sato, T.; Murase, K.; Fujimi, A.; Takimoto, R.; Kawanishi, J.; Niitsu, Y. Human herpesvirus-6 hepatitis associated with cyclosporine-A encephalitis after bone marrow transplantation for chronic myeloid leukemia. Intern. Med. 2006, 45, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Aita, K.; Jin, Y.; Irie, H.; Takahashi, I.; Kobori, K.; Nakasato, Y.; Kodama, H.; Yanagawa, Y.; Yoshikawa, T.; Shiga, J. Are there histopathologic characteristics particular to fulminant hepatic failure caused by human herpesvirus-6 infection? A case report and discussion. Hum. Pathol. 2001, 32, 887–889. [Google Scholar] [CrossRef] [PubMed]
- Pitalia, A.K.; Liu-Yin, J.A.; Freemont, A.J.; Morris, D.J.; Fitzmaurice, R.J. Immunohistological detection of human herpes virus 6 in formalin-fixed, paraffin-embedded lung tissues. J. Med. Virol. 1993, 41, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Sultanova, A.; Cistjakovs, M.; Gravelsina, S.; Chapenko, S.; Roga, S.; Cunskis, E.; Nora-Krukle, Z.; Groma, V.; Ventina, I.; Murovska, M. Association of active human herpesvirus-6 (HHV-6) infection with autoimmune thyroid gland diseases. Clin. Microbiol. Infect. 2017, 23, 50.e1–50.e5. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, U.; Pauschinger, M.; Seeberg, B.; Lassner, D.; Noutsias, M.; Poller, W.; Schultheiss, H.P. Viral persistence in the myocardium is associated with progressive cardiac dysfunction. Circulation 2005, 112, 1965–1970. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.A.; Griffiths, P.D. Human herpesvirus 6, relevance of infection in the immunocompromised host. Br. J. Haematol. 2003, 120, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Yamanishi, K.; Mori, Y.; Pellett, P.E. Human herpesviruses 6 and 7. In Fields Virology, 6th ed.; Knipe, D.M., Howley, P.M., Cohen, J.I., Griffin, D.E., Lamb, R.A., Martin, M.A., Racaniello, V.R., Roizman, B., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; Volume 2, pp. 2058–2079. [Google Scholar] [CrossRef]
- Tesini, B.L.; Epstein, L.G.; Caserta, M.T. Clinical impact of primary infection with roseoloviruses. Curr. Opin. Virol. 2014, 9, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Ward, K.N.; Gray, J.J.; Efstathiou, S. Brief report: Primary human herpesvirus 6 infection in a patient following liver transplantation from a seropositive donor. J. Med. Virol. 1989, 28, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Razonable, R.R. Infections due to human herpesvirus 6 in solid organ transplant recipients. Curr. Opin. Organ. Transpl. 2010, 15, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Razonable, R.R.; Lautenschlager, I. Impact of human herpesvirus 6 in liver transplantation. World J. Hepatol. 2010, 2, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Jeulin, H.; Agrinier, N.; Guery, M.; Salmon, A.; Clement, L.; Bordigoni, P.; Venard, V. Human herpesvirus 6 infection after allogeneic stem cell transplantation: Incidence, outcome, and factors associated with HHV-6 reactivation. Transplantation 2013, 95, 1292–1298. [Google Scholar] [CrossRef] [PubMed]
- Challoner, P.B.; Smith, K.T.; Parker, J.D.; MacLeod, D.L.; Coulter, S.N.; Rose, T.M.; Schultz, E.R.; Bennett, J.L.; Garber, R.L.; Chang, M.; et al. Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc. Natl. Acad. Sci. USA 1995, 92, 7440–7444. [Google Scholar] [CrossRef] [PubMed]
- Leibovitch, E.C.; Jacobson, S. Evidence linking HHV-6 with multiple sclerosis: An update. Curr. Opin. Virol. 2014, 9, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Buchwald, D.; Cheney, P.R.; Peterson, D.L.; Henry, B.; Wormsley, S.B.; Geiger, A.; Ablashi, D.V.; Salahuddin, S.Z.; Saxinger, C.; Biddle, R.; et al. A chronic illness characterized by fatigue, neurologic and immunologic disorders, and active human herpesvirus type 6 infection. Ann. Intern. Med. 1992, 116, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, M.; Komaroff, A.L.; Conley, E.; Ojo-Amaize, E.A.; Peter, J.B. Prevalence of IgM antibodies to human herpesvirus 6 early antigen (p41/38) in patients with chronic fatigue syndrome. J. Infect. Dis. 1995, 172, 1364–1367. [Google Scholar] [CrossRef] [PubMed]
- Ablashi, D.V.; Zompetta, C.; Lease, C.; Josephs, S.F.; Balachandra, N.; Komaroff, A.L.; Krueger, G.R.; Henry, B.; Lukau, J.; Salahuddin, S.Z. Human herpesvirus 6 (HHV6) and chronic fatigue syndrome (CFS). Can. Dis. Wkly. Rep. 1991, 17 (Suppl. 1E), 33–40. [Google Scholar] [PubMed]
- Mahrholdt, H.; Wagner, A.; Deluigi, C.C.; Kispert, E.; Hager, S.; Meinhardt, G.; Vogelsberg, H.; Fritz, P.; Dippon, J.; Bock, C.T.; et al. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 2006, 114, 1581–1590. [Google Scholar] [CrossRef] [PubMed]
- Leveque, N.; Boulagnon, C.; Brasselet, C.; Lesaffre, F.; Boutolleau, D.; Metz, D.; Fornes, P.; Andreoletti, L. A fatal case of human herpesvirus 6 chronic myocarditis in an immunocompetent adult. J. Clin. Virol. 2011, 52, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Takatsuka, H.; Wakae, T.; Mori, A.; Okada, M.; Fujimori, Y.; Takemoto, Y.; Okamoto, T.; Kanamaru, A.; Kakishita, E. Endothelial damage caused by cytomegalovirus and human herpesvirus-6. Bone Marrow Transpl. 2003, 31, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Caselli, E.; Zatelli, M.C.; Rizzo, R.; Benedetti, S.; Martorelli, D.; Trasforini, G.; Cassai, E.; degli Uberti, E.C.; di Luca, D.; Dolcetti, R. Virologic and immunologic evidence supporting an association between HHV-6 and Hashimoto’s thyroiditis. PLoS Pathog. 2012, 8, e1002951. [Google Scholar] [CrossRef] [PubMed]
- Inoue, N.; Pellett, P.E. Human herpesvirus 6B origin-binding protein: DNA-binding domain and consensus binding sequence. J. Virol. 1995, 69, 4619–4627. [Google Scholar] [PubMed]
- Nicholas, J. Nucleotide sequence analysis of a 21-kbp region of the genome of human herpesvirus-6 containing homologues of human cytomegalovirus major immediate-early and replication genes. Virology 1994, 204, 738–750. [Google Scholar] [CrossRef] [PubMed]
- Teo, I.A.; Griffin, B.E.; Jones, M.D. Characterization of the DNA polymerase gene of human herpesvirus 6. J. Virol. 1991, 65, 4670–4680. [Google Scholar] [PubMed]
- Lin, K.; Ricciardi, R.P. The 41-kDa protein of human herpesvirus 6 specifically binds to viral DNA polymerase and greatly increases DNA synthesis. Virology 1998, 250, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, T.; Shimamoto, T.; Isegawa, Y.; Kondo, K.; Yamanishi, K. Structure of transcripts and proteins encoded by U79–80 of human herpesvirus 6 and its subcellular localization in infected cells. Virology 2000, 271, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.; di Luca, D.; Gompels, U. Characterisation of a human herpesvirus 6 variant A “amplicon” and replication modulation by U94-Rep “latency gene”. J. Virol. Methods 2002, 105, 331–341. [Google Scholar] [CrossRef]
- Cirone, M.; Campadelli-Fiume, G.; Foa-Tomasi, L.; Torrisi, M.R.; Faggioni, A. Human herpesvirus 6 envelope glycoproteins B and H-L complex are undetectable on the plasma membrane of infected lymphocytes. AIDS Res. Hum. Retrovir. 1994, 10, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Kondo, K.; Shimada, K.; Sashihara, J.; Tanaka-Taya, K.; Yamanishi, K. Identification of human herpesvirus 6 latency-associated transcripts. J. Virol. 2002, 76, 4145–4151. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.; Hogestyn, J.M.; Folts, C.J.; Lopez, B.; Pröschel, C.; Mock, D.; Mayer-Pröschel, M. Expression of the Human Herpesvirus 6A Latency-Associated Transcript U94A Disrupts Human Oligodendrocyte Progenitor Migration. Sci. Rep. 2017, 7, 3978. [Google Scholar] [CrossRef] [PubMed]
- Rotola, A.; Ravaioli, T.; Gonelli, A.; Dewhurst, S.; Cassai, E.; di Luca, D. U94 of human herpesvirus 6 is expressed in latently infected peripheral blood mononuclear cells and blocks viral gene expression in transformed lymphocytes in culture. Proc. Natl. Acad. Sci. USA 1998, 95, 13911–13916. [Google Scholar] [CrossRef] [PubMed]
- Skuja, S.; Zieda, A.; Ravina, K.; Chapenko, S.; Roga, S.; Teteris, O.; Groma, V.; Murovska, M. Structural and ultrastructural alterations in human olfactory pathways and possible associations with herpesvirus 6 infection. PLoS ONE 2017, 12, e0170071. [Google Scholar] [CrossRef] [PubMed]
- Reynaud, J.M.; Jégou, J.F.; Welsch, J.C.; Horvat, B. Human herpesvirus 6A infection in CD46 transgenic mice: Viral persistence in the brain and increased production of proinflammatory chemokines via Toll-like receptor 9. J. Virol. 2014, 88, 5421–5436. [Google Scholar] [CrossRef] [PubMed]
- Flamand, L.; Stefanescu, I.; Menezes, J. Human herpesvirus-6 enhances natural killer cell cytotoxicity via IL-15. J. Clin. Investig. 1996, 97, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- Flamand, L.; Gosselin, J.; D’Addario, M.; Hiscott, J.; Ablashi, D.V.; Gallo, R.C.; Menezes, J. Human herpesvirus 6 induces interleukin-1 beta and tumor necrosis factor alpha, but not interleukin-6, in peripheral blood mononuclear cell cultures. J. Virol. 1991, 65, 5105–5110. [Google Scholar] [PubMed]
- Saverino, D.; Ghiotto, F.; Merlo, A.; Bruno, S.; Battini, L.; Occhino, M.; Maffei, M.; Tenca, C.; Pileri, S.; Baldi, L.; et al. Specific recognition of the viral protein UL18 by CD85j/LIR-1/ILT2 on CD8+ T cells mediates the non-MHC-restricted lysis of human cytomegalovirus-infected cells. J. Immunol. 2004, 172, 5629–5637. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Santoro, F.; di Lullo, G.; Dagna, L.; Verani, A.; Lusso, P. Selective suppression of IL-12 production by human herpesvirus 6. Blood 2003, 102, 2877–2884. [Google Scholar] [CrossRef] [PubMed]
- Smith, AP.; Paolucci, C.; di Lullo, G.; Burastero, S.E.; Santoro, F.; Lusso, P. Viral replication-independent blockade of dendritic cell maturation and interleukin-12 production by human herpesvirus 6. J. Virol. 2005, 79, 2807–2813. [Google Scholar] [CrossRef] [PubMed]
- Ferlazzo, G.; Pack, M.; Thomas, D.; Paludan, C.; Schmid, D.; Strowig, T.; Bougras, G.; Muller, W.A.; Moretta, L.; Münz, C. Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc. Natl. Acad. Sci. USA 2004, 101, 16606–16611. [Google Scholar] [CrossRef] [PubMed]
- Herberman, R.B.; Ortaldo, J.R. Natural killer cells: Their role in defenses against disease. Science 1981, 214, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Trinchieri, G. Biology of natural killer cells. Adv. Immunol. 1989, 47, 187–376. [Google Scholar] [PubMed]
- Münz, C.; Chijioke, O. Natural killer cells in herpesvirus infections. F1000Research 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Biron, C.A.; Nguyen, K.B.; Pien, G.C.; Cousens, L.P.; Salazar-Mather, T.P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 1999, 17, 189–220. [Google Scholar] [CrossRef] [PubMed]
- Orange, J.S.; Ballas, Z.K. Natural killer cells in human health and disease. Clin. Immunol. 2006, 118, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Biron, C.A. Here today—Not gone tomorrow: Roles for activating receptors in sustaining NK cells during viral infections. Eur. J. Immunol. 2010, 40, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Parham, P. MHC class I molecules and KIRs in human history, health and survival. Nat. Rev. Immunol. 2005, 5, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Prod’homme, V.; Griffin, C.; Aicheler, R.J.; Wang, E.C.; McSharry, B.P.; Rickards, C.R.; Stanton, R.J.; Borysiewicz, L.K.; López-Botet, M.; Wilkinson, G.W.; et al. The human cytomegalovirus MHC class I homolog UL18 inhibits LIR-1+ but activates LIR-1-NK cells. J. Immunol. 2007, 178, 4473–4481. [Google Scholar] [CrossRef] [PubMed]
- Loewendorf, A.; Benedict, C.A. Modulation of host innate and adaptive immune defenses by cytomegalovirus: Timing is everything. J. Intern. Med. 2010, 267, 483–501. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.C.; Lanier, L.L. The natural selection of herpesviruses and virus-specific NK cell receptors. Viruses 2009, 1, 362–382. [Google Scholar] [CrossRef] [PubMed]
- Stern-Ginossar, N.; Elefant, N.; Zimmermann, A.; Wolf, D.G.; Saleh, N.; Biton, M.; Horwitz, E.; Prokocimer, Z.; Prichard, M.; Hahn, G.; et al. Host immune system gene targeting by a viral miRNA. Science 2007, 317, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Nachmani, D.; Lankry, D.; Wolf, D.G.; Mandelboim, O. The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination. Nat. Immunol. 2010, 11, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Gumá, M.; Angulo, A.; Vilches, C.; Gómez-Lozano, N.; Malats, N.; López-Botet, M. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 2004, 104, 3664–3671. [Google Scholar] [CrossRef] [PubMed]
- Azzi, T.; Lünemann, A.; Murer, A.; Ueda, S.; Béziat, V.; Malmberg, K.J.; Staubli, G.; Gysin, C.; Berger, C.; Münz, C.; et al. Role for early-differentiated natural killer cells in infectious mononucleosis. Blood 2014, 124, 2533–2543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malnati, M.S.; Lusso, P.; Ciccone, E.; Moretta, A.; Moretta, L.; Long, E.O. Recognition of virus-infected cells by natural killer cell clones is controlled by polymorphic target cell elements. J. Exp. Med. 1993, 178, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Segal, E.; Kondo, T.; Mukai, T.; Moriyama, M.; Takahashi, M.; Yamanishi, K. Interferon and natural killer cell activity in patients with exanthem subitum. Pediatr. Infect. Dis. J. 1992, 11, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Szczepanski, M.; Szajnik, M.; Welsh, A.; Foon, K.; Whiteside, T.; Boyiadzis, M. Interleukin-15 enhances natural killer cell cytotoxicity in patients with acute myeloid leukemia by upregulating the activating NK cell receptors. Cancer Immunol. Immunother. 2010, 59, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, A.; Jackson, D.J.; Message, S.D.; Pearson, R.M.; Aniscenko, J.; Caramori, G.; Mallia, P.; Papi, A.; Shamji, B.; Edwards, M.; et al. IL-15 complexes induce NK- and T-cell responses independent of type I IFN signaling during rhinovirus infection. Mucosal Immunol. 2014, 7, 1151–1164. [Google Scholar] [CrossRef] [PubMed]
- Lusso, P.; Malnati, M.S.; Garzino-Demo, A.; Crowley, R.W.; Long, E.O.; Gallo, R.C. Infection of natural killer cells by human herpesvirus 6. Nature 1993, 362, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, R.; Zatelli, M.C.; Rotola, A.; Cassai, E.; Degli Uberti, E.; di Luca, D.; Caselli, E. Increase in peripheral CD3-CD56brightCD16- natural killer cells in hashimoto’s thyroiditis associated with HHV-6 infection. Adv. Exp. Med. Biol. 2016, 897, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.D.; van Kaer, L. Reciprocal regulation between natural killer cells and autoreactive T cells. Nat. Rev. Immunol. 2006, 6, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Van Bijnen, S.T.; Cossu, M.; Roeven, M.W.; Jansen, T.L.; Preijers, F.; Spanholtz, J.; Dolstra, H.; Radstake, T.R. Functionally active NKG2A-expressing natural killer cells are elevated in rheumatoid arthritis patients compared to psoriatic arthritis patients and healthy donors. Clin. Exp. Rheumatol. 2015, 33, 795–804. [Google Scholar] [PubMed]
- Wang, Y.; Yuan, W.; Guo, H.; Jiang, Y. High frequency of activated NKp46(+) natural killer cells in patients with new diagnosed of latent autoimmune diabetes in adults. Autoimmunity 2015, 48, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Jiao, G.; Wang, B. NK cell subtypes as regulators of autoimmune liver disease. Gastroenterol. Res. Pract. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Costenbader, K.H.; Karlson, E.W. Epstein–Barr virus and rheumatoid arthritis: Is there a link? Arthritis Res. Ther. 2006, 8, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seewaldt, S.; Thomas, H.E.; Ejrnaes, M.; Christen, U.; Wolfe, T.; Rodrigo, E.; Coon, B.; Michelsen, B.; Kay, T.W.; von Herrath, M.G. Virus-induced autoimmune diabetes: Most beta-cells die through inflammatory cytokines and not perforin from autoreactive (anti-viral) cytotoxic T-lymphocytes. Diabetes 2000, 49, 1801–1809. [Google Scholar] [CrossRef] [PubMed]
- Floreani, A.; Baragiotta, A.; Leone, M.G.; Baldo, V.; Naccarato, R. Primary biliary cirrhosis and hepatitis C virus infection. Am. J. Gastroenterol. 2003, 98, 2757–2762. [Google Scholar] [CrossRef] [PubMed]
- Bielekova, B.; Catalfamo, M.; Reichert-Scrivner, S.; Packer, A.; Cerna, M.; Waldmann, T.A.; McFarland, H.; Henkart, P.A.; Martin, R. Regulatory CD56bright natural killer cells mediate immunomodulatory effects of IL-2Rα-targeted therapy (daclizumab) in multiple sclerosis. Proc. Natl. Acad. Sci. USA 2006, 103, 5941–5946. [Google Scholar] [CrossRef] [PubMed]
- Laroni, A.; Armentani, E.; Kerlero de Rosbo, N.; Ivaldi, F.; Marcenaro, E.; Sivori, S.; Gandhi, R.; Weiner, H.L.; Moretta, A.; Mancardi, G.L.; et al. Dysregulation of regulatory CD56(bright) NK cells/T cells interactions in multiple sclerosis. J. Autoimmun. 2016, 72. [Google Scholar] [CrossRef] [PubMed]
- Catusse, J.; Spinks, J.; Mattick, C.; Dyer, A.; Laing, K.; Fitzsimons, C.; Smit, M.J.; Gompels, U.A. Immunomodulation by herpesvirus U51A chemokine receptor via CCL5 and FOG-2 down-regulation plus XCR1 and CCR7 mimicry in human leukocytes. Eur. J. Immunol. 2008, 38, 763–777. [Google Scholar] [CrossRef] [PubMed]
- Milne, R.S.; Mattick, C.; Nicholson, L.; Devaraj, P.; Alcami, A.; Gompels, U.A. RANTES binding and down-regulation by a novel human herpesvirus-6 beta chemokine receptor. J. Immunol. 2000, 164, 2396–2404. [Google Scholar] [CrossRef] [PubMed]
- Grivel, J.C.; Ito, Y.; Fagà, G.; Santoro, F.; Shaheen, F.; Malnati, M.S.; Fitzgerald, W.; Lusso, P.; Margolis, L. Suppression of CCR5- but not CXCR4-tropic HIV-1 in lymphoid tissue by human herpesvirus 6. Nat. Med. 2001, 7, 1232–1235. [Google Scholar] [CrossRef] [PubMed]
- Gosselin, J.; TomoIu, A.; Gallo, R.C.; Flamand, L. Interleukin-15 as an activator of natural killer cell-mediated antiviral response. Blood 1999, 94, 4210–4219. [Google Scholar] [PubMed]
- Schmiedel, D.; Tai, J.; Levi-Schaffer, F.; Dovrat, S.; Mandelboim, O. Human herpesvirus 6B downregulates expression of activating ligands during lytic infection to escape elimination by natural killer cells. J. Virol. 2016, 90, 9608–9617. [Google Scholar] [CrossRef] [PubMed]
- Cerwenka, A.; Lanier, L. Natural killer cell memory in infection, inflammation and cancer. Nat. Rev. Immunol. 2016, 16, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, C.M.; Clark, A.E.; Treuting, P.M.; Johnson, C.D.; Aderem, A. ATF3 regulates MCMV infection in mice by modulating IFN-gamma expression in natural killer cells. Proc. Natl. Acad. Sci. USA 2008, 105, 2544–2549. [Google Scholar] [CrossRef] [PubMed]
- Da Rocha Junior, L.F.; Dantas, A.T.; Duarte, A.L.; de Melo Rego, M.J.; Pitta Ida, R.; Pitta, M.G. PPARγ agonists in adaptive immunity: What do immune disorders and their models have to tell us? PPAR Res. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Brekman, A.; Zuo, W.L.; Ou, X.; Shaykhiev, R.; Agosto-Perez, F.J.; Wang, R.; Walters, M.S.; Salit, J.; Strulovici-Barel, Y.; et al. POU2AF1 functions in the human airway epithelium to regulate expression of host defense genes. J. Immunol. 2016, 196, 3159–3167. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Kerdiles, Y.; Chu, J.; Yuan, S.; Wang, Y.; Chen, X.; Mao, H.; Zhang, L.; Zhang, J.; Hughes, T.; et al. Transcription factor Foxo1 is a negative regulator of natural killer cell maturation and function. Immunity 2015, 42, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Kovats, S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol. 2015, 294, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Foletta, V.C.; Segal, D.H.; Cohen, D.R. Transcriptional regulation in the immune system: All roads lead to AP-1. J. Leukoc. Biol. 1998, 63, 139–152. [Google Scholar] [PubMed]
- Wisdom, R.; Johnson, R.S.; Moore, C. c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J. 1999, 8, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Ponti, C.; Gibellini, D.; Boin, F.; Melloni, E.; Manzoli, F.A.; Cocco, L.; Zauli, G.; Vitale, M. Role of CREB transcription factor in c-fos activation in natural killer cells. Eur. J. Immunol. 2002, 32, 3358–3365. [Google Scholar] [CrossRef]
- Healy, S.; Khan, P.; Davie, J.R. Immediate early response genes and cell transformation. Pharmacol. Ther. 2013, 137, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.C.; Beilke, J.N.; Lanier, L.L. Adaptive immune features of natural killer cells. Nature 2009, 457, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.C.; Beilke, J.N.; Lanier, L.L. Immune memory redefined: Characterizing the longevity of natural killer cells. Immunol. Rev. 2010, 236, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Careem, M.F.; Lee, A.J.; Pek, E.A.; Gill, N.; Gillgrass, A.E.; Chew, M.V.; Reid, S.; Ashkar, A.A. Genital HSV-2 infection induces short-term NK cell memory. PLoS ONE 2012, 7, e32821. [Google Scholar] [CrossRef] [PubMed]
- Gillard, G.O.; Bivas-Benita, M.; Hovav, A.H.; Grandpre, L.E.; Panas, M.W.; Seaman, M.S.; Haynes, B.F.; Letvin, N.L. Thy1+ NK cells from vaccinia virusprimed mice confer protection against vaccinia virus challenge in the absence of adaptive lymphocytes. PLoS Pathog. 2011, 7, e1002141. [Google Scholar] [CrossRef]
- Paust, S.; Gill, H.S.; Wang, B.Z.; Flynn, M.P.; Moseman, E.A.; Senman, B.; Szczepanik, M.; Telenti, A.; Askenase, P.W.; Compans, R.W.; et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat. Immunol. 2010, 11, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- Reeves, R.K.; Li, H.; Jost, S.; Blass, E.; Li, H.; Schafer, J.L.; Varner, V.; Manickam, C.; Eslamizar, L.; Altfeld, M.; et al. Antigen-specific NK cell memory in rhesus macaques. Nat. Immunol. 2015, 16, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, R.; Bortolotti, D.; Fainardi, E.; Gentili, V.; Bolzani, S.; Baldi, E.; Casetta, I.; Granieri, E.; Rotola, A.; Furlan, R.; et al. KIR2DL2 inhibitory pathway enhances Th17 cytokine secretion by NK cells in response to herpesvirus infection in multiple sclerosis patients. J. Neuroimmunol. 2016, 294, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Borghi, A.; D’Accolti, M.; Rizzo, R.; Virgili, A.; di Luca, D.; Corazza, M.; Caselli, E. High prevalence of specific KIR types in patients with HHV-8 positive cutaneous vascular lesions: A possible predisposing factor? Arch. Dermatol. Res. 2016, 308, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Ben Fredj, N.; Rizzo, R.; Bortolotti, D.; Nefzi, F.; Chebel, S.; Rotola, A.; Frih-Ayed, M.; di Luca, D.; Aouni, M. Evaluation of the implication of KIR2DL2 receptor in multiple sclerosis and herpesvirus susceptibility. J. Neuroimmunol. 2014, 271, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Caselli, E.; Rizzo, R.; Ingianni, A.; Contini, P.; Pompei, R.; di Luca, D. High prevalence of HHV8 infection and specific killer cell immunoglobulin-like receptors allotypes in Sardinian patients with type 2 diabetes mellitus. J. Med. Virol. 2014, 86, 1745–1751. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, R.; Gentili, V.; Casetta, I.; Caselli, E.; de Gennaro, R.; Granieri, E.; Cassai, E.; di Luca, D.; Rotola, A. Altered natural killer cells’ response to herpes virus infection in multiple sclerosis involves KIR2DL2expression. J. Neuroimmunol. 2012, 251, 55–64. [Google Scholar] [CrossRef] [PubMed]
Characteristics T | HHV-6A | References | HHV-6B | References |
---|---|---|---|---|
In vitro cell tropism | T lymphocytes, Monocytes Thryocytes Cardiac endothelial cells Lymphatic endothelial cells Mesothelial cells Glial cells Fibroblasts Natural killer cells | Caruso 2003 [7] Caruso 2009 [8] Caselli 2015 [9] Gu 2011 [10] Li 2012 [11] Rizzo 2017 [6] | T lymphocytes Monocytes Lymphatic endothelial cells Glial cells Fibroblasts-limited Natural killer cells | Caruso 2009 [8] Harberts 2011 [12] Robert 1996 [13] |
In vivo cell tropism * | Endometrial epithelium Tonsillar crypts epithelium Mucous, serous, and ductal cells of salivary glands Liver bile duct epithelium Large bowel crypt epithelium | Marci 2016 [21] Roush 2001 [15] Fox 1990 [16] Pilmore 2009 [22] | Adenomatous polyps Renal tubular epithelial cells Hepatocytes Portal vein endothelium, Tonsillar crypts epithelium Pneumocytes Thyocytes Cardiac endothelium | Halme 2013 [23] Helantera 2008 [24] Ozaki 2001 [25] Kuribayashi 2006 [26] Aita 2001 [27] Roush 2001 [21] Pitalia 1993 [28] Sultanova 2017 [29] Kuhl 2005 [30] |
Primary infection | Asymptomatic (Largely unknown) | Exhantem subitum Febrile seizure | De Bolle 2005 [2] | |
Congenital infection | Unknown consequence | Unknown consequence | ||
Immuno-compromised host | Unknown | Encephalitis Graft versus host disease Delayed platelet engraftment | Clarck 2003 [31] | |
Host-genome integration | Yes | Yes | ||
Host cell receptor | CD46 | Santoro 2005 [4] | CD134 | Tang 2013 [5] |
HHV-6 Component | HHV-6 Proteins |
---|---|
Membrane | Glycoprotein H (U48) |
Glycoprotein B (U39) | |
Glycoprotein Q (U100) | |
Myristylated virion protein (U71) | |
Tegument | Antigenic virion protein (U11) |
Phosphoprotein pp85 (U14) | |
Virion transactivator (U54) | |
Capsid protein | Major capsid protein (U57) |
Non-structural proteins | Polymerase processivity factor (U27) |
Parvovirus rep homolog (U94) | |
DNA polymerase (U38) | |
Immediate early protein 1 (U90) | |
Tail anchored membrane protein (U24) |
HHV-6A | |||
Viral Protein | Host Protein | Effect | References |
U51A | XCL1 | Block CCR7 binding Decrease NK cell activation Increase chemotaxis of infected cells to uninfected cells | Catusse 2008 [94] |
U83A | CCR5 | Block CCR5 binding Decrease NK cell activation | Catusse 2008 [94] Caruso 2003 [4] Milne 2000 [96] |
HHV-6B | |||
Viral Protein | Host Protein | Effect | References |
E protein | Decrease MICB, ULBP1, ULBP3 expression | Block NKG2D activation | Schmiedel 2016 [98] |
E protein | Decrease B7-H6 expression | Block Nkp30 activation | Schmiedel 2016 [98] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eliassen, E.; Di Luca, D.; Rizzo, R.; Barao, I. The Interplay between Natural Killer Cells and Human Herpesvirus-6. Viruses 2017, 9, 367. https://doi.org/10.3390/v9120367
Eliassen E, Di Luca D, Rizzo R, Barao I. The Interplay between Natural Killer Cells and Human Herpesvirus-6. Viruses. 2017; 9(12):367. https://doi.org/10.3390/v9120367
Chicago/Turabian StyleEliassen, Eva, Dario Di Luca, Roberta Rizzo, and Isabel Barao. 2017. "The Interplay between Natural Killer Cells and Human Herpesvirus-6" Viruses 9, no. 12: 367. https://doi.org/10.3390/v9120367
APA StyleEliassen, E., Di Luca, D., Rizzo, R., & Barao, I. (2017). The Interplay between Natural Killer Cells and Human Herpesvirus-6. Viruses, 9(12), 367. https://doi.org/10.3390/v9120367