Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics
Abstract
:1. Introduction
2. Phagocytosis of Bacteriophages
3. Phage Influence on Phagocytosis of Bacteria
4. Phage Influence on Intracellular Killing of Bacteria
5. Phage Participation in the Killing of Intracellular Bacteria
6. Phages and Respiratory Burst
7. Phage Influence on the Other Steps of Phagocytosis
8. Phages and Inflammation
9. Indirect Interaction with Immune Cells
10. Practical Implications of Phage-Phagocyte Interactions
11. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hazenbos, W.L.W.; Brown, E.J. Phagocytosis: Receptors and biology. In Phagocytosis of Bacteria and Bacterial Pathogenicity; Advances in Molecular and Cellular Microbiology, (No. 12); Ernst, J.D., Stendahl, O., Eds.; Cambridge University Press: Cambridge, UK, 2006; ISBN ISBN-13 9780511242977. [Google Scholar]
- Metchnikoff, E. On the present state of the question of immunity in infectious diseases. Proceedings of The Nobel Lecture, Stockholm, 11 December 1908. reprinted in Scand. J. Immunol. 1989, 30, 383–398. [Google Scholar]
- Hampton, M.B.; Kettle, A.J.; Winterbourn, C. Inside the neutrophil phagosome: Oxidants, myeloperoxidase, and bacterial killing. Blood 1998, 92, 3007–3017. [Google Scholar] [PubMed]
- Labro, M.T. Interference of antibacterial agents with phagocyte functions: Immunomodulation or “immune-fairy tales”? Clin. Microbiol. Rev. 2000, 13, 615–650. [Google Scholar] [CrossRef] [PubMed]
- Peripheral Blood: Reference Ranges. Adapted from University of Washington Medical Center. Prepared by Patients Against Lymphoma. Available online: http://www.lymphomation.org/peripheral-blood-ref.pdf (accessed on 20 May 2017).
- Kobayashi, S.D.; Voyich, J.M.; Burlak, C.; DeLeo, F. Neutrophils in the innate immune response. Arch. Immunol. Ther. Exp. 2005, 53, 505–517. [Google Scholar]
- Andreesen, R.; Kreutz, M. Differentiation of human monocytes in vitro: A model of macrophage ontogeny. In Cell Culture in Pharmaceutical Research; Ernst Schering Research Foundation Workshop; Springer: Berlin/Heidelberg, Germany, 1994; Volume 11, pp. 9–27. [Google Scholar]
- Murray, P.R.; Rosenthal, K.S.; Pfaller, M.A. Mikrobiologia; Przondo-Mordarska, A., Martirosian, G., Szkaradkiewicz, A., Eds.; Elsevier Urban & Partner: Wrocław, Poland, 2011. [Google Scholar]
- Johansson, A.A.J.; Jesaitis, H.; Lundquist, K.E.; Magnusson, C.; Sjolin, A.; Karlsson, A.; Dahlgren, C. Different subcellular localization of cytochrome b and the dormant NADPH-oxidase in neutrophils and macrophages: Effect of the production of reactive oxygen species during phagocytosis. Cell Immunol. 1995, 161, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.F.; Yang, Y.C.; Chen, Y.Y.; Hsu, M.L.; Shieh, H.R.; Chen, Y.J. Macrophages derived from bone marrow modulate differentiation of myeloid dendritic cells. Cell. Mol. Life Sci. 2007, 64, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Underhill, D.M.; Goodridge, H.S. Information processing during phagocytosis. Immunology 2012, 12, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, R.W.; Smith, M.C.M.; Burns, R.N.; Ford, M.E.; Hatfull, G.F. Evolutionary relationships among diverse bacteriophages and prophages: All the world’s a phage. Proc. Natl. Acad. Sci. USA 1999, 96, 2192–2197. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, R.W. Bacteriophages: Evolution of the majority. Theor. Pop. Biol. 2002, 61, 471–480. [Google Scholar] [CrossRef]
- Abedon, S.T.; Thomas-Abedon, C.; Thomas, A.; Mazure, H. Bacteriophage prehistory: Is or is not Hankin, 1896, a phage reference? Bacteriophage 2011, 1, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Reyes, A.; Semenkovich, N.P.; Whiteson, K.; Rohwer, F.; Gordon, J.I. Going viral: Next-generation sequencing applied to phage populations in the human gut. Nat. Rev. Microbiol. 2012, 10, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Międzybrodzki, R.; Borysowski, J.; Weber-Dąbrowska, B.; Fortuna, W.; Letkiewicz, S.; Szufnarowski, K.; Pawełczyk, Z.; Rogóż, P.; Kłak, M.; Wojtasik, E.; et al. Clinical aspects of phage therapy. Adv. Virus Res. 2012, 83, 73–121. [Google Scholar] [PubMed]
- Dąbrowska, K.; Opolski, A.; Wietrzyk, J.; Świtala-Jeleń, K.; Boratyński, J.; Nasulewicz, A.; Lipińska, L.; Chybicka, A.; Kujawa, M.; Zabel, M.; et al. Antitumor activity of bacteriophages in murine experimental cancer models caused possibly by inhibition of beta3 integrin signaling pathway. Acta Virol. 2004, 48, 241–248. [Google Scholar]
- NIAID’s Antibacterial Resistance Program: Current Status and Future Directions (2014). Available online: http://www.niaid.nih.gov/topics/antimicrobialresistance/documents/arstrategicplan2014.pdf (accessed on 23 September 2015).
- Jassim, A.A.A.; Limoges, R.G. Natural solution to antibiotic resistance: Bacteriophages “The Living Drugs”. World J. Microbiol. Biotechnol. 2014, 30, 2153–2170. [Google Scholar] [CrossRef] [PubMed]
- Górski, A.; Międzybrodzki, R.; Borysowski, J.; Dąbrowska, K.; Wierzbicki, P.; Ohams, M.; Korczak-Kowalska, G.; Olszowska, N.; Łusiak-Szelachowska, M.; Kłak, M.; et al. Phage as a modulator of immune responses: Practical implications for phage therapy. Adv. Virus Res. 2012, 83, 41–71. [Google Scholar] [PubMed]
- Kurzepa, A.; Dabrowska, K.; Skaradziński, G.; Górski, A. Bacteriophage interactions with phagocytes and their potential significance in experimental therapy. Clin. Exp. Med. 2009, 9, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Aronow, R.; Danon, D.; Shahar, A.; Aronson, M. Electron microscopy of in vitro endocytosis of T2 phage by cells from rabbit peritoneal exudate. J. Exp. Med. 1964, 120, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Wenger, S.L.; Turner, J.H.; Petricciani, J.C. The cytogenetic, proliferative and viability effects of four bacteriophages on human lymphocytes. In Vitro 1978, 14, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Ivanenkov, V.; Felici, F.; Menon, A.G. Uptake and intracellular fate of phage display vectors in mammalian cells. Biochim. Biophys. 1999, 1448, 450–462. [Google Scholar] [CrossRef]
- Barfoot, R.; Denham, S.; Gyure, L.A.; Hall, J.G.; Hobbs, S.M.; Jackson, L.E.; Robertson, D. Some properties of dendritic macrophages from peripheral lymph. Immunology 1989, 68, 233–239. [Google Scholar] [PubMed]
- Kaźmierczak, Z.; Piotrowicz, A.; Owczarek, B.; Hodyra, K.; Miernikiewicz, P.; Lecion, D.; Harhala, M.; Górski, A.; Dąbrowska, K. Molecular imaging of T4 phage in mammalian tissues and cells. Bacteriophage 2014, 4, e28364. [Google Scholar] [CrossRef] [PubMed]
- Hodyra-Stefaniak, K.; Miernikiewicz, P.; Drapała, J.; Drab, M.; Jończyk-Matysiak, E.; Lecion, D.; Kaźmierczak, Z.; Beta, W.; Majewska, J.; Bubak, B.; et al. Mammalian host-versus-phage immune response determines phage fate in vivo. Sci. Rep. 2015, 5, 14802. [Google Scholar] [CrossRef] [PubMed]
- D’Herelle, F. Bacteriophage: Its Role in Immunity; Williams & Wilkins Company: Baltimore, MD, USA, 1922. [Google Scholar]
- Nelson, A.R. The effect of bacteriophage upon the phenomena of leukocytosis and phagocytosis. J. Immunol. 1928, 15, 43–64. [Google Scholar]
- Młynarczyk, G.; Garliński, P.; Młynarczyk, A.; Zabuska, K.; Sawicka-Grzelak, A.; Machowska, G.; Osowiecki, H.; Roszkowski, W. Bacteriophage conversion as a factor modifying the intensity of phagocytosis of Staphylococcus aureus by human leukocytes. Medycyna Doświadczalna Mikrobiologia 1989, 41, 86–91. [Google Scholar]
- Secor, P.R.; Michaels, L.A.; Smigiel, K.S.; Rohani, M.G.; Jennings, L.K.; Hisert, K.B.; Arrigoni, A.; Braun, K.R.; Birkland, T.P.; Lai, Y.; et al. Filamentous bacteriophage produced by Pseudomonas aeruginosa alters the inflammatory response and promotes noninvasive infection in vivo. Infect. Immunol. 2017, 85, e00648-16. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.H. Bacteriophage and phagocytosis. I Effect on resistant and dead bacteria. J. Immunol. 1928, 15, 125–140. [Google Scholar]
- Weber-Dąbrowska, B.; Zimecki, M.; Mulczyk, M.; Górski, A. Effect of phage therapy on the turnover and function of peripheral neutrophils. FEMS Immunol. Med. Microb. 2002, 34, 135–138. [Google Scholar] [CrossRef]
- Jończyk-Matysiak, E.; Łusiak-Szelachowska, M.; Kłak, M.; Bubak, B.; Międzybrodzki, R.; Weber-Dąbrowska, B.; Żaczek, M.; Fortuna, W.; Rogóż, P.; Letkiewicz, S.; et al. The effect of bacteriophage preparations on intracellular killing of bacteria by phagocytes. J. Immunol. Res. 2015, 2015, 482863. [Google Scholar] [CrossRef] [PubMed]
- Kurzępa-Skaradzińska, A.; Łusiak-Szelachowska, M.; Skaradziński, G.; Jończyk-Matysiak, E.; Weber-Dąbrowska, B.; Żaczek, M.; Maj, T.; Sławek, A.; Rymowicz, W.; Kłak, M.; et al. Influence of bacteriophage preparations on intracellular killing of bacteria by human phagocytes in vitro. Viral Immunol. 2013, 26, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Chhibber, S.; Kaur, T.; Kaur, S. Co-therapy using lytic bacteriophage and linezolid: Effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS ONE 2013, 8, e56022. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.R.; Kim, S.; Rahman, M.; Kim, J. Antibacterial efficacy of lytic Pseudomonas bacteriophage in normal and neutropenic mice models. J. Microbiol. 2011, 49, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Briones, E.; Colino, C.I.; Lanao, J.M. Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J. Control. Release 2008, 125, 210–227. [Google Scholar] [CrossRef] [PubMed]
- Broxmeyer, L.; Sosnowska, D.; Miltner, E.; Chacćon, O.; Wagner, D.; McGarvey, J.; Bareltta, R.G.; Bermudez, L. Killing of Mycobacterium avium and Mycobacterium tuberculosis by a mycobacteriophage delivered by a nonvirulent mycobacterium: A model for phage therapy of intracellular bacterial pathogens. J. Infect. Dis. 2002, 186, 1155–1160. [Google Scholar] [CrossRef] [PubMed]
- Capparelli, R.; Parlato, M.; Borriello, G.; Salvatore, P.; Iannelli, D. Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob. Agents Chemiother. 2007, 51, 2765–2773. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Harjai, K.; Chhibber, S. Bacteriophage-aided intracellular killing of engulfed methicillin-resistant Staphylococcus aureus (MRSA) by murine macrophages. Appl. Microbiol. Biotechnol. 2014, 98, 4653–4661. [Google Scholar] [CrossRef] [PubMed]
- Baughn, R.; Bonventre, P.F. Phagocytosis and intracellular killing of Staphylococcus aureus by normal mouse peritoneal macrophages. Infect. Immun. 1975, 12, 346–352. [Google Scholar] [PubMed]
- Przerwa, A.; Zimecki, M.; Świtała-Jeleń, K.; Dąbrowsk, K.; Krawczyk, E.; Łuczak, M.; Weber-Dąbrowska, B.; Syper, D.; Międzybrodzki, R.; Górski, A. Effects of bacteriophages on free radical production and phagocytic functions. Med. Microbiol. Immunol. 2006, 195, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Międzybrodzki, R.; Świtala-Jeleń, K.; Fortuna, W.; Weber-Dąbrowska, B.; Przerwa, A.; Łusiak-Szelachowska, M.; Dąbrowska, K.; Kurzępa, A.; Boratyński, J.; Syper, D.; et al. Bacteriophage preparation inhibition of reactive oxygen species generation by endotoxin-stimulated polymorphonuclear leukocytes. Virus Res. 2008, 131, 233–242. [Google Scholar]
- Miernikiewicz, P.; Dąbrowska, K.; Piotrowicz, A.; Owczarek, B.; Wojas-Turek, J.; Kicielińska, J.; Rossowska, J.; Pajtasz-Piasecka, E.; Hodyra, K.; Macegoniuk, K.; et al. Cytokine profiles in mice and in human blood treated with phage proteins. PLoS ONE 2013, 8, e71036. [Google Scholar]
- Borysowski, J.; Wierzbicki, P.; Kłosowska, D.; Korczak-Kowalska, G.; Weber-Dąbrowska, B.; Górski, A. The effects of T4 and A3/R phage preparations on whole-blood monocyte and neutrophil respiratory burst. Viral Immunol. 2010, 23, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Borysowski, J.; Międzybrodzki, R.; Wierzbicki, P.; Kłosowska, D.; Korczak-Kowalska, G.; Weber-Dąbrowska, B.; Górski, A. A3R phages and Staphylococcus aureus lysate do not induce neutrophil degranulation. Viruses 2017, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Górski, A.; Międzybrodzki, R.; Weber-Dąbrowska, B.; Fortuna, W.; Letkiewicz, S.; Rogóż, P.; Jończyk-Matysiak, E.; Dąbrowska, K.; Majewska, J.; Borysowski, J. Phage Therapy: Combating Infections with Potential for Evolving from Merely a Treatment for Complications to Targeting Diseases. Front. Microbiol. 2016, 7, 1515. [Google Scholar] [CrossRef] [PubMed]
- Bocian, K.; Borysowski, J.; Zarzycki, M.; Pacek, M.; Weber-Dąbrowska, B.; Machcińska, M.; Korczak-Kowalska, G.; Górski, A. The effects of T4 and A3/R bacteriophages on differentiation of human myeloid dendritic cells. Front. Microbiol. 2016, 7, 1267. [Google Scholar] [CrossRef] [PubMed]
- Bocian, K.; Borysowski, J.; Zarzycki, M.; Wierzbicki, P.; Kłosowska, D.; Weber-Dąbrowska, B.; Korczak-Kowalska, G.; Górski, A. LPS-activated monocytes are unresponsive to T4 phage and T4-generated Escherichia coli lysate. Front. Microbiol. 2016, 7, 1356. [Google Scholar] [CrossRef] [PubMed]
- Ann, T.W.; Kim, S.J.; Lee, Y.D.; Park, J.H.; Chang, H.I. The immune-enhancing effect of the Cronobacter sakazakii ES2 phage results in the activation of nuclear factor-κB and dendritic cell maturation via the activation of IL-12p40 in the mouse bone marrow. Immunol. Lett. 2014, 157, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Miernikiewicz, P.; Kłopot, A.; Soluch, R.; Szkuta, P.; Kęska, W.; Hodyra-Stefaniak, K.; Konopka, A.; Nowak, M.; Lecion, D.; Kaźmierczak, Z.; et al. T4 phage tail adhesin gp12 counteracts LPS-induced inflammation in vivo. Front. Microbiol. 2016, 7, 1112. [Google Scholar] [CrossRef] [PubMed]
- Anany, H.; Chen, W.; Pelton, R.; Griffiths, M.W. Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes. Appl. Environ. Microbiol. 2011, 6379–6387. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, K.; Zembala, M.; Boratyński, J.; Świtała-Jeleń, K.; Wietrzyk, J.; Opolski, A.; Szczaurska, K.; Kujawa, M.; Godlewska, J.; Górski, A. Hoc protein regulates the biological effects of T4 phage in mammals. Arch. Microbiol. 2007, 187, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Kruger, A.P.; Ritter, R.C.; Smith, P. The electrical charge of bacteriophage. J. Exp. Med. 1929, 50, 739–746. [Google Scholar] [CrossRef]
- Burnet, F.M.; Mckie, M. The electrical behaviour of bacteriophages. Aust. J. Exp. Biol. Med. Sci. 1930, 7, 199–209. [Google Scholar] [CrossRef]
- Zemb, O.; Manefield, M.; Thomas, F.; Jacquet, S. Phage adsorption to bacteria in the light of the electrostatics: a case study using E. coli, T2 and flow cytometry. J. Virol. Methods 2013, 189, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Getts, D.R.; Terry, R.L.; Getts, M.T.; Deffrasnes, C.; Müller, M.; van Vreden, C.; Ashhurst, T.M.; Chami, B.; McCarthy, D.; Wu, H.; et al. Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci. Transl. Med. 2014, 6, 219ra7. [Google Scholar] [CrossRef] [PubMed]
- Zimecki, M.; Weber-Dąbrowska, B.; Łusiak-Szelachowska, M.; Mulczyk, M.; Boratyński, J.; Poźniak, G.; Syper, D.; Górski, A. Bacteriophages provide regulatory signals in mitogen-induced murine splenocyte proliferation. Cell. Mol. Biol. Lett. 2003, 8, 699–711. [Google Scholar] [PubMed]
- Stapels, D.C.A.; Ramyar, K.X.; Bischoff, M.; von Köckritz-Blickwede, M.; Milder, F.J.; Ruyken, M.; Eisenbeis, J.; McWhorter, W.J.; Herrmann, M.; van Kessel, K.P.; et al. Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors. Proc. Natl. Acad. Sci. USA 2014, 111, 13187–13192. [Google Scholar] [CrossRef] [PubMed]
- Międzybrodzki, R.; Fortuna, W.; Weber-Dąbrowska, B.; Górski, A. A retrospective analysis of changes in inflammatory markers in patients treated with bacterial viruses. Clin. Exp. Med. 2009, 9, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Jończyk-Matysiak, E.; Kłak, M.; Łusiak-Szelachowska, M.; Bubak, B.; Międzybrodzki, R.; Weber-Dąbrowska, B.; Żaczek, M.; Górski, A. The effect of bacteriophage preparations on bone marrow functions and the level of inflammatory markers in blood of patients treated with phage preparations. In Proceedings of the 21st Biennial Evergreen International Phage Meeting, Evergreen, Washington, DC, USA, 2–8 August 2015. [Google Scholar]
- Delves, P.J.; Martin, S.J.; Burton, D.R.; Roitt, I.M. Roitt’s Essential Immunology, Includes Desktop Edition, 12th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2011; ISBN -13 978-1405196833. [Google Scholar]
- Rosen, G.M.; Pou, S.; Ramos, C.L.; Cohen, M.S.; Britigan, B.E. Free radicals and phagocytic cells. FASEB J. 1995, 9, 200–209. [Google Scholar] [PubMed]
- Selsted, M.E.; Harwig, S.L. Purification, primary structure, and antimicrobial activities of a guinea pig neutrophil defensin. Infect. Immun. 1987, 55, 2281–2286. [Google Scholar] [PubMed]
- Zerial, A.; Skerlavaj, B.; Gennaro, R.; Romeo, D. Inactivation of herpes simplex virus by protein components of bovine neutrophil granules. Antivir. Res. 1987, 7, 341–352. [Google Scholar] [CrossRef]
- Klempner, M.S.; Dinarello, C.A.; Gallis, J.I. Human leukocytic pyrogen induces release of specific granule contents from human neutrophils. J. Clin. Investig. 1978, 61, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, K.B. Oxidative stress during viral infection: A review. Free Radic. Biol Med. 1996, 21, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Kimura, T.; Ikuta, K. Superoxide generation and human cytomegalovirus infection. Nihon Rinsho 1998, 56, 75–78. [Google Scholar] [PubMed]
- Peterhans, E. Sendai virus stimulates chemiluminescence in mouse spleen cells. Biochem. Biophys. Res. Commun. 1979, 91, 383–392. [Google Scholar] [CrossRef]
- Debets-Ossenkopp, Y.; Mills, E.L.; van Dajk, W.C.; Verbrugh, H.A.; Verhoef, J. Effect of influenza virus on phagocytic cells. Eur. J. Clin. Microbiol. 1982, 1, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Skarman, P.J.; Rahbar, A.; Xie, X.; Söderberg-Nauclér, C. Induction of polymorphonuclear leucocyte response by human cytomegalovirus. Microbes Infect. 2006, 8, 1592–1601. [Google Scholar] [CrossRef] [PubMed]
- Savard, M.; Bélanger, C.; Tardif, M.; Gourde, P.; Flamand, L.; Gosselin, J. Infection of primary human monocytes by Epstein-Barr virus. J. Virol. 2000, 74, 2612–2619. [Google Scholar] [CrossRef] [PubMed]
- Gorczyca, W.A.; Mitkiewicz, M.; Siednienko, J.; Kurowska, E.; Piasecki, E.; Weber-Dąbrowska, B.; Górski, A. Bacteriophages decrease activity of NFκB induced in human mononuclear cells by human herpesvirus-1. In Proceedings of the 13th International Congress of Immunology, Rio de Janeiro, Brasil, 21–25 August 2007. [Google Scholar]
- Khanna, N.; Agnihotri, M.; Mathur, A.; Chaturvedi, U.C. Neutrophil chemotactic factor produced by Japanese encephalitis virus stimulated macrophages. Clin. Exp. Immunol. 1991, 86, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Jaye, D.L.; Edens, H.A.; Mazzucchelli, L.; Parkos, C.A. Novel G protein-coupled responses in leukocytes elicited by a chemotactic bacteriophage displaying a cell type-selective binding peptide. J. Immunol. 2001, 166, 7250–7259. [Google Scholar] [CrossRef] [PubMed]
- Van Strijp, J.A.; Miltenburg, L.A.; van der Tol, M.E.; Van Kessel, K.P.; Fluit, A.C.; Verhoef, J. Degradation of herpes simplex virions by human polymorphonuclear leukocytes and monocytes. J. Gen. Virol. 1990, 71, 1205–1209. [Google Scholar] [CrossRef] [PubMed]
- Merchant, D.J.; Morgan, H.R. Inhibition of the phagocytic action of leucocytes by mumps and influenza viruses. Proc. Soc. Exp. Biol. Med. 1950, 74, 651–653. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Suzuki, K.; Suzuki, K.; Mizuno, S. Phagocytosis and ingestion of influenza virus by human polymorphonuclear leucocytes in vitro: Electromicroscopy studies. J. Med. Microbiol. 1989, 28, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Pang, G.; Clancy, R.; Gong, M.; Ortega, M.; Ren, Z.G.; Reeves, G. Influenza virus inhibits lysozyme secretion by sputum neutrophils in subjects with chronic bronchial sepsis. Am. J. Respir. Crit. Care Med. 2000, 161, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Warr, G.A.; Jakab, G.J.; Chan, T.W.; Tsan, M.F. Effects of viral pneumonia on lung macrophage lysosomal enzymes. Infect. Immun. 1979, 24, 577–579. [Google Scholar] [PubMed]
- Kańtoch, M.; Dubowska-Inglot, A. Inhibition of phagocytic activity of leukocytes by Coxsackie virus. I: The influence of the viral concentration and temperature on the inhibition of phagocytosis. Pathol. Microbiol. 1960, 23, 83–94. [Google Scholar]
- Chaturvedi, U.C.; Mathur, A.; Tandon, P.; Natu, S.M.; Ray-Vanishi, S.; Tandon, H.O. Variable effect on peripheral blood leucocytes during JE virus infection of man. Clin. Exp. Immunol. 1979, 38, 492–498. [Google Scholar] [PubMed]
- Faden, H.; Humbert, J.; Lee, J.; Sutyla, P.; Ogra, P.L. The in vitro effects of Newcastle disease virus on the metabolic and antibacterial functions of human neutrophils. Blood 1981, 58, 221–227. [Google Scholar] [PubMed]
- Ferrini, U.; Mileo, M.M.; Nista, A.; Mattei, E.; Orofino, A. Polymorphonuclear leucocyte stimulation measured by phage inactivation. Int. Arch. Allergy Appl. Immunol. 1989, 90, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Jaovisidha, P.; Peeples, M.E.; Brees, A.A.; Carpenter, L.R.; Moy, J.N. Respiratory syncytial virus stimulates neutrophil degranulation and chemokine release. J. Immunol. 1999, 163, 2816–2820. [Google Scholar] [PubMed]
- Michailidis, C.; Giannopoulos, G.; Vigklis, V.; Armenis, K.; Tsakris, A.; Gargalianos, P. Impaired phagocytosis among patients infected by the human immunodeficiency virus: Implication for a role of highly active anti-retroviral therapy. Clin. Exp. Immunol. 2012, 167, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Arias, C.F.; Isa, P.; Guerrero, C.A.; Méndez, E.; Zárate, S.; López, T.; Espinosa, R.; Romero, P.; López, S. Molecular biology of rotavirus cell entry. Arch. Med. Res. 2002, 33, 356–361. [Google Scholar] [CrossRef]
- Pitrak, D.; Tsai, H.; Mullane, K.; Sutton, S.; Stevens, P. Accelerated neutrophil apoptosis in the acquired immunodeficiency syndrome. J. Clin. Investig. 1996, 98, 2714–2719. [Google Scholar] [CrossRef] [PubMed]
Mechanism | Pathogenic Eukaryotic Viruses | Bacteriophages |
---|---|---|
Cytokine production | Epstein-Barr virus causes an increase in production of e.g., TNF-1α, IL-6, IL-8, IL-10 [73]. | Lack of stimulation: IL-1α, IL-1β, IL-2, IL-6, IL- 10, IL-12, p40/p70, INT-γ, TNF-α (T4 phage and proteins on the surface of the phage head: gp23, gp24, Hoc, Soc) [45]. Inhibition of production of NFκB by human mononuclear cells induced by human herpesvirus-1 [74]. |
Chemotaxis of phagocytes | JEV stimulates production of the factor stimulating neutrophil chemotaxis by murine macrophages [75] influenza virus significantly decreased neutrophils migration activity [71]. | Bacteriophage displaying neutrophil-binding peptide (FGP phage) stimulates neutrophil chemotaxis [76]. |
Phagocytosis of viral particles | Virions are phagocytosed by both neutrophils and monocytes e.g., Herpes virus is phagocytosed, and its envelope proteins are degraded [77]. Monocytes are faster at viral DNA degradation/digestion, neutrophils are more effective in phagocytosis. | Phage particles are phagocytosed by neutrophils, monocytes and dendritic cells [22,23,24,25,26,27]. |
Influence on phagocytosis | Active Mumps and the influenza viruses, inhibited the process of B. anthracis phagocytosis [78]. EBV reduced phagocytic activity of human monocytes, Influenza virus decreased phagocytosis of bacteria by human neutrophils [79,80] and murine macrophages [81] In HIV-positive patients the process of formation of the phagosome was impaired Coxsackie virus exerted an inhibitory effect on the ability of leukocytes to phagocytose, and it was dependent on the time of leukocytes’ exposure to the virus [82] Human neutrophils infected with HCMV increased expression of CD11 receptor (responsible for adhesion to the surface of vascular endothelial cells, migration, and phagocytosis of the particles opsonized with complement), resulting in increased phagocytosis [72]. Japanese encephalitis virus caused a reduction in phagocytosis of red dye by human neutrophils, there was no weakening of phagocytic activity for monocytes [83]. The Newcastle disease virus inhibited the phagocytosis of particles of red oil by: human neutrophils after stimulation with zymosan by and oxygen consumption after the stimulation of the cells with PMA, the activity of the membrane-bound enzyme NADPH was also decreased [84]. | There was a weakening in phagocytosis of S. aureus by patients’ neutrophils which showed an initial decrease in the process [33]. |
Virions’ inactivation | Viral particles are absorbed into the interior of the phagosome, wherein the lysis takes place (e.g., inactivation of influenza virus by human neutrophils) [79]. | It occurs in macrophages [22] and stimulated neutrophils (e.g., phage λ) [85]. |
Intracellular killing | Weakening in bactericidal activity of macrophages and neutrophil functions [80,81]. | Lack of stimulation; lack of inhibition in vitro [35] and ex vivo [34]. |
Neutrophil degranulation | Respiratory syncytial virus causes neutrophil degranulation [86]. | Neither the purified A3/R phage nor its lysate stimulates neutrophil degranulation [47]. |
Production of ROS | Sendai virus, influenza virus, cytomegalovirus, HIV caused the increased production of ROS by phagocytes (murine splenocytes, human neutrophils, monocytes) [69,70,71]. Sendai virus inactivated by ultraviolet light. Heat-inactivated virus did not stimulate the production of ROS. Only active viral particles stimulate the synthesis of ROS by phagocytes [70]. Weakened production by neutrophils and monocytes (HIV) [87]. | Lowered production or lack of stimulation (e.g., T4, F-8, A3/R) [47]. |
Adsorption to phagocytes | Rotavirus, enter the host cells by using the interaction between the viral protein VP4 and αVβ3-integrin on the cell surface [88]. | β-integrin [17]. |
Influence on apoptosis | Delay in apoptosis of human neutrophils infected with HCMV [83]. Acceleration of neutrophil apoptosis in HIV patients) [89]. | No data. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jończyk-Matysiak, E.; Weber-Dąbrowska, B.; Owczarek, B.; Międzybrodzki, R.; Łusiak-Szelachowska, M.; Łodej, N.; Górski, A. Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics. Viruses 2017, 9, 150. https://doi.org/10.3390/v9060150
Jończyk-Matysiak E, Weber-Dąbrowska B, Owczarek B, Międzybrodzki R, Łusiak-Szelachowska M, Łodej N, Górski A. Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics. Viruses. 2017; 9(6):150. https://doi.org/10.3390/v9060150
Chicago/Turabian StyleJończyk-Matysiak, Ewa, Beata Weber-Dąbrowska, Barbara Owczarek, Ryszard Międzybrodzki, Marzanna Łusiak-Szelachowska, Norbert Łodej, and Andrzej Górski. 2017. "Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics" Viruses 9, no. 6: 150. https://doi.org/10.3390/v9060150
APA StyleJończyk-Matysiak, E., Weber-Dąbrowska, B., Owczarek, B., Międzybrodzki, R., Łusiak-Szelachowska, M., Łodej, N., & Górski, A. (2017). Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics. Viruses, 9(6), 150. https://doi.org/10.3390/v9060150