UPolySeg: A U-Net-Based Polyp Segmentation Network Using Colonoscopy Images
Abstract
:1. Introduction
1.1. Motivation and Incitement
1.2. Prior Work
1.3. Major Contribution
- An image pre-processing module that pre-processes the input image in three general steps was designed. In the first step, the image was resized and then a coherent transport module was used to remove specularity in the image. The final step included the contrast enhancement module, which used the contrast limited adaptive histogram equalization (CLAHE) technique to enhance the image.
- A U-Net model (UPolySeg) was designed from scratch by implementing some advanced modules within the architecture for segmentation of the polyp using the Kvasir-SEG dataset.
- The hyperparameters for the UPolySeg were selected after extensive experimental work.
- To justify the effectiveness of the UPolySeg, it was compared with a similar model, ColonSegNet, which was designed for the segmentation of polyps.
2. Materials and Methods
2.1. Dataset
2.2. Image Pre-Processing
2.2.1. Specular Reflection and Patch
2.2.2. Contrast
2.3. Deep Learning for Image Segmentation
2.4. Performance Indicators
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CC | Colorectal Cancer |
CLAHE | Contrast Limited Adaptive Histogram Equalization |
CT | Coherence Transport |
IoU | Intersection over Union |
CNN | Convolutional Neural Network |
JSON | JavaScript Object Notation |
PDE | Partial Differential Equation |
LReLU | Leaky Rectified Linear Unit |
GA | Global Accuracy |
DC | Dice Coefficient |
R | Recall |
P | Precision |
TA | Training Accuracy |
SGDM | Stochastic Gradient Descent with Momentum |
LR | Learning Rate |
L2reg | L2regularization |
References
- Jha, D.; Smedsrud, P.H.; Johansen, D.; de Lange, T.; Johansen, H.D.; Halvorsen, P.; Riegler, M.A. A Comprehensive Study on Colorectal Polyp Segmentation with ResUNet++, Conditional Random Field and Test-Time Augmentation. IEEE J. Biomed. Health Inform. 2021, 25, 2029–2040. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021, 14, 101174. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ding, W.; Wang, Y.; Tan, Y.; Xi, C.; Ye, N.; Wu, D.; Xu, X. Comparison of diagnostic performance between convolutional neural networks and human endoscopists for diagnosis of colorectal polyp: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0246892. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, T.; Paul, B.; Fattah, S.A. PolypSegNet: A modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images. Comput. Biol. Med. 2020, 128, 104119. [Google Scholar] [CrossRef] [PubMed]
- Jha, D.; Smedsrud, P.H.; Riegler, M.A.; Johansen, D.; De Lange, T.; Halvorsen, P.; Johansen, H.D. ResUNet++: An Advanced Architecture for Medical Image Segmentation. In Proceeding of the IEEE International Symposium on Multimedia (ISM), San Diego, CA, USA, 9–11 December 2019; pp. 225–2255. [Google Scholar] [CrossRef] [Green Version]
- Jha, D.; Ali, S.; Tomar, N.K.; Johansen, H.D.; Johansen, D.; Rittscher, J.; Riegler, M.A.; Halvorsen, P. Real-Time Polyp Detection, Localization and Segmentation in Colonoscopy Using Deep Learning. IEEE Access 2021, 9, 40496–40510. [Google Scholar] [CrossRef] [PubMed]
- Jha, D.; Smedsrud, P.H.; Riegler, M.A.; Halvorsen, P.; Lange, T.D.; Johansen, D.; Johansen, H.D. Kvasir-seg: A segmented polyp dataset. In International Conference on Multimedia Modeling; Springer: Cham, Switzerland, 2020; pp. 451–462. [Google Scholar]
- Kayser, M.; Soberanis-Mukul, R.D.; Zvereva, A.M.; Klare, P.; Navab, N.; Albarqouni, S. Understanding the effects of artifacts on automated polyp detection and incorporating that knowledge via learning without forgetting. arXiv 2020, arXiv:2002.02883. [Google Scholar]
- Mohapatra, S.; Nayak, J.; Mishra, M.; Pati, G.K.; Naik, B.; Swarnkar, T. Wavelet Transform and Deep Convolutional Neural Network-Based Smart Healthcare System for Gastrointestinal Disease Detection. Interdiscip. Sci. Comput. Life Sci. 2021, 13, 212–228. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Yao, J.; Summers, R.M. Adaptive deformable model for colonic polyp segmentation and measurement on CT colonography. Med. Phys. 2007, 34, 1655–1664. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-González, A.; García-Zapirain, B.; Sierra-Sosa, D.; Elmaghraby, A. Automatized colon polyp segmentation via contour region analysis. Comput. Biol. Med. 2018, 100, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Li, D.; Meng, M.Q.H. Automatic polyp detection via a novel unified bottom-up and top-down saliency approach. IEEE J. Biomed. Health Inform. 2017, 22, 1250–1260. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.B.; Matuszewski, B. Giana polyp segmentation with fully convolutional dilation neural networks. In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Prague, Czech Republic, 25–27 February 2019; SciTePress-Science and Technology Publications: Setubal, Portugal, 2019; pp. 632–641. [Google Scholar]
- Baldeon-Calisto, M.; Lai-Yuen, S.K. AdaResU-Net: Multiobjective adaptive convolutional neural network for medical image segmentation. Neurocomputing 2020, 392, 325–340. [Google Scholar] [CrossRef]
- Tomar, N.K.; Jha, D.; Ali, S.; Johansen, H.D.; Johansen, D.; Riegler, M.A.; Halvorsen, P. DDANet: Dual Decoder Attention Network for Automatic Polyp Segmentation. In International Conference on Pattern Recognition; Springer: Cham, Switzerland, 2021; pp. 307–314. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Hu, Q. Transfuse: Fusing transformers and CNNs for medical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2021; pp. 14–24. [Google Scholar]
- Zhang, R.; Li, G.; Li, Z.; Cui, S.; Qian, D.; Yu, Y. Adaptive context selection for polyp segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2020; pp. 253–262. [Google Scholar]
- Huang, C.H.; Wu, H.Y.; Lin, Y.L. Hardnet-mseg: A simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps. arXiv 2021, arXiv:2101.07172. [Google Scholar]
- Patel, K.; Bur, A.M.; Wang, G. Enhanced u-net: A feature enhancement network for polyp segmentation. In Proceedings of the 2021 18th Conference on Robots and Vision (CRV), Burnaby, BC, Canada, 26–28 May 2021; pp. 181–188. [Google Scholar]
- Bernal, J.; Sánchez, F.J.; Fernández-Esparrach, G.; Gil, D.; Rodríguez, C.; Vilariño, F. WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 2015, 43, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.; Histace, A.; Romain, O.; Dray, X.; Granado, B. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 2014, 9, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, D.; Bernal, J.; Sánchez, F.J.; Fernández-Esparrach, M.G.; López, A.M.; Romero, A.; Drozdzal, M.; Courville, A. A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images. J. Healthc. Eng. 2017, 2017, 4037190. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J.; Sánchez, J.; Vilariño, F. Towards automatic polyp detection with a polyp appearance model. Pattern Recognit. 2012, 45, 3166–3182. [Google Scholar] [CrossRef]
- März, T. A well-posedness framework for inpainting based on coherence transport. Found. Comput. Math. 2015, 15, 973–1033. [Google Scholar] [CrossRef]
- Koonsanit, K.; Thongvigitmanee, S.; Pongnapang, N.; Thajchayapong, P. Image enhancement on digital X-ray images using n-clahe. In Proceedings of the 2017 10th Biomedical Engineering International Conference (BMEiCON), Hokkaido, Japan, 31 August–2 September 2017; pp. 1–4. [Google Scholar]
- Rundo, L.; Han, C.; Zhang, J.; Hataya, R.; Nagano, Y.; Militello, C.; Ferretti, C.; Nobile, M.S.; Tangherloni, A.; Gilardi, M.C.; et al. CNN-Based Prostate Zonal Segmentation on T2-Weighted MR Images: A Cross-Dataset Study. In Neural Approaches to Dynamics of Signal Exchanges; Springer: Singapore, 2020; pp. 269–280. [Google Scholar]
- Zhang, J.; Lu, C.; Wang, J.; Wang, L.; Yue, X.-G. Concrete Cracks Detection Based on FCN with Dilated Convolution. Appl. Sci. 2019, 9, 2686. [Google Scholar] [CrossRef] [Green Version]
LR | L2reg | Momentum | Epoch | TA |
---|---|---|---|---|
0.0001 | - | - | 20 | 85.23% |
0.0001 | - | - | 40 | 87.82% |
0.0001 | 0.001 | 0.5 | 40 | 90.87% |
0.0001 | 0.005 | 0.5 | 40 | 93.02% |
0.0001 | 0.005 | 0.9 | 50 | 97.66% |
Model | GA | DC | IoU | R | P |
---|---|---|---|---|---|
ColonSegNet | 0.9493 | 0.8206 | 0.7239 | 0.8597 | 0.8435 |
UPolySeg (Proposed) | 0.9677 | 0.9686 | 0.8791 | 0.9557 | 0.9229 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohapatra, S.; Pati, G.K.; Mishra, M.; Swarnkar, T. UPolySeg: A U-Net-Based Polyp Segmentation Network Using Colonoscopy Images. Gastroenterol. Insights 2022, 13, 264-274. https://doi.org/10.3390/gastroent13030027
Mohapatra S, Pati GK, Mishra M, Swarnkar T. UPolySeg: A U-Net-Based Polyp Segmentation Network Using Colonoscopy Images. Gastroenterology Insights. 2022; 13(3):264-274. https://doi.org/10.3390/gastroent13030027
Chicago/Turabian StyleMohapatra, Subhashree, Girish Kumar Pati, Manohar Mishra, and Tripti Swarnkar. 2022. "UPolySeg: A U-Net-Based Polyp Segmentation Network Using Colonoscopy Images" Gastroenterology Insights 13, no. 3: 264-274. https://doi.org/10.3390/gastroent13030027
APA StyleMohapatra, S., Pati, G. K., Mishra, M., & Swarnkar, T. (2022). UPolySeg: A U-Net-Based Polyp Segmentation Network Using Colonoscopy Images. Gastroenterology Insights, 13(3), 264-274. https://doi.org/10.3390/gastroent13030027