Assessment of Cognitive Function in Romanian Patients with Chronic Alcohol Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Patients
2.2. Clinical Evaluation
2.3. Definition of NAFLD and Ultrasound Assessment
2.4. Biological Analyses
2.5. Treatments
2.6. Statistical Analysis
3. Results
- 20 to 29 years: 5 patients (5.6%);
- 30 to 39 years: 17 patients (18.9%);
- 40 to 49 years: 25 patients (27.8%);
- 50 to 59 years: 30 patients (33.3%);
- 60 to 69 years: 10 patients (11.1%);
- 70 to 79 years: 3 patients (3.3%).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ilhan, M.N.; Yapar, D. Alcohol Consumption and Alcohol Policy. Turk. J. Med. Sci. 2020, 50, 1197–1202. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Alcohol Consumption. 2023. Available online: https://ourworldindata.org/alcohol-consumption (accessed on 16 February 2024).
- Fama, R. Alcohol’s Unique Effects on Cognition in Women: A 2020 (Re)View to Envision Future Research and Treatment. Alcohol Res. 2020, 40, 3. [Google Scholar] [CrossRef] [PubMed]
- Griswold, M.G.; Fullman, N.; Hawley, C.; Arian, N.; Zimsen, S.R.M.; Tymeson, H.D.; Venkateswaran, V.; Tapp, A.D.; Forouzanfar, M.H.; Salama, J.S.; et al. Alcohol Use and Burden for 195 Countries and Territories, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet 2018, 392, 1015–1035. [Google Scholar] [CrossRef]
- Eurostat Alcohol Consumption Statistics, 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Alcohol_consumption_statistics#Frequency_of_alcohol_consumption (accessed on 15 February 2024).
- Pelletier, S.; Nalpas, B.; Alarcon, R.; Rigole, H.; Perney, P. Investigation of Cognitive Improvement in Alcohol-Dependent Inpatients Using the Montreal Cognitive Assessment (MoCA) Score. J. Addict. 2016, 2016, 1539096. [Google Scholar] [CrossRef]
- Bernardin, F.; Maheut-Bosser, A.; Paille, F. Cognitive Impairments in Alcohol-Dependent Subjects. Front. Psychiatry 2014, 5, 78. [Google Scholar] [CrossRef] [PubMed]
- Ihara, H. Group and Case Study of the Dysexecutive Syndrome in Alcoholism without Amnesia. J. Neurol. Neurosurg. Psychiatry 2000, 68, 731–737. [Google Scholar] [CrossRef]
- Green, A.; Garrick, T.; Sheedy, D.; Blake, H.; Shores, E.A.; Harper, C. The Effect of Moderate to Heavy Alcohol Consumption on Neuropsychological Performance as Measured by the Repeatable Battery for the Assessment of Neuropsychological Status. Alcohol. Clin. Exp. Res. 2010, 34, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Sterling, S.A.; Palzes, V.A.; Lu, Y.; Kline-Simon, A.H.; Parthasarathy, S.; Ross, T.; Elson, J.; Weisner, C.; Maxim, C.; Chi, F.W. Associations Between Medical Conditions and Alcohol Consumption Levels in an Adult Primary Care Population. JAMA Netw. Open 2020, 3, e204687. [Google Scholar] [CrossRef]
- Bruijnen, C.J.W.H.; Dijkstra, B.A.G.; Walvoort, S.J.W.; Markus, W.; VanDerNagel, J.E.L.; Kessels, R.P.C.; DE Jong, C.A.J. Prevalence of Cognitive Impairment in Patients with Substance Use Disorder. Drug Alcohol Rev. 2019, 38, 435–442. [Google Scholar] [CrossRef]
- Stavro, K.; Pelletier, J.; Potvin, S. Widespread and Sustained Cognitive Deficits in Alcoholism: A Meta-analysis. Addict. Biol. 2013, 18, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Schulte, T.; Oberlin, B.G.; Kareken, D.A.; Marinkovic, K.; Müller-Oehring, E.M.; Meyerhoff, D.J.; Tapert, S. How Acute and Chronic Alcohol Consumption Affects Brain Networks: Insights from Multimodal Neuroimaging. Alcohol. Clin. Exp. Res. 2012, 36, 2017–2027. [Google Scholar] [CrossRef] [PubMed]
- Janke van Holst, R.; Schilt, T. Drug-Related Decrease in Neuropsychological Functions of Abstinent Drug Users. Curr. Drug Abus. Rev. 2011, 4, 42–56. [Google Scholar] [CrossRef] [PubMed]
- Loeber, S.; Duka, T.; Welzel Marquez, H.; Nakovics, H.; Heinz, A.; Mann, K.; Flor, H. Effects of Repeated Withdrawal from Alcohol on Recovery of Cognitive Impairment under Abstinence and Rate of Relapse. Alcohol Alcohol. 2010, 45, 541–547. [Google Scholar] [CrossRef]
- Fein, G.; McGillivray, S. Cognitive Performance in Long-Term Abstinent Elderly Alcoholics. Alcohol. Clin. Exp. Res. 2007, 31, 1788–1799. [Google Scholar] [CrossRef] [PubMed]
- Kish, G.B.; Hagen, J.M.; Woody, M.M.; Harvey, H.L. Alcoholics’ Recovery from Cerebral Impairment as a Function of Duration of Abstinence. J. Clin. Psychol. 1980, 36, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Yohman, J.R.; Parsons, O.A.; Leber, W.R. Lack of Recovery in Male Alcoholics’ Neuropsychological Performance One Year after Treatment. Alcohol. Clin. Exp. Res. 1985, 9, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Day, E.; Daly, C. Clinical Management of the Alcohol Withdrawal Syndrome. Addiction 2022, 117, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Jesse, S.; Bråthen, G.; Ferrara, M.; Keindl, M.; Ben-Menachem, E.; Tanasescu, R.; Brodtkorb, E.; Hillbom, M.; Leone, M.A.; Ludolph, A.C. Alcohol Withdrawal Syndrome: Mechanisms, Manifestations, and Management. Acta Neurol. Scand. 2017, 135, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Băloşeanu, C.L.; Streba, C.T.; Vere, C.C.; Comănescu, V.; Rogoveanu, I. Association between Liver Histology, Carotid Ultrasonography and Retinal Vascular Changes in Patients with Nonalcoholic Fatty Liver Disease (NAFLD). Rom. J. Morphol. Embryol. 2012, 53, 609–614. [Google Scholar]
- Stepan, M.D.; Vintilescu, Ș.B.; Streață, I.; Podeanu, M.A.; Florescu, D.N. The Role of Vitamin D in Obese Children with Non-Alcoholic Fatty Liver Disease and Associated Metabolic Syndrome. Nutrients 2023, 15, 2113. [Google Scholar] [CrossRef]
- Kim, D.; Cholankeril, G.; Loomba, R.; Ahmed, A. Prevalence of Fatty Liver Disease and Fibrosis Detected by Transient Elastography in Adults in the United States, 2017–2018. Clin. Gastroenterol. Hepatol. 2021, 19, 1499–1501.e2. [Google Scholar] [CrossRef] [PubMed]
- Kjærgaard, K.; Mikkelsen, A.C.D.; Wernberg, C.W.; Grønkjær, L.L.; Eriksen, P.L.; Damholdt, M.F.; Mookerjee, R.P.; Vilstrup, H.; Lauridsen, M.M.; Thomsen, K.L. Cognitive Dysfunction in Non-Alcoholic Fatty Liver Disease—Current Knowledge, Mechanisms and Perspectives. J. Clin. Med. 2021, 10, 673. [Google Scholar] [CrossRef]
- Weinstein, A.A.; de Avila, L.; Paik, J.; Golabi, P.; Escheik, C.; Gerber, L.; Younossi, Z.M. Cognitive Performance in Individuals with Non-Alcoholic Fatty Liver Disease and/or Type 2 Diabetes Mellitus. Psychosomatics 2018, 59, 567–574. [Google Scholar] [CrossRef] [PubMed]
- George, E.S.; Sood, S.; Daly, R.M.; Tan, S.-Y. Is There an Association between Non-Alcoholic Fatty Liver Disease and Cognitive Function? A Systematic Review. BMC Geriatr. 2022, 22, 47. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.-F.; Schattenberg, J.M.; et al. A New Definition for Metabolic Dysfunction-Associated Fatty Liver Disease: An International Expert Consensus Statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Boccatonda, A.; Andreetto, L.; D’Ardes, D.; Cocco, G.; Rossi, I.; Vicari, S.; Schiavone, C.; Cipollone, F.; Guagnano, M.T. From NAFLD to MAFLD: Definition, Pathophysiological Basis and Cardiovascular Implications. Biomedicines 2023, 11, 883. [Google Scholar] [CrossRef]
- Peng, H.; Pan, L.; Ran, S.; Wang, M.; Huang, S.; Zhao, M.; Cao, Z.; Yao, Z.; Xu, L.; Yang, Q.; et al. Prediction of MAFLD and NAFLD Using Different Screening Indexes: A Cross-Sectional Study in U.S. Adults. Front. Endocrinol. 2023, 14, 1083032. [Google Scholar] [CrossRef] [PubMed]
- Patten, S.B.; Fick, G.H. Clinical Interpretation of the Mini-Mental State. Gen. Hosp. Psychiatry 1993, 15, 254–259. [Google Scholar] [CrossRef]
- Gluhm, S.; Goldstein, J.; Loc, K.; Colt, A.; Liew, C.; Van Corey-Bloom, J. Cognitive Performance on the Mini-Mental State Examination and the Montreal Cognitive Assessment Across the Healthy Adult Lifespan. Cogn. Behav. Neurol. 2013, 26, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Anandan, P.; Rengarajan, S.; Venkatachalam, S.; Pattabi, S.; Jones, S.; Prabhu, K.; Krishna, V.; Prasanth, K. Neuroprotection by Cerebrolysin and Citicoline Through the Upregulation of Brain-Derived Neurotrophic Factor (BDNF) Expression in the Affected Neural Cells: A Preliminary Clue Obtained through an In Vitro Study. Cureus 2024, 16, e54665. [Google Scholar] [CrossRef]
- Jarosz, K.; Kojder, K.; Skonieczna-Żydecka, K.; Andrzejewska, A.; Sołek-Pastuszka, J.; Jurczak, A. The Effects of Neuromonitoring and Cerebrolysin Administration on Outcomes in Patients with Traumatic Brain Injury-An Interventional Pilot Study. J. Clin. Med. 2024, 13, 353. [Google Scholar] [CrossRef]
- Kang, D.H.; Choi, B.Y.; Lee, S.H.; Kho, A.R.; Jeong, J.H.; Hong, D.K.; Kang, B.S.; Park, M.K.; Song, H.K.; Choi, H.C.; et al. Effects of Cerebrolysin on Hippocampal Neuronal Death After Pilocarpine-Induced Seizure. Front. Neurosci. 2020, 14, 568813. [Google Scholar] [CrossRef] [PubMed]
- Morega, S.; Gresita, A.; Mitran, S.I.; Musat, M.I.; Boboc, I.K.S.; Gheorman, V.; Udristoiu, I.; Albu, C.V.; Streba, C.T.; Catalin, B.; et al. Cerebrolysin Use in Patients with Liver Damage—A Translational Study. Life 2022, 12, 1791. [Google Scholar] [CrossRef] [PubMed]
- Ziganshina, L.E.; Abakumova, T.; Nurkhametova, D.; Ivanchenko, K. Cerebrolysin for Acute Ischaemic Stroke. Cochrane Database Syst. Rev. 2023, 10, CD007026. [Google Scholar] [CrossRef] [PubMed]
- Soto, C.; Salinas, P.; Muñoz, D.; Olivares, S.; González, J.; Sáez, V.; Romero, V. A Retrospective Study of Cerebrolysin in Patients with Moderate to Severe Traumatic Brain Injury: Cognitive and Functional Outcomes. J. Med. Life 2023, 16, 1017–1021. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, M.; Lin, L.; Wang, J.; Sun-Waterhouse, D.; Dong, Y.; Zhuang, M.; Su, G. Identification of Antioxidative Peptides from Defatted Walnut Meal Hydrolysate with Potential for Improving Learning and Memory. Food Res. Int. 2015, 78, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Vaghef, L.; Farajdokht, F.; Erfani, M.; Majdi, A.; Sadigh-Eteghad, S.; Karimi, P.; Sandoghchian Shotorbani, S.; Seyedi Vafaee, M.; Mahmoudi, J. Cerebrolysin Attenuates Ethanol-Induced Spatial Memory Impairments through Inhibition of Hippocampal Oxidative Stress and Apoptotic Cell Death in Rats. Alcohol 2019, 79, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Tuttolomondo, A.; Petta, S.; Casuccio, A.; Maida, C.; Corte, V.D.; Daidone, M.; Di Raimondo, D.; Pecoraro, R.; Fonte, R.; Cirrincione, A.; et al. Reactive Hyperemia Index (RHI) and Cognitive Performance Indexes Are Associated with Histologic Markers of Liver Disease in Subjects with Non-Alcoholic Fatty Liver Disease (NAFLD): A Case Control Study. Cardiovasc. Diabetol. 2018, 17, 28. [Google Scholar] [CrossRef]
- Crum, R.M.; Anthony, J.C.; Bassett, S.S.; Folstein, M.F. Population-Based Norms for the Mini-Mental State Examination by Age and Educational Level. JAMA 1993, 269, 2386–2391. [Google Scholar] [CrossRef] [PubMed]
- Cobb, J.L.; D’Agostino, R.B.; Wolf, P.A. Norms for the Mini-Mental State Examination. JAMA 1993, 270, 2178. [Google Scholar]
- Ghai, P.; Magan, D.; Aneja, J.; Sharma, H.; Choudhary, A. Effect of Alcohol-Dependence on Cognitive Performance in Middle-Aged Men: Preliminary Results. Indian. J. Physiol. Pharmacol. 2023, 67, 303–309. [Google Scholar] [CrossRef]
- Perneczky, R.; Wagenpfeil, S.; Komossa, K.; Grimmer, T.; Diehl, J.; Kurz, A. Mapping Scores Onto Stages: Mini-Mental State Examination and Clinical Dementia Rating. Am. J. Geriatr. Psychiatry 2006, 14, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Tao, X.; Zeng, M.; Mi, Y.; Xu, L. Clinical and Histological Features under Different Nomenclatures of Fatty Liver Disease: NAFLD, MAFLD, MASLD and MetALD. J. Hepatol. 2024, 80, e64–e66. [Google Scholar] [CrossRef] [PubMed]
- Morega, S.; Cătălin, B.; Simionescu, C.E.; Sapalidis, K.; Rogoveanu, I. Cerebrolysin Prevents Brain Injury in a Mouse Model of Liver Damage. Brain Sci. 2021, 11, 1622. [Google Scholar] [CrossRef] [PubMed]
- Morris, H.; Larsen, J.; Catterall, E.; Moss, A.C.; Dombrowski, S.U. Peer Pressure and Alcohol Consumption in Adults Living in the UK: A Systematic Qualitative Review. BMC Public Health 2020, 20, 1014. [Google Scholar] [CrossRef] [PubMed]
- Mahalik, J.R.; Locke, B.D.; Ludlow, L.H.; Diemer, M.A.; Scott, R.P.J.; Gottfried, M.; Freitas, G. Development of the Conformity to Masculine Norms Inventory. Psychol. Men. Masc. 2003, 4, 3–25. [Google Scholar] [CrossRef]
- White, A. Gender Differences in the Epidemiology of Alcohol Use and Related Harms in the United States. Alcohol Res. 2020, 40, 1. [Google Scholar] [CrossRef] [PubMed]
- Goh, C.M.J.; Asharani, P.V.; Abdin, E.; Shahwan, S.; Zhang, Y.; Sambasivam, R.; Vaingankar, J.A.; Ma, S.; Chong, S.A.; Subramaniam, M. Gender Differences in Alcohol Use: A Nationwide Study in a Multiethnic Population. Int. J. Ment. Health Addict. 2022. [Google Scholar] [CrossRef]
- Nasui, B.A.; Popa, M.; Buzoianu, A.D.; Pop, A.L.; Varlas, V.N.; Armean, S.M.; Popescu, C.A. Alcohol Consumption and Behavioral Consequences in Romanian Medical University Students. Int. J. Environ. Res. Public. Health 2021, 18, 7531. [Google Scholar] [CrossRef] [PubMed]
- Watfa, G.; Husson, N.; Buatois, S.; Laurain, M.C.; Miget, P.; Benetos, A. Study of Mini-Mental State Exam Evolution in Community-Dwelling Subjects Aged over 60 Years without Dementia. J. Nutr. Health Aging 2011, 15, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Jastrzębska, I.; Zwolak, A.; Szczyrek, M.; Wawryniuk, A.; Skrzydło-Radomańska, B.; Daniluk, J. Biomarkers of Alcohol Misuse: Recent Advances and Future Prospects. Prz. Gastroenterol. 2016, 11, 78–89. [Google Scholar] [CrossRef]
- Tynjälä, J.; Kangastupa, P.; Laatikainen, T.; Aalto, M.; Niemelä, O. Effect of Age and Gender on the Relationship between Alcohol Consumption and Serum GGT: Time to Recalibrate Goals for Normal Ranges. Alcohol. Alcohol. 2012, 47, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Sueyoshi, S.; Sawai, S.; Satoh, M.; Seimiya, M.; Sogawa, K.; Fukumura, A.; Tsutsumi, M.; Nomura, F. Fractionation of Gamma-Glutamyltransferase in Patients with Nonalcoholic Fatty Liver Disease and Alcoholic Liver Disease. World J. Hepatol. 2016, 8, 1610. [Google Scholar] [CrossRef]
- Pipitone, R.M.; Ciccioli, C.; Infantino, G.; La Mantia, C.; Parisi, S.; Tulone, A.; Pennisi, G.; Grimaudo, S.; Petta, S. MAFLD: A Multisystem Disease. Ther. Adv. Endocrinol. Metab. 2023, 14, 204201882211455. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; He, R.; Jiang, H.; Wu, J.; Xi, Z.; He, K.; Liu, Y.; Zhou, T.; Feng, M.; Wan, P.; et al. Association between Metabolic Dysfunction-Associated Fatty Liver Disease and Cognitive Impairment. J. Clin. Transl. Hepatol. 2022, 10, 1034. [Google Scholar] [CrossRef] [PubMed]
- Jalili, V.; Poorahmadi, Z.; Hasanpour Ardekanizadeh, N.; Gholamalizadeh, M.; Ajami, M.; Houshiarrad, A.; Hajipour, A.; Shafie, F.; Alizadeh, A.; Mokhtari, Z.; et al. The Association between Obesity with Serum Levels of Liver Enzymes, Alanine Aminotransferase, Aspartate Aminotransferase, Alkaline Phosphatase and Gamma-glutamyl Transferase in Adult Women. Endocrinol. Diabetes Metab. 2022, 5, e367. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Chan, C.; Lee, H.-W.; Huang, C.; Chen, Y.-J.; Liu, P.-C.; Lu, S.-N.; Chuang, W.-L.; Huang, J.-F.; Yu, M.-L.; et al. Influence of Nonalcoholic Fatty Liver Disease with Increased Liver Enzyme Levels on the Risk of Cirrhosis and Hepatocellular Carcinoma. Clin. Gastroenterol. Hepatol. 2023, 21, 960–969.e1. [Google Scholar] [CrossRef]
- Fujii, H.; Doi, H.; Ko, T.; Fukuma, T.; Kadono, T.; Asaeda, K.; Kobayashi, R.; Nakano, T.; Doi, T.; Nakatsugawa, Y.; et al. Frequently Abnormal Serum Gamma-Glutamyl Transferase Activity Is Associated with Future Development of Fatty Liver: A Retrospective Cohort Study. BMC Gastroenterol. 2020, 20, 217. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ma, X.; Jiang, Z.; Zhang, K.; Zhang, M.; Li, Y.; Zhao, X.; Xiong, H. Liver Enzymes and Metabolic Syndrome: A Large-Scale Case-Control Study. Oncotarget 2015, 6, 26782–26788. [Google Scholar] [CrossRef] [PubMed]
- Alatalo, P.; Koivisto, H.; Puukka, K.; Hietala, J.; Anttila, P.; Bloigu, R.; Niemela, O. Biomarkers of Liver Status in Heavy Drinkers, Moderate Drinkers and Abstainers. Alcohol Alcohol. 2009, 44, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Wang, H.; Li, C.; Shi, J.; Yong, F.; Jia, H. Association between Dietary Vitamin B1 Intake and Cognitive Function among Older Adults: A Cross-Sectional Study. J. Transl. Med. 2024, 22, 165. [Google Scholar] [CrossRef] [PubMed]
- Hanna, M.; Jaqua, E.; Nguyen, V.; Clay, J. B Vitamins: Functions and Uses in Medicine. Perm. J. 2022, 26, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.H.; Lee, J.; Shin, Y.-I.; Ko, M.-H.; Kim, D.Y.; Sohn, M.K.; Kim, J.; Kim, Y.-H. Cerebrolysin Combined with Rehabilitation Enhances Motor Recovery and Prevents Neural Network Degeneration in Ischemic Stroke Patients with Severe Motor Deficits. J. Pers. Med. 2021, 11, 545. [Google Scholar] [CrossRef] [PubMed]
- Roschel, H.; Gualano, B.; Ostojic, S.M.; Rawson, E.S. Creatine Supplementation and Brain Health. Nutrients 2021, 13, 586. [Google Scholar] [CrossRef]
- Godwin Elechi, J.O.; Abrego Guandique, D.M.; Cannataro, R. Creatine in Cognitive Performance: A Commentary. Curr. Mol. Pharmacol. 2024, 17, e18761429272915. [Google Scholar] [CrossRef] [PubMed]
- Lowe, M.T.; Kim, E.H.; Faull, R.L.; Christie, D.L.; Waldvogel, H.J. Dissociated Expression of Mitochondrial and Cytosolic Creatine Kinases in the Human Brain: A New Perspective on the Role of Creatine in Brain Energy Metabolism. J. Cereb. Blood Flow. Metab. 2013, 33, 1295–1306. [Google Scholar] [CrossRef] [PubMed]
- Abrego-Guandique, D.M.; Bonet, M.L.; Caroleo, M.C.; Cannataro, R.; Tucci, P.; Ribot, J.; Cione, E. The Effect of Beta-Carotene on Cognitive Function: A Systematic Review. Brain Sci. 2023, 13, 1468. [Google Scholar] [CrossRef] [PubMed]
- Lenka, A.; Jankovic, J. Tremor Syndromes: An Updated Review. Front. Neurol. 2021, 12, 684835. [Google Scholar] [CrossRef] [PubMed]
- Canver, B.R.; Newman, R.K.; Gomez, A.E. Alcohol Withdrawal Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441882/ (accessed on 15 March 2024).
Total | AWS | NAFLD | ||
---|---|---|---|---|
Patients | 120 | 90 | 30 | |
Age (years) * | 51.12 ± 13.303 | 47.49 ± 11.762 | 62 ± 11.756 | |
Hospitalization period (days) * | - | 20.44 ± 14.59 | 1.8 ± 0.95 | |
Gender | Male | 89 | 75 | 14 |
Female | 31 | 15 | 16 | |
Alcohol consumers | Yes | 90 | 90 | 0 |
No | 30 | 0 | 30 | |
Environment | Rural | 68 | 57 | 11 |
Urban | 52 | 33 | 19 |
Total | Minimum | Maximum | Mean ± SD | |
---|---|---|---|---|
AST (U/L) | 90 | 22 | 919 | 127.73 ± 118.879 |
ALT (U/L) | 90 | 16 | 1924 | 115.93 ± 207.302 |
GGT (U/L) | 90 | 18 | 1680 | 261.23 ± 262.799 |
MMSE at admission | 90 | 7 | 29 | 16.60 ± 4.097 |
MMSE at 2 weeks | 90 | 17 | 30 | 24.60 ± 2.832 |
Total | Minimum | Maximum | Mean ± SD | |
---|---|---|---|---|
AST (U/L) | 30 | 17 | 235 | 46.17 ± 44.135 |
ALT (U/L) | 30 | 13 | 212 | 51.07 ± 53.067 |
GGT (U/L) | 30 | 9 | 259 | 60.43 ± 61.525 |
MMSE at admission | 30 | 28 | 30 | 29.27 ± 0.785 |
Mean | SD | Std. Error | Minimum | Maximum | ||
---|---|---|---|---|---|---|
MMSE t0 | 20–29 | 15.60 | 5.079 | 2.272 | 9 | 22 |
30–39 | 18.06 | 5.517 | 1.338 | 7 | 29 | |
40–49 | 16.36 | 3.315 | 0.663 | 9 | 23 | |
50–59 | 16.40 | 3.519 | 0.643 | 11 | 29 | |
60–69 | 16.80 | 4.492 | 1.420 | 8 | 25 | |
70–79 | 14.00 | 2.000 | 1.155 | 12 | 16 | |
Total | 16.62 | 4.060 | 0.428 | 7 | 29 | |
MMSE t2 weeks | 20–29 | 23.60 | 4.669 | 2.088 | 17 | 29 |
30–39 | 24.94 | 3.230 | 0.783 | 18 | 29 | |
40–49 | 24.52 | 2.859 | 0.572 | 19 | 29 | |
50–59 | 24.43 | 2.344 | 0.428 | 20 | 29 | |
60–69 | 25.60 | 2.836 | 0.897 | 19 | 30 | |
70–79 | 23.33 | 2.082 | 1.202 | 21 | 25 | |
Total | 24.60 | 2.832 | 0.298 | 17 | 30 |
Neurological Exam | MMSE Category | |||
---|---|---|---|---|
Severe | Moderate | Mild | No Impairment | |
Normal | 0 | 0 | 3 | 2 |
Extremities tremor | 0 | 42 | 12 | 2 |
Generalized tremor | 5 | 21 | 3 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morega, S.; Ionele, C.-M.; Podeanu, M.-A.; Florescu, D.-N.; Rogoveanu, I. Assessment of Cognitive Function in Romanian Patients with Chronic Alcohol Consumption. Gastroenterol. Insights 2024, 15, 433-446. https://doi.org/10.3390/gastroent15020031
Morega S, Ionele C-M, Podeanu M-A, Florescu D-N, Rogoveanu I. Assessment of Cognitive Function in Romanian Patients with Chronic Alcohol Consumption. Gastroenterology Insights. 2024; 15(2):433-446. https://doi.org/10.3390/gastroent15020031
Chicago/Turabian StyleMorega, Shandiz, Claudiu-Marinel Ionele, Mihaela-Andreea Podeanu, Dan-Nicolae Florescu, and Ion Rogoveanu. 2024. "Assessment of Cognitive Function in Romanian Patients with Chronic Alcohol Consumption" Gastroenterology Insights 15, no. 2: 433-446. https://doi.org/10.3390/gastroent15020031
APA StyleMorega, S., Ionele, C.-M., Podeanu, M.-A., Florescu, D.-N., & Rogoveanu, I. (2024). Assessment of Cognitive Function in Romanian Patients with Chronic Alcohol Consumption. Gastroenterology Insights, 15(2), 433-446. https://doi.org/10.3390/gastroent15020031