Managing Relevant Clinical Conditions of Hemophilia A/B Patients
Abstract
:1. Introduction
2. Replacement Therapy with FVIII/IX Concentrates on People with Hemophilia A/B Undergoing Surgery
2.1. Continuous Infusion or Bolus Infusion to Provide Perioperative Replacement Therapy
2.2. Tailoring the Replacement Therapy during Surgery in People with Hemophilia A
2.3. Tailoring the Replacement Therapy during Surgery in People with Hemophilia B
2.4. Standardized Protocol for the Replacement Therapy during Surgery
2.5. Anticoagulation Prophylaxis in Hemophilia Patients
3. Management of People with Moderate and Mild Hemophilia A
4. Management of Bleeds of People with Hemophilia A and FVIII Inhibitors: The Role of Bypassing Agents
5. Prophylaxis in People with Severe Hemophilia A
5.1. Tailoring Prophylaxis in People with Moderate Hemophilia A or Sedentary People with Severe Hemophilia A by rFVIII SHL Concentrates
5.2. The Issue of joint Microbleeds during Prophylaxis
5.3. Shared Decision-Making to Treat People with Hemophilia B besides Prophylaxis
6. Genetic Modifiers the Clinical Characteristics of Hemophilia A/B and Pharmacokinetics of FVIII/IX Concentrates
6.1. Hemophilia A
6.2. Hemophilia B
7. The Effects of the Different Tissue Distribution of FVIII and FIX on Replacement Therapy
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, A.; Santagostino, E.; Dougall, A.; Kitchen, S.; Sutherland, M.; Pipe, S.; Carcao, M.; Mahlangu, J.; Ragni, M.; Windyga, J.; et al. WFH Guidelines for the Management of Hemophilia panelists and co-authors. Haemophilia 2020, 26 (Suppl. S6), 1–158. [Google Scholar] [CrossRef] [PubMed]
- Batorova, A.; Martinowitz, U. Intermittent injections vs. continuous infusion of Factor VIII in haemophilia patients undergoing major surgery. Br. J. Haematol. 2000, 110, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Bidlingmaier, C.; Deml, M.-M.; Kurnik, K. Continuous infusion of factor concentrates in children with haemophilia A in comparison with bolus injections. Haemophilia 2006, 12, 212–217. [Google Scholar] [CrossRef]
- Ludlam, C.A.; Smith, M.P.; Morfini, M.; Gringeri, A.; Santagostino, E.; Savidge, G.F. A prospective study of recombinant activated factor VII administered by continuous infusion to inhibitor patients undergoing elective major orthopaedic surgery: A pharmacokinetic and efficacy evaluation. Br. J. Haematol. 2003, 120, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Von Auer, C.; Oldenburg, J.; Von Depka, M.; Escuriola-Ettinghausen, C.; Kurnik, K.; Lenk, H.; Scharrer, I. Inhibitor Development in Patients with Hemophilia A after Continuous Infusion of FVIII Concentrates. Ann. Sci. 2005, 1051, 498–505. [Google Scholar]
- Park, Y.S.; Shin, W.J.; Kim, K.I. Comparison of continuous infusion versus bolus injection of factor concentrates for blood management after total knee arthroplasty in patients with hemophilia. BMC Musculoskelet. Disord. 2017, 18, 356. [Google Scholar] [CrossRef] [Green Version]
- Pabinger, I.; Mamonov, V.; Windyga, J.; Engl, W.; Doralt, J.; Tangada, S.; Spotts, G.; Ewenstein, B. Results of a randomized phase III/IV trial comparing intermittent bolus versus continuous infusion of antihaemophilic factor (recombinant) in adults with severe or moderately severe haemophilia A undergoing major orthopaedic surgery. Haemophilia 2021, 27, e331–e339. [Google Scholar] [CrossRef]
- Sharathkumar, A.; Lillicrap, D.; Blanchette, V.S.; Kern, M.; Leggo, J.; Stain, A.M.; Brooker, L.; Carcao, M.D. Intensive exposure to factor VIII is a risk factor for inhibitor development in mild hemophilia A. J. Thromb. Haemost. 2003, 1, 1228–1236. [Google Scholar] [CrossRef]
- van Velzen, A.S.; Eckhardt, C.L.; Peters, M.; Leebeek, F.W.G.; Escuriola-Ettingshausen, C.; Hermans, C.; Keenan, R.; Astermark, J.; Male, C.; Peerlinck, K.; et al. Intensity of factor VIII treatment and the development of inhibitors in non-severe hemophilia A patients: Results of the INSIGHT case–control study. J. Thromb. Haemost. 2017, 15, 1422–1429. [Google Scholar] [CrossRef] [Green Version]
- Hathaway, W.E.; Christian, M.J.; Clarke, S.L.; Hasiba, U. Comparison of continuous and intermittent Factor VIII concentrate therapy in hemophilia A. Am. J. Hematol. 1984, 17, 85–88. [Google Scholar] [CrossRef]
- Holme, P.A.; Tjønnfjord, G.E. Continuous infusion of simoctocog alfa in haemophilia A patients undergoing surgeries. Haemophilia 2019, 25, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Lassandro, G.; Scalzo, G.; Palmieri, V.V.; Vairo, U.; Milella, L.; Scrascia, G.; Mancuso, M.E.; Giordano, P. Continuous infusion with octocog alfa during cardiac surgery for tetralogy of Fallot in a haemophilic child. Blood Transfus. 2021, 19, 253–256. [Google Scholar]
- Windyga, J.; Rusen, L.; Gruppo, R.; O’brien, A.C.; Kelly, P.; Roth, D.A.; Arkin, S. BDDrFVIII (Moroctocog alfa [AF-CC]) for surgical haemostasis in patients with haemophilia A: Results of a pivotal study. Haemophilia 2010, 16, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Coppola, A.; Marrone, E.; Conca, P.; Cimino, E.; Mormile, R.; Baldacci, E.; Santoro, C. Safety of Switching Factor VIII Products in the Era of Evolving Concentrates: Myths and Facts. Semin. Thromb. Hemost. 2016, 42, 563–576. [Google Scholar] [CrossRef]
- Iorio, A.; Barbara, A.M.; Makris, M.; Fischer, K.; Castaman, G.; Catarino, C.; Gilman, E.; Kavakli, K.; Lambert, T.; Lassila, R.; et al. Natural history and clinical characteristics of inhibitors in previously treated haemophilia A patients: A case series. Haemophilia 2017, 23, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Stafford, K.A.; Broze, G.J.; Stafford, D.W. Evidence of clinically significant extravascular stores of factor IX. J. Thromb. Haemost. 2013, 11, 2176–2178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stafford, D.W. Extravascular FIX and coagulation. Thromb. J. 2016, 14, 87–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortella, B.J.; Alvir, J.; McDonald, M.; Spurden, D.; Fogarty, P.F.; Chhabra, A.; Pleil, A.M. Real-World Analysis of Dispensed IUs of Coagulation Factor IX and Resultant Expenditures in Hemophilia B Patients Receiving Standard Half-Life Versus Extended Half-Life Products and Those Switching from Standard Half-Life to Extended Half-Life Products. J. Manag. Care Spéc. Pharm. 2018, 24, 643–653. [Google Scholar] [CrossRef]
- Cooley, B.; Broze, G.J., Jr.; Mann, D.M.; Lin, F.-C.; Pedersen, L.G.; Stafford, D.W. Dysfunctional endogenous FIX impairs prophylaxis in a mouse hemophilia B model. Blood 2019, 133, 2445–2451. [Google Scholar] [CrossRef]
- Morfini, M.; Dragani, A.; Paladino, E.; Radossi, P.; Di Minno, G.; Mazzucconi, M.G.; Rossetti, G.; Barillari, G.; Napolitano, M.; Tagariello, G. Correlation between FIX genotype and pharmacokinetics of Nonacog alpha according to a multicentre Italian study. Haemophilia 2016, 22, 537–542. [Google Scholar] [CrossRef] [Green Version]
- Hua, B.; Wu, R.; Sun, F.; Luo, B.; Alvey, C.; LaBadie, R.R.; Qu, P.R.; Korth-Bradley, J.M.; Rendo, P. Confirmation of longer FIX activity half-life with prolonged sample collection after single doses of nonacog alfa in patients with haemophilia B. Thromb. Haemost. 2017, 117, 1052–1057. [Google Scholar] [CrossRef] [PubMed]
- Tardy, B.; Lambert, T.; Chamouni, P.; Montmartin, A.; Trossaert, M.; Claeyssens, S.; Berger, C.; Ardillon, L.; Gay, V.; Delavenne, X.; et al. Revised terminal half-life of nonacog alfa as derived from extended sampling data: A real-world study involving 64 haemophilia B patients on nonacog alfa regular prophylaxis. Haemophilia 2022, 28, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Schutgens, R.E.; Tuinenburg, A.; Fischer, K.; Mauser-Bunschoten, E.P. Anticoagulation therapy in haemophilia. Managing the unknown. Hamostaseologie 2013, 33, 299–304. [Google Scholar] [PubMed]
- Schutgens, R.E.; van der Heijden, J.F.; Mauser-Bunschoten, E.P.; Mannucci, P.M. Blood. New concepts for anticoagulant therapy in persons with hemophilia. Blood J. Am. Soc. Hematol. 2016, 128, 2471–2474. [Google Scholar]
- Mannucci, P.M.; Schutgens, R.; Santagostino, E.; Mauser-Bunschoten, E.P. How I treat age-related morbidities in elderly persons with hemophilia. Blood 2009, 114, 5256–5263. [Google Scholar] [CrossRef] [Green Version]
- Martin, K.; Key, N.S. How I treat patients with inherited bleeding disorders who need anticoagulant therapy. Blood 2016, 128, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Yang, S. Acute coronary syndrome management in hemophiliacs: How to maintain balance? A review. Medicine 2023, 102, e33298. [Google Scholar] [CrossRef]
- Castaman, G.; Tosetto, A.; Rodeghiero, F. Reduced von Willebrand factor survival in von Willebrand disease: Pathophysiologic and clinical relevance. J. Thromb. Haemost. 2009, 7, 71–74. [Google Scholar] [CrossRef]
- Duan, X.; Tang, M.; Zhang, J.; Yu, H.; Xu, R. Promising coagulation factor VIII bypassing strategies for patients with haemophilia A. Blood Coagul. Fibrinolysis 2014, 25, 539–552. [Google Scholar] [CrossRef]
- Turecek, P.; Váradi, K.; Gritsch, H.; Schwarz, H. FEIBA: Mode of action. Haemophilia 2004, 10 (Suppl. S2), 3–9. [Google Scholar] [CrossRef]
- Konkle, B.A.; Ebbesen, L.S.; Erhardtsen, E.; Bianco, R.P.; Lissitchkov, T.; Rusen, L.; Serban, M.A. Randomized, prospective clinical trial of recombinant factor VIIa for secondary prophylaxis in hemophilia patients with inhibitors. J. Thromb. Haemost. 2007, 5, 1904–1913. [Google Scholar] [CrossRef] [PubMed]
- Young, G.; Auerswald, G.; Jimenez-Yuste, V.; Lambert, T.; Morfini, M.; Santagostino, E.; Blanchette, V. PRO-PACT: Retrospective observational study on the prophylactic use of recombinant factor VIIa in hemophilia patients with inhibitors. Thromb. Res. 2012, 130, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Tagariello, G.; Bisson, R.; Radossi, P.; Petris, U.; Zanardo, G.; De Biasi, E.; Risato, R.; Polese, F.; Davoli, P.G. Concurrent total hip and knee replacements in a patient with haemophilia with inhibitors using recombinant factor VIIa by continuous infusion. Haemophilia 2003, 9, 738–740. [Google Scholar] [CrossRef]
- Carulli, C.; Innocenti, M.; Linari, S.; Morfini, M.; Castaman, G.; Innocenti, M. Joint replacement for the management of haemophilic arthropathy in patients with inhibitors: A long-term experience at a single Haemophilia centre. Haemophilia 2021, 27, e93–e101. [Google Scholar] [CrossRef]
- Dolan, G.; Astermark, J.; Hermans, C. Recombinant FVIIa in elective non-orthopaedic surgery of adults with haemophilia and inhibitors: A systematic literature review. Haemophilia 2021, 27, e314–e330. [Google Scholar] [CrossRef]
- Steen Carlsson, K.; Astermak, J.; Donfield, S.; Berntorp, E. Cost and outcome: Comparison of two alternative bypassing agents for person with hemophilia A complicated by an inhibitor. Thromb. Haemost. 2008, 99, 1060–1067. [Google Scholar] [PubMed]
- Gringeri, A.; Ewenstein, B.; Reininger, A. The burden of bleeding in haemophilia: Is one bleed too many? Haemophilia 2014, 20, 459–463. [Google Scholar] [CrossRef]
- Giampaolo, A.; Abbonizio, F.; Arcieri, R.; Hassan, H.J. Italian Registry of Congenital Bleeding Disorders. J. Clin. Med. 2017, 6, 34. [Google Scholar] [CrossRef]
- Osterberg, T.; Fatouros, A.; Mikaelsson, M. Development of freeze-dried albumin-free formulation of recombinant factor VIII SQ. Pharm Res. 1997, 14, 892–898. [Google Scholar] [CrossRef]
- Aledort, L.M.; Navickis, R.J.; Wilkes, M.M. Can B-domain deletion alter the immunogenicity of recombinant factor VIII? A meta-analysis of prospective clinical studies. J. Thromb. Haemost. 2011, 9, 2180–2192. [Google Scholar] [CrossRef]
- Mathias, M.C.; Collins, P.W.; Palmer, B.P.; Chalmers, E.; Alamelu, J.; Richards, M.; Will, A.; Hay, C.R.; on behalf of the United Kingdom Haemophilia Centre Doctors’ Organisation Inhibitor Working Party. United Kingdom Haemophilia Centre Doctors’ Organisation Inhibitor Working Party The immunogenicity of ReFacto AF (moroctocog alfa AF-CC) in previously untreated patients with hemophilia A in the United Kingdom. Haemophilia 2018, 24, 896–901. [Google Scholar] [CrossRef] [PubMed]
- Lusher, J.M.; Lee, C.A.; Kessler, C.M.; Bedrosian, C.L.; for The ReFacto Phase 3 Study Group. The safety and efficacy of B-domain deleted recombinant factor VIII concentrate in patients with severe haemophilia A. Haemophilia 2003, 9, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Zhao, Y.; Wang, X.; Sun, J.; Wu, R.; Jin, C.; Jin, J.; Wu, D.; Rendo, P.; Sun, F.; et al. Safety and Efficacy of Moroctocog Alfa (AF-CC) in Chinese Patients with Hemophilia A: Results of Two Open-Label Studies. J. Blood Med. 2020, 11, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Lusher, J.M. First and second-generation recombinant factor VIII concentrates in previously untreated patients: Recovery, safety, efficacy, and inhibitor development. Semin. Thromb. Hemost. 2002, 28, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Morfini, M.; Cinotti, S.; Bellatreccia, A.; Paladino, E.; Gringeri, A.; Mannucci, P.M.; ReFacto-AICE Study Group. A multicenter pharmacokinetic study of the B-domain deleted recombinant factor VIII concentrate using different assays and standards. J. Thromb. Haemost. 2003, 1, 2283–2289. [Google Scholar] [CrossRef]
- Ogiwara, K.; Swystun, L.L.; Paine, A.S.; Kepa, S.; Choi, S.J.; Rejtö, J.; Hopman, W.; Pabinger, I.; Lillicrap, D. Factor VIII pharmacokinetics associates with genetic modifiers of VWF and FVIII clearance in an adult hemophilia A population. J. Thromb. Haemost. 2021, 19, 654–663. [Google Scholar] [CrossRef]
- Lunghi, B.; Bernardi, F.; Martinelli, N.; Frusconi, S.; Branchini, A.; Linari, S.; Marchetti, G.; Castaman, G.; Morfini, M. Functional polymorphisms in the LDLR and pharmacokinetics of Factor VIII concentrates. J. Thromb. Haemost. 2019, 17, 1288–1296. [Google Scholar] [CrossRef]
- Lunghi, B.; Morfini, M.; Martinelli, N.; Balestra, D.; Linari, S.; Frusconi, S.; Branchini, A.; Cervellera, C.F.; Marchetti, G.; Castaman, G.; et al. The Asialoglycoprotein Receptor Minor Subunit Gene Contributes to Pharmacokinetics of Factor VIII Concentrates in Hemophilia A. Thromb. Haemost. 2021, 122, 715–725. [Google Scholar] [CrossRef]
- Garcia-Martínez, I.; Borràs, N.; Martorell, M.; Parra, R.; Altisent, C.; Ramírez, L.; Álvarez-Román, M.T.; Nuñez, R.; Megias-Vericat, J.E.; Corrales, I.; et al. Common Genetic Variants in ABO and CLEC4M Modulate the Pharmacokinetics of Recombinant FVIII in Severe Hemophilia A Patients. Thromb. Haemost. 2020, 120, 1395–1406. [Google Scholar] [CrossRef]
- Turecek, P.L.; Johnsen, J.M.; Pipe, S.W.; O’Donnell, J.S.; The iPATH Study Group. Biological mechanisms underlying inter-individual variation in factor VIII clearance in haemophilia. Haemophilia 2020, 26, 575–583. [Google Scholar] [CrossRef]
- Eshghi, P.; Sadeghi, E.; Tara, S.Z.; Habibpanah, B.; Hantooshzadeh, R. Iranian Low-dose Escalating Prophylaxis Regimen in Children with Severe Hemophilia A and B. Clin. Appl. Thromb. Hemost. 2018, 24, 513–518. [Google Scholar] [CrossRef]
- Mullins, E.S.; Stasyshyn, O.; Alvarez-Román, M.T.; Osman, D.; Liesner, R.; Engl, W.; Sharkhawy, M.; Abbuehl, B.E. Extended half-life pegylated, full-length recombinant factor VIII for prophylaxis in children with severe haemophilia A. Haemophilia 2017, 23, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Reding, M.T.; Ng, H.J.; Poulsen, L.H.; Eyster, M.E.; Pabinger, I.; Shin, H.J.; Walsch, R.; Lederman, M.; Wang, M.; Hardtke, M.; et al. Safety and efficacy of BAY 94-9027, a prolonged-half-life factor VIII. J. Thromb. Haemost. 2017, 15, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Morfini, M.; Mannucci, P.; Longo, G.; Cinotti, S.; Messori, A. Comparative evaluation of the pharmacokinetics of three monoclonal Factor VIII concentrates. Thromb. Res. 1991, 61, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Morfini, M.; Longo, G.; Messori, A.; Lee, M.; White, G.; Mannucci, P. Pharmacokinetic properties of recombinant factor VIII compared with a monoclonally purified concentrate (Hemofil M). The Recombinate Study Group. Thromb. Haemost. 1992, 68, 433–435. [Google Scholar]
- Morfini, M.; Marchesini, E.; Paladino, E.; Santoro, C.; Zanon, E.; Iorio, A. Pharmacokinetics of plasma derived versus recombinant FVIII concentrates: A comparative study. Haemophilia 2015, 21, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.S.; Apte, S.; Chambost, H.; Hermans, C.; Jackson, S.; Josephson, N.; Mahlangu, J.; Ozelo, M.; Peerlinck, K.; Pasi, J.; et al. Long-acting recombinant factor IX Fc fusion protein (rFIXFc) for perioperative management of subjects with haemophilia B in phase 3 B-LONG study. Br. J. Haematol. 2015, 168, 124–134. [Google Scholar] [CrossRef]
- Preijers, T.; Hazendonk, H.; Liesner, R.; Chowdary, P.; Driessens, M.; Hart, D.; Keeling, D.; Gorkom, B.L.; van der Meer, F.; Meijer, K.; et al. Population pharmacokinetics of factor IX in hemophilia B patients undergoing surgery. J. Thromb. Haemost. 2018, 16, 2196–2207. [Google Scholar] [CrossRef] [Green Version]
- Simpson, M.L.; Kulkarni, R.; Ettingshausen, C.E.; Meldgaard, R.M.; Cooper, D.L.; Klamroth, R. Population Pharmacokinetic Modeling Of On-Demand and Surgical Use Of Nonacog Beta Pegol (N9-GP) And rFIXFc Based Upon The paradigm 7 Comparative Pharmacokinetic Study. J. Blood Med. 2019, 10, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Valeri, F.; Giacchello, J.A.; Dainese, C.; Valpreda, A.; Montaruli, B.; Dosio, E.; Boccadoro, M.; Borchiellini, A. Extended half-life rFIX in major surgery—How to improve clinical practice: An intraindividual comparison. Clin. Case Rep. 2020, 8, 531–534. [Google Scholar] [CrossRef] [Green Version]
- Chhabra, A.; Fogarty, P.F.; Tortella, B.J.; Spurden, D.; Alvir, J.; McDonald, M.; Hodge, J.; Pleil, A.M. Real-World Analysis of Dispensed International Units of Coagulation Factor VIII and Resultant Expenditures for Hemophilia A Patients: A Comparison Between Standard Half-Life and Extended Half-Life Products. Manag. Care 2018, 27, 39–50. [Google Scholar] [PubMed]
- Manco-Johnson, M.J.; Abshire, T.C.; Shapiro, A.D.; Riske, B.; Hacker, M.R.; Kilcoyne, R.; Ingram, J.D.; Manco-Johnson, M.L.; Funk, S.; Jacobson, L.; et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N. Engl. J. Med. 2007, 357, 535–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Den Uijl, I.E.; De Schepper, A.M.; Camerlinck, M.; Grobbee, D.; Fische, K.R. Magnetic resonance imaging in teenagers and young adults with limited haemophilic arthropathy: Baseline results from a prospective study. Haemophilia 2011, 17, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Kraft, J.; Blanchette, V.; Babyn, P.; Feldman, B.; Cloutier, S.; Israels, S.; Pai, M.; Rivard, G.; Gomer, S.; McLimont, M.; et al. Magnetic resonance imaging and joint outcomes in boys with severe hemophilia A treated with tailored primary prophylaxis in Canada. J. Thromb. Haemost. 2012, 10, 2494–2502. [Google Scholar] [CrossRef] [PubMed]
- Zwagemaker, A.; Kloosterman, F.R.; Hemke, R.; Gouw, S.C.; Coppens, M.; Romano, L.G.; Kruip, M.J.; Cnossen, M.H.; Leebeek, F.W.; Hutten, B.A.; et al. Joint status of patients with nonsevere hemophilia A. J. Thromb. Haemost. 2022, 20, 1126–1137. [Google Scholar] [CrossRef]
- van Leeuwen, F.H.; van Bergen, E.D.; Timmer, M.A.; van Vulpen, L.F.; Schutgens, R.E.; de Jong, P.A.; Fischer, K.; Foppen, W. Magnetic resonance imaging evidence for subclinical joint bleeding in a Dutch population of people with severe hemophilia on prophylaxis. J. Thromb. Haemost. 2023, 21, 1156–1163. [Google Scholar] [CrossRef]
- Tortella, B.J.; Carr, M.E.; Rendo, P.; Korth-Bradley, J.; Smith, L.M.; Kavakli, K. Once-weekly prophylaxis regimen of nonacog alfa in patients with hemophilia B: An analysis of timing of bleeding event onset. Blood Coagul. Fibrinolysis 2021, 32, 180–185. [Google Scholar] [CrossRef]
- O’Donnell, J.; Laffan, M. The relationship between ABO histo-blood group, factor VIII and von Willebrand factor. Transfus. Med. 2001, 11, 343–351. [Google Scholar] [CrossRef]
- Lunghi, B.; Morfini, M.; Martinelli, N.; Linari, S.; Castaman, G.; Bernardi, F. Combination of CLEC4M rs868875 G-Carriership and ABO O Genotypes May Predict Faster Decay of FVIII Infused in Hemophilia A Patients. J. Clin. Med. 2022, 11, 733. [Google Scholar] [CrossRef]
- Belvini, D.; Salviato, R.; Radossi, P.; Mori, P.; Castaldo, G.; Tagariello, G.; AICE HB Study Group. Molecular genotyping of the Italian cohort of patients with hemophilia B. Haematologica 2005, 90, 635–642. [Google Scholar]
- Mannucci, P.M.; Franchini, M. Is haemophilia B less severe than haemophilia A? Haemophilia 2013, 19, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Melchiorre, D.; Linari, S.; Manetti, M.; Romano, E.; Sofi, F.; Matucci-Cerinic, M.; Carulli, C.; Innocenti, M.; Ibba-Manneschi, L.; Castaman, G. Clinical, instrumental, serological, and histological findings suggest that hemophilia B may be less severe than hemophilia A. Haematologica 2016, 101, 219–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franchini, M.; Mannucci, P.M. Haemophilia B is clinically less severe than haemophilia A: Further evidence. Blood Transfus. 2018, 16, 121–122. [Google Scholar] [PubMed]
- Santagostino, E.; Fasulo, M.R. Hemophilia a and hemophilia B: Different types of diseases? Semin. Thromb. Hemost. 2013, 39, 697–701. [Google Scholar]
- van Miert, J.H.; Hop, H.; Borjas-Howard, J.F.; Meijer, K. A milder clinical course for severe hemophilia B: A true or biased effect? Haematologica 2016, 101, e266. [Google Scholar] [CrossRef] [Green Version]
- Tagariello, G.; Iorio, A.; Santagostino, E.; Morfini, M.; Bisson, R.; Innocenti, M.; Mancuso, M.E.; Mazzucconi, M.G.; Pasta, G.L.; Radossi, P.; et al. Comparison of the rates of joint arthroplasty in patients with severe factor VIII and IX deficiency: An index of different clinical severity of the 2 coagulation disorders. Blood 2009, 114, 779–784. [Google Scholar] [CrossRef]
- Escobar, M.; Sallah, S. Hemophilia A and hemophilia B: Focus on arthropathy and variables affecting bleeding severity and prophylaxis. J. Thromb. Haemost. 2013, 11, 1449–1453. [Google Scholar] [CrossRef]
- Lin, W.Y.; Wang, J.D.; Tsan, Y.T.; Chan, W.-C.; Tong, K.-M.; Chang, S.-T.; Cheng, Y.-Y. Comparison of Total Joint Replacement Rate Between Patients With Hemophilia A and Patients With Hemophilia B: A Population-Based and Retrospective Cohort Study. Clin. Appl. Thromb. Hemost. 2018, 24, 163S–170S. [Google Scholar] [CrossRef] [Green Version]
- Branchini, A.; Morfini, M.; Lunghi, B.; Belvini, D.; Radossi, P.; Bury, L.; Serino, M.L.; Giordano, P.; Cultrera, D.; Molinari, A.C.; et al. F9 missense mutations impairing factor IX activation are associated with pleiotropic plasma phenotypes. J. Thromb. Haemost. 2022, 20, 69–81. [Google Scholar] [CrossRef]
- Mann, D.M.; Stafford, K.A.; Poon, M.; Matino, D.; Stafford, D.W. The Function of extravascular coagulation factor IX in haemostasis. Haemophilia 2021, 27, 332–339. [Google Scholar] [CrossRef]
- Lenting, P.J.; Van Schooten, C.J.; Denis, C.V. Clearance mechanisms of von Willebrand factor and factor VIII. J. Thromb. Haemost. 2007, 5, 1353–1360. [Google Scholar] [CrossRef]
- Miller, G.J.; Howarth, D.J.; Attfield, J.C.; CCooke, J.; Nanjee, M.; Olszewski, W.; Morrisse, J.; Miller, N. Haemostatic factors in human peripheral afferent lymph. Thromb. Haemost. 2000, 83, 427–432. [Google Scholar]
- Gilbert, G.E. The evolving understanding of factor VIII binding sites and implications for the treatment of hemophilia A. Blood Rev. 2019, 33, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Swystun, L.L.; Notley, C.; Georgescu, I.; Swistun, L.L. The endothelial lectin clearance receptor CLEC4M binds and internalizes factor VIII in a VWF-dependent and independent manner. J. Thromb. Haemost. 2019, 17, 681–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadé, M.; Muñoz-Garcia, J.; Babuty, A.; Fouassier, M.; Heymann, M.-F.; Monahan, P.E.; Heymann, D. FVIII at the crossroad of coagulation, bone and immune biology: Emerging evidence of biological activities beyond hemostasis. Drug Discov. Today 2022, 27, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Larson, E.A.; Larson, H.I.; Taylor, J.; Klein, R.F. Deletion of Coagulation Factor IX Compromises Bone Mass and Strength: Murine Model of Hemophilia B (Christmas Disease). Calcif. Tissue Int. 2021, 109, 577–585. [Google Scholar] [CrossRef]
- Hoffman, M.; Monroe, D. Wound healing in haemophilia—Breaking the vicious cycle. Haemophilia 2010, 16 (Suppl. S3), 13–18. [Google Scholar] [CrossRef]
- Cadé, M.; Muñoz-Garcia, J.; Babuty, A.; Paré, L.; Cochonneau, D.; Fekir, K.; Chatelais, M.; Heymann, M.-F.; Lokajczyk, A.; Boisson-Vidal, C.; et al. FVIII regulates the molecular profile of endothelial cells: Functional impact on the blood barrier and macrophage behavior. Cell. Mol. Life Sci. 2022, 79, 145. [Google Scholar] [CrossRef]
Bolus Infusion | Continuous Infusion | |
---|---|---|
Administration of the concentrate | Very easy by peripheral veins punctures or CVC, according to the patient’s condition | CVC is always required for the infusion pump |
Cost of the devices | None | The pump is expensive, but the cost of the pump can be amortized by its frequent use |
Regulatory issues | Approved | CI is an off-label procedure and must be done under the responsibility of the treater |
Bacterial contamination of the concentrate | Minimal risk during the reconstitution of the concentrate | The filling of the disposable plastic bag or reservoir of the pump must be done under sterile conditions |
Patient’s mobility restrictions | None for walking patients | Limited using portable mini pumps |
The workload for nursing staff | May be heavy, according to the programmed bolus infusions | The pump can be charged with the 24 h dose |
Stability of the concentrate at room temperature after reconstitution | No concerns | All concentrates are stable for at least 24 h after reconstitution |
Risk of postinfusion very high peaks or low troughs | Possible, according to the infusion rate of the concentrate | The predicted and safe level can be continuously maintained |
Monitoring of postinfusion concentration | The trough and the peak, at least once a day, before and after infusions during the first 7–10 days after major surgery are required | Only one daily check, at any time, of the level of replaced concentrate, is enough |
The total cost of replacement therapy | Generally, quite high | About 15–30% of the cost can be saved by CI regarding rFVIII SHL or rFVIIa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morfini, M.; Agnelli Giacchiello, J.; Baldacci, E.; Carulli, C.; Castaman, G.; Giuffrida, A.C.; Malcangi, G.; Rocino, A.; Siragusa, S.; Zanon, E. Managing Relevant Clinical Conditions of Hemophilia A/B Patients. Hematol. Rep. 2023, 15, 384-397. https://doi.org/10.3390/hematolrep15020039
Morfini M, Agnelli Giacchiello J, Baldacci E, Carulli C, Castaman G, Giuffrida AC, Malcangi G, Rocino A, Siragusa S, Zanon E. Managing Relevant Clinical Conditions of Hemophilia A/B Patients. Hematology Reports. 2023; 15(2):384-397. https://doi.org/10.3390/hematolrep15020039
Chicago/Turabian StyleMorfini, Massimo, Jacopo Agnelli Giacchiello, Erminia Baldacci, Christian Carulli, Giancarlo Castaman, Anna Chiara Giuffrida, Giuseppe Malcangi, Angiola Rocino, Sergio Siragusa, and Ezio Zanon. 2023. "Managing Relevant Clinical Conditions of Hemophilia A/B Patients" Hematology Reports 15, no. 2: 384-397. https://doi.org/10.3390/hematolrep15020039
APA StyleMorfini, M., Agnelli Giacchiello, J., Baldacci, E., Carulli, C., Castaman, G., Giuffrida, A. C., Malcangi, G., Rocino, A., Siragusa, S., & Zanon, E. (2023). Managing Relevant Clinical Conditions of Hemophilia A/B Patients. Hematology Reports, 15(2), 384-397. https://doi.org/10.3390/hematolrep15020039