Cochlear Implants and the Aided Audiogram: A Retrospective Study Comparing Performance Across Device Manufacturers
Abstract
1. Introduction
2. Materials and Methods
2.1. NYU Exploratory Data Set
2.2. ASAN Confirmatory Data Set
2.3. Clinical Fitting Procedures
2.4. Data Analysis
2.4.1. Average CI-Aided Thresholds
2.4.2. CI-Aided Speech Perception
2.4.3. Joint Analysis of CI-Aided Thresholds and Speech Perception
2.4.4. Additional Analyses of NYU Data Set: Newer and Older
3. Results
3.1. NYU Exploratory Data Set
3.2. ASAN Confirmatory Data Set
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skinner, M.W. Optimizing cochlear implant speech performance. Ann. Otol. Rhinol. Laryngol. 2003, 112, 4–13. [Google Scholar] [CrossRef]
- Wolfe, J. Cochlear Implants: Audiologic Management and Considerations for Implantable Hearing Devices; Plural Publishing, Inc.: San Diego, CA, USA, 2020. [Google Scholar]
- Cochlear. Custom Sound Pro Software User Guide, version 7.0; Custom Sound Pro Software; Cochlear: Sydney, Australia, 2023.
- Vaerenberg, B.; Govaerts, P.J.; Stainsby, T.; Nopp, P.; Gault, A.; Gnansia, D. A uniform graphical representation of intensity coding in current-generation cochlear implant systems. Ear Hear. 2014, 35, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Messersmith, J.J.; Entwisle, L.; Warren, S.; Scott, M. Clinical Practice Guidelines: Cochlear Implants. J. Am. Acad. Audiol. 2019, 30, 827–844. [Google Scholar] [CrossRef]
- Skinner, M.W.; Holden, L.K.; Demorest, M.E.; Holden, T.A. Use of test-retest measures to evaluate performance stability in adults with cochlear implants. Ear Hear. 1995, 16, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Bierer, J.A. Threshold and channel interaction in cochlear implant users: Evaluation of the tripolar electrode configuration. J. Acoust. Soc. Am. 2007, 121, 1642–1653. [Google Scholar] [CrossRef]
- Pfingst, B.E.; Xu, L. Across-site variation in detection thresholds and maximum comfortable loudness levels for cochlear implants. J. Assoc. Res. Otolaryngol. 2004, 5, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Eggink, M.C.; Frijns, J.H.M.; Sagers, J.E.; O’Malley, J.T.; Liberman, M.C.; Stankovic, K.M. Human vestibular schwannoma reduces density of auditory nerve fibers in the osseous spiral lamina. Hear. Res. 2022, 418, 108458. [Google Scholar] [CrossRef]
- Borsetto, D.; Hammond-Kenny, A.; Tysome, J.R.; Axon, P.R.; Donnelly, N.P.; Vijendren, A.; Phillips, V.; Bance, M.L. Hearing rehabilitation outcomes in cochlear implant recipients with vestibular schwannoma in observation or radiotherapy groups: A systematic review. Cochlear Implant. Int. 2020, 21, 9–17. [Google Scholar] [CrossRef]
- Wick, C.C.; Butler, M.J.; Yeager, L.H.; Kallogjeri, D.; Durakovic, N.; McJunkin, J.L.; Shew, M.A.; Herzog, J.A.; Buchman, C.A. Cochlear Implant Outcomes Following Vestibular Schwannoma Resection: Systematic Review. Otol. Neurotol. 2020, 41, 1190–1197. [Google Scholar] [CrossRef]
- Carhart, R.; Jerger, J. Preferred method for clinical determination of pure-tone thresholds. J. Speech Hear. Disord. 1959, 24, 330–345. [Google Scholar] [CrossRef]
- Kim, H.; Kang, W.S.; Park, H.J.; Lee, J.Y.; Park, J.W.; Kim, Y.; Seo, J.W.; Kwak, M.Y.; Kang, B.C.; Yang, C.J.; et al. Cochlear Implantation in Postlingually Deaf Adults is Time-sensitive Towards Positive Outcome: Prediction using Advanced Machine Learning Techniques. Sci. Rep. 2018, 8, 18004. [Google Scholar] [CrossRef] [PubMed]
- Nosek, B.A.; Ebersole, C.R.; DeHaven, A.C.; Mellor, D.T. The preregistration revolution. Proc. Natl. Acad. Sci. USA 2018, 115, 2600–2606. [Google Scholar] [CrossRef] [PubMed]
- Simmons, J.P.; Nelson, L.D.; Simonsohn, U. False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol. Sci. 2011, 22, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Munafò, M.R.; Nosek, B.A.; Bishop, D.V.M.; Button, K.S.; Chambers, C.D.; du Sert, N.P.; Simonsohn, U.; Wagenmakers, E.J.; Ware, J.J.; Ioannidis, J.P.A. A manifesto for reproducible science. Nat. Hum. Behav. 2017, 1, 0021. [Google Scholar] [CrossRef]
- Holder, J.T.; Holcomb, M.A.; Snapp, H.; Labadie, R.F.; Vroegop, J.; Rocca, C.; Elgandy, M.S.; Dunn, C.; Gifford, R.H. Guidelines for Best Practice in the Audiological Management of Adults Using Bimodal Hearing Configurations. Otol. Neurotol. Open 2022, 2, e011. [Google Scholar] [CrossRef]
- Holden, L.K.; Reeder, R.M.; Firszt, J.B.; Finley, C.C. Optimizing the perception of soft speech and speech in noise with the Advanced Bionics cochlear implant system. Int. J. Audiol. 2011, 50, 255–269. [Google Scholar] [CrossRef]
- Vaerenberg, B.; Smits, C.; De Ceulaer, G.; Zir, E.; Harman, S.; Jaspers, N.; Tam, Y.; Dillon, M.; Wesarg, T.; Martin-Bonniot, D.; et al. Cochlear implant programming: A global survey on the state of the art. Sci. World J. 2014, 2014, 501738. [Google Scholar] [CrossRef]
- Chang, C.J.; Sun, C.H.; Hsu, C.J.; Chiu, T.; Yu, S.H.; Wu, H.P. Cochlear implant mapping strategy to solve difficulty in speech recognition. J. Chin. Med. Assoc. 2022, 85, 874–879. [Google Scholar] [CrossRef]
- Firszt, J.B.; Holden, L.K.; Skinner, M.W.; Tobey, E.A.; Peterson, A.; Gaggl, W.; Runge-Samuelson, C.L.; Wackym, P.A. Recognition of speech presented at soft to loud levels by adult cochlear implant recipients of three cochlear implant systems. Ear Hear. 2004, 25, 375–387. [Google Scholar] [CrossRef]
- Holden, L.K.; Skinner, M.W.; Fourakis, M.S.; Holden, T.A. Effect of increased IIDR in the nucleus freedom cochlear implant system. J. Am. Acad. Audiol. 2007, 18, 777–793. [Google Scholar] [CrossRef]
- Skinner, M.; Binzer, S.; Potts, L.; Holden, L.; Aaron, R. Hearing rehabilitation for individuals with severe and profound hearing impairment: Hearing aids, cochlear implants, and counseling. In Strategies for Selecting and Verifying Hearing Aid Fittings; Thieme: New York, NY, USA, 2002; pp. 311–344. [Google Scholar]
- Boyd, P.J. Effects of programming threshold and maplaw settings on acoustic thresholds and speech discrimination with the MED-EL COMBI 40+ cochlear implant. Ear Hear. 2006, 27, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Spahr, A.J.; Dorman, M.F. Effects of minimum stimulation settings for the Med El Tempo+ speech processor on speech understanding. Ear Hear. 2005, 26 (Suppl. S4), 2s–6s. [Google Scholar] [CrossRef] [PubMed]
- Fleming, T.R. Current issues in non-inferiority trials. Stat. Med. 2008, 27, 317–332. [Google Scholar] [CrossRef] [PubMed]
- Dawson, P.W.; Vandali, A.E.; Knight, M.R.; Heasman, J.M. Clinical evaluation of expanded input dynamic range in Nucleus cochlear implants. Ear Hear. 2007, 28, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Busby, P.A.; Arora, K. Effects of Threshold Adjustment on Speech Perception in Nucleus Cochlear Implant Recipients. Ear Hear. 2016, 37, 303–311. [Google Scholar] [CrossRef]
- Martins, K.V.C.; Goffi-Gomez, M.V.S.; Tsuji, R.K.; Bento, R.F. Do the minimum and maximum comfortable stimulation levels influence the cortical potential latencies or the speech recognition in adult cochlear implant users? Hear. Res. 2021, 404, 108206. [Google Scholar] [CrossRef]
A. EARLY EVALUATIONS | ||||||||
CNC Words | AzBIO Sentences in Quiet | AzBIO Sentences in Noise | ||||||
COCHLEAR | AB | MED-EL | COCHLEAR | AB | MED-EL | COCHLEAR | AB | MED-EL |
r = −0.318 | r = −0.559 | r = −0.135 | r = −0.221 | r = −0.363 | r = 0.013 | r = −0.145 | r = −0.274 | r = −0.165 |
** p = 0.002 | *** p < 0.001 | p = 0.632 | * p = 0.047 | * p = 0.027 | p = 0.971 | p = 0.252 | p = 0.158 | p = 0.697 |
N = 91 | N = 43 | N = 15 | N = 81 | N = 37 | N = 11 | N = 64 | N = 28 | N = 8 |
Slope = 1.67 | Slope = 2.88 | -- | Slope = 1.27 | Slope = 2.62 | -- | -- | -- | -- |
B. LATE EVALUATIONS | ||||||||
CNC Words | AzBIO Sentences in Quiet | AzBIO Sentences in Noise | ||||||
COCHLEAR | AB | MED-EL | COCHLEAR | AB | MED-EL | COCHLEAR | AB | MED-EL |
r = −0.170 | r = −0.448 | r = −0.187 | r = 0.059 | r = −0.298 | r = −0.134 | r = 0.110 | r = −0.192 | r = −0.256 |
p = 0.148 | ** p = 0.005 | p = 0.561 | p = 0.633 | p = 0.110 | p = 0.774 | p = 0.461 | p = 0.418 | p = 0.624 |
N = 74 | N = 38 | N = 12 | N = 67 | N = 30 | N = 7 | N = 47 | N = 20 | N = 6 |
-- | Slope = 1.84 | -- | -- | -- | -- | -- | -- | -- |
ASAN EVALUATIONS | |||
Words | Sentences | ||
COCHLEAR | MED-EL | COCHLEAR | MED-EL |
r = −0.246 | r = −0.0157 | r = −0.144 | r = −0.194 |
* p = 0.0145 | p = 0.948 | p = 0.157 | p = 0.413 |
N = 98 | N = 20 | N = 98 | N = 20 |
Slope = 0.937 | -- | -- | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capach, N.H.; Zigdon, N.; Payne, T.A.; Neukam, J.D.; Choi, Y.; Park, H.J.; Shapiro, W.H.; Svirsky, M.A. Cochlear Implants and the Aided Audiogram: A Retrospective Study Comparing Performance Across Device Manufacturers. Audiol. Res. 2025, 15, 79. https://doi.org/10.3390/audiolres15040079
Capach NH, Zigdon N, Payne TA, Neukam JD, Choi Y, Park HJ, Shapiro WH, Svirsky MA. Cochlear Implants and the Aided Audiogram: A Retrospective Study Comparing Performance Across Device Manufacturers. Audiology Research. 2025; 15(4):79. https://doi.org/10.3390/audiolres15040079
Chicago/Turabian StyleCapach, Nicole Hope, Noam Zigdon, Taylor A. Payne, Jonathan D. Neukam, Yeonjoo Choi, Hong Ju Park, William H. Shapiro, and Mario A. Svirsky. 2025. "Cochlear Implants and the Aided Audiogram: A Retrospective Study Comparing Performance Across Device Manufacturers" Audiology Research 15, no. 4: 79. https://doi.org/10.3390/audiolres15040079
APA StyleCapach, N. H., Zigdon, N., Payne, T. A., Neukam, J. D., Choi, Y., Park, H. J., Shapiro, W. H., & Svirsky, M. A. (2025). Cochlear Implants and the Aided Audiogram: A Retrospective Study Comparing Performance Across Device Manufacturers. Audiology Research, 15(4), 79. https://doi.org/10.3390/audiolres15040079