Relationships Between Self-Report Hearing Scales, Listening Effort, and Speech Perception in Cocktail Party Noise in Hearing-Aided Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Population
2.2. Speech Perception in Cocktail Party Noise
2.3. Patient-Reported Outcome Measures (PROMs)
2.4. Statistical Analysis
3. Results
3.1. Perception Thresholds and PROMs Scores
3.2. Speech-in-Babble-Noise and 15iSSQ Scores
3.2.1. SSQSpeech Scores
- UA_SPIN–SSQSpeech
- UA_TLE–SSQSpeech
- HA_SPIN–SSQSpeech
- HA_TLE–SSQSpeech
3.2.2. SSQQuality
3.2.3. SSQSpatial
3.3. Speech-in-Babble-Noise Perception and Daily Listening Effort (EEAS)
3.3.1. Daily Listening Effort and Unaided SPIN
3.3.2. Daily Listening Effort (EEAS) and Aided SPIN
4. Discussion
4.1. SSQSpeech Scores Increase with Both Unaided and Aided SPIN Thresholds
4.2. Task-Related Listening Effort Threshold (TLE) and PROMs Scores
4.3. A Moderating Influence by HA Experience and Daily Usage
4.4. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cis | Confidence intervals |
EEAS | Extended Effort Assessment Scale scores (from 0 to 10 maximum effort) |
EEASNoise | Subscale “noise” of the Extended Effort Assessment Scale scores |
EEASQuiet | Subscale “quiet” of the Extended Effort Assessment Scale: items depicting listening situations in quiet |
HA | Hearing aid |
HA Experience | Total experience with hearing aids, in years |
HA_PTA | Hearing-aided threshold (average of 500 Hz, 1, 2 and 4 kHz pure-tone threshold) |
HA_SPIN | Hearing-aided speech-in-noise thresholds |
HA_TLE | Speech-in-noise task-related listening effort threshold, obtained with hearing aids |
HADW | Hearing aid daily wear duration, in hours |
HINT | Hearing-in-Noise Test |
MSE | Mean squared error |
PROMs | Patient-related outcome measures |
SD | Standard deviation |
SE | Standard error |
SPIN | Speech in cocktail party noise threshold |
SSQ | Speech Spatial and Qualities of Hearing Scale; full scale |
SSQSpeech | Subscale “Speech” of the SSQ |
SSQSpatial | Subscale “Spatial” of the SSQ |
SSQQuality | Subscale “Quality” of the SSQ |
15iSSQ | Speech Spatial and Qualities of Hearing Scale; 15-item short form |
15iSSQSpeech | Subscale “Speech” of the 15iSSQ, i.e., the first 5 items |
15iSSQSpatial | Subscale “Spatial” of the 15iSSQ, i.e., items 6 to 10 |
15iSSQQuality | Subscale “Quality” of the SSQ, i.e., the last 5 items |
TLE | Task-related listening effort threshold |
UA | Unaided |
UA_PTA | Unaided threshold (average of 500 Hz, 1, 2, and 4 kHz pure-tone thresholds) |
UA_SPIN | Unaided speech-in-noise thresholds, obtained without hearing aids |
UA_TLE | Speech-in-noise task-related listening effort threshold, obtained without hearing aids |
References
- Dong, L.; Dong, W.; Zhang, S.; Jin, Y.; Jiang, Y.; Li, Z.; Li, C.; Yu, D. Global trends and burden of age-related hearing loss: 32-year study. Arch. Gerontol. Geriatr. 2025, 134, 105847. [Google Scholar] [CrossRef] [PubMed]
- Dawes, P.; Emsley, R.; Cruickshanks, K.J.; Moore, D.R.; Fortnum, H.; Edmondson-Jones, M.; McCormack, A.; Munro, K.J. Hearing Loss and Cognition: The Role of Hearing Aids, Social Isolation and Depression. PLoS ONE 2015, 10, e0119616. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.R.; Yaffe, K.; Xia, J.; Xue, Q.-L.; Harris, T.B.; Purchase-Helzner, E.; Satterfield, S.; Ayonayon, H.N.; Ferrucci, L.; Simonsick, E.M.; et al. Hearing Loss and Cognitive Decline in Older Adults. JAMA Intern. Med. 2013, 173, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Amieva, H.; Ouvrard, C.; Giulioli, C.; Meillon, C.; Rullier, L.; Dartigues, J.-F. Self-Reported Hearing Loss, Hearing Aids, and Cognitive Decline in Elderly Adults: A 25-Year Study. J. Am. Geriatr. Soc. 2015, 63, 2099–2104. [Google Scholar] [CrossRef]
- Gopinath, B.; Wang, J.J.; Schneider, J.; Burlutsky, G.; Snowdon, J.; McMahon, C.M.; Leeder, S.R.; Mitchell, P. Depressive symptoms in older adults with hearing impairments: The Blue Mountains Study. J. Am. Geriatr. Soc. 2009, 57, 1306–1308. [Google Scholar] [CrossRef]
- Levett, B.A.; Chandra, A.; Jiang, J.; Koohi, N.; Sharrad, D.; Core, L.B.; Johnson, J.C.S.; Tutton, M.; Green, T.; Jayakody, D.M.P.; et al. Hearing impairment and dementia: Cause, catalyst or consequence? J. Neurol. 2025, 272, 402. [Google Scholar] [CrossRef]
- Ferguson, M.A.; Kitterick, P.T.; Chong, L.Y.; Edmondson-Jones, M.; Barker, F.; Hoare, D.J. Hearing aids for mild to moderate hearing loss in adults. Cochrane Database Syst. Rev. 2017, 2017, CD012023. [Google Scholar] [CrossRef] [PubMed]
- Engdahl, B.; Aarhus, L. Prevalence and predictors of self-reported hearing aid use and benefit in Norway: The HUNT study. BMC Public Health 2024, 24, 474. [Google Scholar] [CrossRef]
- Orji, A.; Kamenov, K.; Dirac, M.; Davis, A.; Chadha, S.; Vos, T. Global and regional needs, unmet needs and access to hearing aids. Int. J. Audiol. 2020, 59, 166–172. [Google Scholar] [CrossRef]
- Tsimpida, D.; Rajasingam, S.; Panagioti, M.; Henshaw, H. The leaky pipeline of hearing care: Primary to secondary care evidence from the English Longitudinal Study of Ageing (ELSA). Int. J. Audiol. 2024, 63, 349–357. [Google Scholar] [CrossRef]
- Bisgaard, N.; Zimmer, S.; Laureyns, M.; Groth, J. A model for estimating hearing aid coverage world-wide using historical data on hearing aid sales. Int. J. Audiol. 2022, 61, 841–849. [Google Scholar] [CrossRef]
- Dillon, H.; Day, J.; Bant, S.; Munro, K.J. Adoption, use and non-use of hearing aids: A robust estimate based on Welsh national survey statistics. Int. J. Audiol. 2020, 59, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.L.; Sanchez, V.A. APSO Standards: Implementing Hearing Aid Needs Assessments and Measuring Related Outcomes. Semin. Hear. 2022, 43, 110–120. [Google Scholar] [CrossRef]
- Portelli, D.; Galletti, C.; Loteta, S.; Freni, L.; Ciodaro, F.; Alibrandi, A.; Alberti, G. Patients’ satisfaction and efficacy of modern conventional hearing aids: A comprehensive analysis of the self-reported user experiences in adult people. Braz. J. Otorhinolaryngol. 2025, 91, 101565. [Google Scholar] [CrossRef] [PubMed]
- Nixon, G.; Sarant, J.; Tomlin, D.; Dowell, R. Hearing Aid Uptake, Benefit, and Use: The Impact of Hearing, Cognition, and Personal Factors. J. Speech Lang. Hear. Res. 2021, 64, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Cox, R.M.; Alexander, G.C. Measuring Satisfaction with Amplification in Daily Life: The SADL scale. Ear Hear. 1999, 20, 306–320. [Google Scholar] [CrossRef]
- High, W.S.; Fairbanks, G.; Glorig, A. Scale for Self-Assessment of Hearing Handicap. J. Speech Hear. Disord. 1964, 29, 215–230. [Google Scholar] [CrossRef]
- Viergever, K.; Kraak, J.T.; Bruinewoud, E.M.; Ket, J.C.F.; Kramer, S.E.; Merkus, P. Questionnaires in otology: A systematic mapping review. Syst. Rev. 2021, 10, 119. [Google Scholar] [CrossRef]
- Akeroyd, M.A.; Wright-Whyte, K.; Holman, J.A.; Whitmer, W.M. A comprehensive survey of hearing questionnaires: How many are there, what do they measure, and how have they been validated? Trials 2015, 16, P26. [Google Scholar] [CrossRef]
- Heinrich, A.; Mikkola, T.M.; Polku, H.; Törmäkangas, T.; Viljanen, A. Hearing in Real-Life Environments (HERE): Structure and Reliability of a Questionnaire on Perceived Hearing for Older Adults. Ear Hear. 2019, 40, 368–380. [Google Scholar] [CrossRef]
- Smith, S.K.; O’Connell, G.B.; Knibb, R.; Greenwood, R.; Hussain, S.; Shaw, R.; Straus, J.; Banks, J.; Hall, A.; Dhanda, N.; et al. Development of the First Patient-Reported Experience Measure (PREM) for Hearing Loss in Audiology Care-My Hearing PREM. Health Expect. 2024, 27, e70088. [Google Scholar] [CrossRef]
- Stenbäck, V.; Marsja, E.; Ellis, R.; Rönnberg, J. Relationships between behavioural and self-report measures in speech recognition in noise. Int. J. Audiol. 2023, 62, 101–109. [Google Scholar] [CrossRef]
- Fitzgerald, M.B.; Ward, K.M.; Gianakas, S.P.; Smith, M.L.; Blevins, N.H.; Swanson, A.P. Speech-in-Noise Assessment in the Routine Audiologic Test Battery: Relationship to Perceived Auditory Disability. Ear Hear. 2024, 45, 816–826. [Google Scholar] [CrossRef]
- Noble, W.; Gatehouse, S. Interaural asymmetry of hearing loss, Speech, Spatial and Qualities of Hearing Scale (SSQ) disabilities, and handicap. Int. J. Audiol. 2004, 43, 100–114. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, N.; O’Neill, S. Comparison of Speech, Spatial, and Qualities of Hearing Scale (SSQ) and the Abbreviated Profile of Hearing Aid Benefit (APHAB) Questionnaires in a Large Cohort of Self-Reported Normal-Hearing Adult Listeners. Audiol. Res. 2023, 13, 143–150. [Google Scholar] [CrossRef]
- Demeester, K.; Topsakal, V.; Hendrickx, J.-J.; Fransen, E.; van Laer, L.; Van Camp, G.; Van de Heyning, P.; van Wieringen, A. Hearing disability measured by the speech, spatial, and qualities of hearing scale in clinically normal-hearing and hearing-impaired middle-aged persons, and disability screening by means of a reduced SSQ (the SSQ5). Ear Hear. 2012, 33, 615–616. [Google Scholar] [CrossRef]
- Gonsalez, E.C.M.; Almeida, K. Cross-cultural adaptation of the Speech, Spatial and Qualities of Hearing Scale (SSQ) to Brazilian Portuguese. Audiol.-Commun. Res. 2015, 20, 215–224. [Google Scholar] [CrossRef]
- Moulin, A.; Pauzie, A.; Richard, C. Validation of a French translation of the speech, spatial, and qualities of hearing scale (SSQ) and comparison with other language versions. Int. J. Audiol. 2015, 54, 889–898. [Google Scholar] [CrossRef]
- Tufatulin, G.S.; Artyushkin, S.A. Validation of the Russian language version of the SSQ questionnaire. Vestn. Otorinolaringol. 2016, 81, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Kießling, J.; Grugel, L.; Meister, H.; Meis, M. Übertragung der Fragebögen SADL, ECHO und SSQ ins Deutsche und deren Evaluation. Z Audiol 2011, 50, 6–16. [Google Scholar]
- Myhrum, M.; Heldahl, M.G.; Rødvik, A.K.; Tvete, O.E.; Jablonski, G.E. Validation of the Norwegian Version of the Speech, Spatial and Qualities of Hearing Scale (SSQ). Audiol. Neurootol. 2024, 29, 124–135. [Google Scholar] [CrossRef]
- Kılıç, N.; Şahin Kamışlı, G.İ.; Gündüz, B.; Bayramoğlu, İ.; Kemaloğlu, Y.K. Turkish Validity and Reliability Study of the Speech, Spatial and Qualities of Hearing Scale. Turk. Arch. Otorhinolaryngol. 2021, 59, 172–187. [Google Scholar] [CrossRef]
- Lotfi, Y.; Nazeri, A.R.; Asgari, A.; Moosavi, A.; Bakhshi, E. Iranian Version of Speech, Spatial, and Qualities of Hearing Scale: A Psychometric Study. Acta Medica Iran. 2016, 54, 756–764. [Google Scholar]
- Akeroyd, M.A.; Guy, F.H.; Harrison, D.L.; Suller, S.L. A factor analysis of the SSQ (Speech, Spatial, and Qualities of Hearing Scale). Int. J. Audiol. 2014, 53, 101–114. [Google Scholar] [CrossRef]
- Moulin, A.; Richard, C. Validation of a French-Language Version of the Spatial Hearing Questionnaire, Cluster Analysis and Comparison with the Speech, Spatial, and Qualities of Hearing Scale. Ear Hear. 2016, 37, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Noble, W.; Jensen, N.S.; Naylor, G.; Bhullar, N.; Akeroyd, M.A. A short form of the Speech, Spatial and Qualities of Hearing scale suitable for clinical use: The SSQ12. Int. J. Audiol. 2013, 52, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Cañete, O.M.; Marfull, D.; Torrente, M.C.; Purdy, S.C. The Spanish 12-item version of the Speech, Spatial and Qualities of Hearing scale (Sp-SSQ12): Adaptation, reliability, and discriminant validity for people with and without hearing loss. Disabil. Rehabil. 2020, 44, 1419–1426. [Google Scholar] [CrossRef]
- Moulin, A.; Vergne, J.; Gallego, S.; Micheyl, C. A New Speech, Spatial, and Qualities of Hearing Scale Short-Form: Factor, Cluster, and Comparative Analyses. Ear Hear. 2019, 40, 938–950. [Google Scholar] [CrossRef] [PubMed]
- Banh, J.; Singh, G.; Pichora-Fuller, M.K. Age affects responses on the Speech, Spatial, and Qualities of Hearing Scale (SSQ) by adults with minimal audiometric loss. J. Am. Acad. Audiol. 2012, 23, 81–91, quiz 139–140. [Google Scholar] [CrossRef]
- Andéol, G.; Paraouty, N.; Giraudet, F.; Wallaert, N.; Isnard, V.; Moulin, A.; Suied, C. Predictors of Speech-in-Noise Understanding in a Population of Occupationally Noise-Exposed Individuals. Biology 2024, 13, 416. [Google Scholar] [CrossRef]
- Bhatt, I.S.; Dias, R.; Wineinger, N.; Pratt, S.; Wang, J.; Washnik, N.; Guthrie, O.; Wilder, J.; Torkamani, A. AudioChip: A Deep Phenotyping Approach for Deconstructing and Quantifying Audiological Phenotypes of Self-Reported Speech Perception Difficulties. Ear Hear. 2022, 43, 1023–1036. [Google Scholar] [CrossRef]
- Saxena, U.; Mishra, S.K.; Rodrigo, H.; Choudhury, M. Functional consequences of extended high frequency hearing impairment: Evidence from the speech, spatial, and qualities of hearing scale. J. Acoust. Soc. Am. 2022, 152, 2946–2952. [Google Scholar] [CrossRef]
- Anderson, S.; Parbery-Clark, A.; White-Schwoch, T.; Kraus, N. Auditory Brainstem Response to Complex Sounds Predicts Self-Reported Speech-in-Noise Performance. J. Speech Lang. Hear. Res. 2013, 56, 31. [Google Scholar] [CrossRef]
- Mecklenburg, D.J.; Graham, P.L.; James, C.J. Relationships Between Speech, Spatial and Qualities of Hearing Short Form SSQ12 Item Scores and their Use in Guiding Rehabilitation for Cochlear Implant Recipients. Trends Hear. 2024, 28, 23312165231224643. [Google Scholar] [CrossRef]
- Ramakers, G.G.J.; Smulders, Y.E.; van Zon, A.; Van Zanten, G.A.; Grolman, W.; Stegeman, I. Correlation between subjective and objective hearing tests after unilateral and bilateral cochlear implantation. BMC Ear Nose Throat Disord. 2017, 17, 10. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.-H.; Lee, J.-H.; Lee, W.-S. Bimodal benefits on objective and subjective outcomes for adult cochlear implant users. Korean J. Audiol. 2013, 17, 65–73. [Google Scholar] [CrossRef]
- Capretta, N.R.; Moberly, A.C. Does quality of life depend on speech recognition performance for adult cochlear implant users? Laryngoscope 2016, 126, 699–706. [Google Scholar] [CrossRef]
- Astefanei, O.; Martu, C.; Cozma, S.; Radulescu, L. Cochlear and Bone Conduction Implants in Asymmetric Hearing Loss and Single-Sided Deafness: Effects on Localization, Speech in Noise, and Quality of Life. Audiol. Res. 2025, 15, 49. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, A.; Henshaw, H.; Ferguson, M.A. The relationship of speech intelligibility with hearing sensitivity, cognition, and perceived hearing difficulties varies for different speech perception tests. Front. Psychol. 2015, 6, 782. [Google Scholar] [CrossRef] [PubMed]
- Moulin, A.; Bernard, A.; Tordella, L.; Vergne, J.; Gisbert, A.; Martin, C.; Richard, C. Variability of word discrimination scores in clinical practice and consequences on their sensitivity to hearing loss. Eur. Arch. Otorhinolaryngol. 2017, 274, 2117–2124. [Google Scholar] [CrossRef]
- Moulin, A.; Richard, C. Lexical Influences on Spoken Spondaic Word Recognition in Hearing-Impaired Patients. Front. Neurosci. 2015, 9, 476. [Google Scholar] [CrossRef]
- Moulin, A.; Richard, C. Sources of variability of speech, spatial, and qualities of hearing scale (SSQ) scores in normal-hearing and hearing-impaired populations. Int. J. Audiol. 2016, 55, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Naylor, G.; Öberg, M.; Wänström, G.; Lunner, T. Exploring the Effects of the Narrative Embodied in the Hearing Aid Fitting Process on Treatment Outcomes. Ear Hear. 2015, 36, 517. [Google Scholar] [CrossRef]
- Wu, Y.-H.; Stangl, E.; Chipara, O.; Gudjonsdottir, A.; Oleson, J.; Bentler, R. Comparison of In-Situ and Retrospective Self-Reports on Assessing Hearing Aid Outcomes. J. Am. Acad. Audiol. 2020, 31, 746–762. [Google Scholar] [CrossRef] [PubMed]
- Vannson, N.; James, C.; Fraysse, B.; Strelnikov, K.; Barone, P.; Deguine, O.; Marx, M. Quality of Life and Auditory Performance in Adults with Asymmetric Hearing Loss. Audiol. Neurotol. 2015, 20, 38–43. [Google Scholar] [CrossRef]
- Foster, J.; Haggard, M. The Four Alternative Auditory Feature test (FAAF)—Linguistic and psychometric properties of the material with normative data in noise. Br. J. Audiol. 1987, 21, 165–174. [Google Scholar] [CrossRef]
- Shields, P.W.; Campbell, D.R. Intelligibility, subjective ratings and completion time scores using the FAAF test with hearing-impaired subjects and noisy reverberant environments. Br. J. Audiol. 2001, 35, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Ginzburg, J.; Fornoni, L.; Aguera, P.E.; Pierre, C.; Caclin, A.; Moulin, A. Development of auditory cognition in 5- to 10-year-old children: Focus on speech-in-babble-noise perception. Child Dev. 2024, 96, 407–425. [Google Scholar] [CrossRef]
- Ferschneider, M.; Moulin, A. Listening Effort in Quiet and Noisy Environments in the Daily Life of Adults with Hearing Aids: An Extended Version of the Effort Assessment Scale (EEAS). Trends Hear. 2023, 27, 23312165231176320. [Google Scholar] [CrossRef]
- Alhanbali, S.; Dawes, P.; Lloyd, S.; Munro, K.J. Self-Reported Listening-Related Effort and Fatigue in Hearing-Impaired Adults. Ear Hear. 2017, 38, e39–e48. [Google Scholar] [CrossRef]
- Keidser, G.; Dillon, H.; Flax, M.; Ching, T.; Brewer, S. The NAL-NL2 Prescription Procedure. Audiol. Res. 2011, 1, e24. [Google Scholar] [CrossRef] [PubMed]
- Keidser, G.; Dillon, H.; Carter, L.; O’Brien, A. NAL-NL2 Empirical Adjustments. Trends Amplif. 2012, 16, 211–223. [Google Scholar] [CrossRef]
- Moulin, A.; Garcia, S.; Jeanvoine, A.; Richard, C. French “Audimots”: Development of a French version of the Four Alternative Auditory Features Test. 11th European Federation of Audiology Societies (EFAS) Congress. Otorhinolaryngol. Hung. 2013, 59, 98–99. [Google Scholar]
- Johnson, J.A.; Xu, J.; Cox, R.M. Impact of Hearing Aid Technology on Outcomes in Daily Life II: Speech Understanding and Listening Effort. Ear Hear. 2016, 37, 529–540. [Google Scholar] [CrossRef]
- Holube, I.; Haeder, K.; Imbery, C.; Weber, R. Subjective Listening Effort and Electrodermal Activity in Listening Situations with Reverberation and Noise. Trends Hear. 2016, 20, 2331216516667734. [Google Scholar] [CrossRef] [PubMed]
- Steiger, J.H. Tests for comparing elements of a correlation matrix. Psychol. Bull. 1980, 87, 245–251. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford Publications: New York, NY, USA, 2022; ISBN 978-1-4625-4903-0. [Google Scholar]
- Humes, L.E.; Kidd, G.R.; Lentz, J.J. Auditory and cognitive factors underlying individual differences in aided speech-understanding among older adults. Front. Syst. Neurosci. 2013, 7, 55. [Google Scholar] [CrossRef]
- Gatehouse, S. The time course and magnitude of perceptual acclimatization to frequency responses: Evidence from monaural fitting of hearing aids. J. Acoust. Soc. Am. 1992, 92, 1258–1268. [Google Scholar] [CrossRef]
- Dawes, P.; Munro, K.J.; Kalluri, S.; Edwards, B. Acclimatization to hearing aids. Ear Hear. 2014, 35, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Wentzel, C.; Swanepoel, D.W.; Mahomed-Asmail, F.; Beukes, E.; Dawes, P.; Munro, K.; Almufarrij, I.; Manchaiah, V. Auditory Acclimatization in New Adult Hearing Aid Users: A Registered Systematic Review of Magnitude, Key Variables, and Clinical Relevance. J. Speech Lang. Hear. Res. 2025, 68, 3445–3479. [Google Scholar] [CrossRef]
- Wright, D.; Gagné, J.-P. Acclimatization to Hearing Aids by Older Adults. Ear Hear. 2020, 42, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Dillard, L.K.; Matthews, L.J.; Dubno, J.R. The Revised Hearing Handicap Inventory and Pure-Tone Average Predict Hearing Aid Use Equally Well. Am. J. Audiol. 2024, 33, 199–208. [Google Scholar] [CrossRef] [PubMed]
Variables | Mean | SD |
---|---|---|
Age (years) | 77.53 | 12.31 |
Unaided PTA (best ear) average 0.5, 1, 2, and 4 kHz thresholds (dB HL) | 50.20 | 12.59 |
Aided PTA (best Ear) average 0.5, 1, 2, and 4 kHz thresholds (dB HL) | 28.67 | 6.33 |
Unaided hearing asymmetry (dB HL) | 5.82 | 4.39 |
Aided PTA asymmetry (dB HL) | 2.66 | 2.66 |
Experience with hearing aids (years) | 5.60 | 7.02 |
Daily wear of hearing aids (hours) | 11.35 | 2.94 |
Unaided SPIN threshold (dB SNR) | −1.18 | 4.31 |
Hearing-aided SPIN threshold (dB SNR) | −1.11 | 3.48 |
Unaided SPIN task-related listening effort threshold (dB SNR) | 4.02 | 7.21 |
Hearing-aided SPIN task-related listening effort threshold (dB SNR) | 3.16 | 5.29 |
15iSSQ score (from 0 (cannot do) to 10 (do perfectly)) | 6.63 | 1.85 |
SSQ speech (from 0 to 10) | 5.61 | 2.21 |
SSQ spatial (from 0 to 10) | 6.45 | 2.30 |
SSQ quality (from 0 to 10) | 7.84 | 1.86 |
EEAS (from 0 (no effort) to 10 (maximum effort)) | 4.70 | 2.29 |
EEASquiet (from 0 to 10) | 2.63 | 2.24 |
EEASnoise (from 0 to 10) | 5.74 | 2.64 |
15iSSQ | SSQ Speech | SSQ Spatial | SSQ Qual | EEAS | EEAS Quiet | EEAS Noise | Age | HA Exp. | HADW | UA PTA | HA PTA | UA SPIN | HA SPIN | UA TLE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15iSSQ | 1.00 | ||||||||||||||
SSQSpeech | 0.83 | 1.00 | p < 0.05 | ||||||||||||
SSQSpatial | 0.92 | 0.62 | 1.00 | p < 0.01 | |||||||||||
SSQQuality | 0.86 | 0.52 | 0.77 | 1.00 | p < 0.001 | ||||||||||
EEAS | −0.77 | −0.75 | −0.64 | −0.62 | 1.00 | ||||||||||
EEASQuiet | −0.74 | −0.67 | −0.66 | −0.58 | 0.80 | 1.00 | |||||||||
EEASNoise | −0.68 | −0.64 | −0.57 | −0.57 | 0.95 | 0.63 | 1.00 | ||||||||
Age | 0.02 | −0.21 | 0.20 | 0.04 | −0.03 | 0.05 | −0.11 | 1.00 | |||||||
HA Exp. | −0.29 | −0.32 | −0.25 | −0.19 | 0.45 | 0.33 | 0.46 | −0.38 | 1.00 | ||||||
HADW | −0.03 | −0.04 | −0.03 | 0.01 | 0.04 | −0.01 | 0.12 | −0.08 | 0.18 | 1.00 | |||||
UA_PTA | −0.51 | −0.47 | −0.42 | −0.44 | 0.41 | 0.39 | 0.33 | 0.14 | 0.29 | 0.07 | 1.00 | ||||
HA_PTA | −0.39 | −0.38 | −0.27 | −0.38 | 0.27 | 0.26 | 0.20 | 0.48 | 0.05 | 0.04 | 0.65 | 1.00 | |||
UA_ SPIN | −0.30 | −0.28 | −0.18 | −0.33 | 0.36 | 0.40 | 0.31 | 0.46 | 0.17 | 0.20 | 0.46 | 0.76 | 1.00 | ||
HA_SPIN | −0.47 | −0.35 | −0.40 | −0.50 | 0.44 | 0.49 | 0.37 | 0.33 | 0.28 | 0.16 | 0.57 | 0.61 | 0.72 | 1.00 | |
UA_TLE | −0.29 | −0.14 | −0.21 | −0.45 | 0.47 | 0.49 | 0.47 | 0.14 | 0.20 | 0.22 | 0.35 | 0.49 | 0.74 | 0.52 | 1.00 |
HA_TLE | −0.36 | −0.19 | −0.29 | −0.50 | 0.48 | 0.45 | 0.48 | 0.04 | 0.29 | 0.24 | 0.40 | 0.33 | 0.48 | 0.68 | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moulin, A.; Aguera, P.-E.; Ferschneider, M. Relationships Between Self-Report Hearing Scales, Listening Effort, and Speech Perception in Cocktail Party Noise in Hearing-Aided Patients. Audiol. Res. 2025, 15, 113. https://doi.org/10.3390/audiolres15050113
Moulin A, Aguera P-E, Ferschneider M. Relationships Between Self-Report Hearing Scales, Listening Effort, and Speech Perception in Cocktail Party Noise in Hearing-Aided Patients. Audiology Research. 2025; 15(5):113. https://doi.org/10.3390/audiolres15050113
Chicago/Turabian StyleMoulin, Annie, Pierre-Emmanuel Aguera, and Mathieu Ferschneider. 2025. "Relationships Between Self-Report Hearing Scales, Listening Effort, and Speech Perception in Cocktail Party Noise in Hearing-Aided Patients" Audiology Research 15, no. 5: 113. https://doi.org/10.3390/audiolres15050113
APA StyleMoulin, A., Aguera, P.-E., & Ferschneider, M. (2025). Relationships Between Self-Report Hearing Scales, Listening Effort, and Speech Perception in Cocktail Party Noise in Hearing-Aided Patients. Audiology Research, 15(5), 113. https://doi.org/10.3390/audiolres15050113