Gelatin–Curcumin Nanocomposites as a Coating for Implant Healing Abutment: In Vitro Stability Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanocomposite Preparation
2.2. Coating Method
- Immersing healing abutments in nanocomposite suspensions.
- Setting the dip coating machine.
- Solvent evaporation (Figure 1).
2.3. Assessment of the Cytotoxicity
2.4. Curcumin Release Pattern from Nanocomposite
2.5. Method of Stability Investigation
- (1)
- Sodium chloride (NaCl),
- (2)
- Potassium chloride (KCl),
- (3)
- Sodium hydrogen carbonate (NaHCO3),
- (4)
- Magnesium chloride hexahydrate (MgCl2·6H2O),
- (5)
- Sodium sulphate (Na2SO4),
- (6)
- Calcium chloride dihydrate (CaCl2·2H2O),
- (7)
- Di-sodium hydrogen phosphate dihydrate (Na2HPO4·2H2O),
- (8)
- Tris ((CH2OH)3CNH2),
- (9)
- 1 M HCl solution.
2.6. Data Analysis
2.7. Ethical Considerations
3. Results
3.1. Release Results
3.2. Cytotoxicity
3.3. Stability Results
4. Discussion
5. The Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghinassi, B.; D’Addazio, G.; Di Baldassarre, A.; Femminella, B.; Di Vincenzo, G.; Piattelli, M.; Gaggi, G.; Sinjari, B. Immunohistochemical results of soft tissues around a new implant healing-abutment surface: A human study. J. Clin. Med. 2020, 9, 1009. [Google Scholar] [CrossRef] [Green Version]
- Rathee, M.; Bhoria, M.; Boora, P. Restoration of gingival form in malaligned dental implant through custom fabricated healing abutment: A case report. Indo Eur. J. Dent. Ther. Res. 2014, 2, 221–223. [Google Scholar]
- Beretta, M.; Poli, P.P.; Pieriboni, S.; Tansella, S.; Manfredini, M.; Cicciù, M.; Maiorana, C. Peri-implant soft tissue conditioning by means of customized healing abutment: A randomized controlled clinical trial. Materials 2019, 12, 3041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harshakumar, K.; Deepthi, V.; Ravichandran, R.; Prasanth, V. Customized healing abutment for enhancing pink aesthetics in implants. J. Dent. Implant 2013, 3, 172–176. [Google Scholar]
- Odatsu, T.; Kuroshima, S.; Sato, M.; Takase, K.; Valanezhad, A.; Naito, M.; Sawase, T. Antibacterial properties of nano-Ag coating on healing abutment: An in vitro and clinical study. Antibiotics 2020, 9, 347. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, M.; Jiang, T.; Zhou, Y.; Wang, Y. Roles of a new drug-delivery healing abutment in the prevention and treatment of peri-implant infections: A preliminary study. RSC Adv. 2018, 8, 38836–38843. [Google Scholar] [CrossRef] [Green Version]
- Iwańczyk, B.; Wychowański, P.; Minkiewicz-Zochniak, A.; Strom, K.; Jarzynka, S.; Olędzka, G. Bioactive healing abutment as a potential tool for the treatment of peri-implant disease—In vitro study. Appl. Sci. 2020, 10, 5376. [Google Scholar] [CrossRef]
- Degidi, M.; Artese, L.; Piattelli, A.; Scarano, A.; Shibli, J.A.; Piccirilli, M.; Perrotti, V.; Iezzi, G. Histological and immunohistochemical evaluation of the peri-implant soft tissues around machined and acid-etched titanium healing abutments: A prospective randomised study. Clin. Oral Investig. 2012, 16, 857–866. [Google Scholar] [CrossRef]
- El Chaar, E.; Almogahwi, M.; Abdalkader, K.; Alshehri, A.; Cruz, S.; Ricci, J. Decontamination of the infected implant surface: A scanning electron microscope study. Int. J. Periodontics Restor. Dent. 2020, 40, 395–401. [Google Scholar] [CrossRef]
- Wilkinson, L.J.; White, R.J.; Chipman, J.K. Silver and nanoparticles of silver in wound dressings: A review of efficacy and safety. J. Wound Care 2011, 20, 543–549. [Google Scholar] [CrossRef]
- Ghaznavi, D.; Babaloo, A.; Shirmohammadi, A.; Zamani, A.R.N.; Azizi, M.; Rahbarghazi, R.; Ghaznavi, A. Advanced platelet-rich fibrin plus gold nanoparticles enhanced the osteogenic capacity of human mesenchymal stem cells. BMC Res. Note 2019, 12, 721. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, R.; Reda, R.; Zanza, A.; Miccoli, G.; Nardo, D.D.; Testarelli, L. Can peri-implant marginal bone loss progression and a-MMP-8 be considered indicators of the subsequent onset of peri-implantitis? A 5-year study. Diagnostics 2022, 12, 2599. [Google Scholar] [CrossRef]
- Guarnieri, R.; Zanza, A.; D’Angelo, M.; Nardo, D.D.; Giudice, A.D.; Mazzoni, A.; Reda, R.; Testarelli, L. Correlation between peri-implant marginal bone loss progression and periimplant sulcular fluid levels of metalloproteinase-8. J. Pers. Med. 2022, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Hemissi, M.; Amardjia-Adnani, H.; Plenet, J.C. Titanium oxide thin layers deposed by dip-coating method: Their optical and structural properties. Curr. App. Phys. 2009, 9, 717–721. [Google Scholar] [CrossRef]
- Feng, X.; Chen, A.; Zhang, Y.; Wang, J.; Shao, L.; Wei, L. Application of dental nanomaterials: Potential toxicity to the central nervous system. Int. J. Nanomed. 2015, 10, 3547–3565. [Google Scholar]
- Besinis, A.; De Peralta, T.; Tredwin, C.J.; Handy, R.D. Review of nanomaterials in dentistry: Interactions with the oral microenvironment, clinical applications, hazards, and benefits. ACS Nano 2015, 9, 2255–2289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; He, S.; Huang, T.; Peng, C.; Zhou, H.; Liu, Q.; Zeng, W.; Liu, L.; Huang, H.; Xiang, L.; et al. Preparation of gelatin/hyaluronic acid microspheres with different morphologies for drug delivery. Polym. Bull. 2015, 72, 713–723. [Google Scholar] [CrossRef]
- Saha, S.; Pramanik, K.; Biswas, A. Antibacterial activity and biocompatibility of curcumin/TiO2 nanotube array system on Ti6Al4V bone implants. Mater. Technol. 2021, 36, 221–232. [Google Scholar] [CrossRef]
- Bansal, S.S.; Kausar, H.; Aqil, F.; Jeyabalan, J.; Vadhanam, M.V.; Gupta, R.C.; Ravoori, S. Curcumin implants for continuous systemic delivery: Safety and biocompatibility. Drug Deliv. Transl. Res. 2011, 1, 332–341. [Google Scholar] [CrossRef]
- Ansari, E.; Issazadeh, K.; Shoae Hassani, A. A study to investigate antibacterial effect of Nanocurcumin against pre-clinical methicillin resistant Staphylococcus aureus infection. J. Microb. World 2014, 7, 26–37. [Google Scholar]
- Sadat, S.M.; Jahan, S.T.; Haddadi, A. Effects of size and surface charge of polymeric nanoparticles on in vitro and in vivo applications. J. Biomater. Nanobiotechnol. 2016, 7, 91. [Google Scholar] [CrossRef] [Green Version]
- Mandrol, P.S.; Bhat, K.; Prabhakar, A.R. An in vitro evaluation of cytotoxicity of curcumin against human dental pulp fibroblasts. J. Indian Soc. Pedod. Prev. Dent. 2016, 34, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Zhou, Z.; Huang, T.; Peng, C.; Liu, Q.; Zhou, H.; Zeng, W.; Liu, L.; Ou, B.; He, S.; et al. Controlled release in vitro of icariin from gelatin/hyaluronic acid composite microspheres. Polym. Bull. 2016, 73, 1055–1066. [Google Scholar] [CrossRef]
- Damarla, S.R.; Komma, R.; Bhatnagar, U.; Rajesh, N.; Mulla, S.M.A. An evaluation of the genotoxicity and subchronic oral toxicity of synthetic curcumin. J. Toxicol. 2018, 2018, 6872753. [Google Scholar] [CrossRef]
- Ngo, H.V.; Tran, P.H.; Lee, B.-J.; Tran, T.T. Development of film-forming gel containing nanoparticles for transdermal drug delivery. Nanotechnology 2019, 30, 415102. [Google Scholar] [CrossRef]
- Kudzin, M.H.; Mrozińska, Z.; Kaczmarek, A.; Lisiak-Kucińska, A. Deposition of copper on poly (lactide) non-woven fabrics by magnetron sputtering—Fabrication of new multi-functional, antimicrobial composite materials. Materials 2020, 13, 3971. [Google Scholar] [CrossRef]
- Lee, S.L.; Raw, A.S.; Yu, L. Dissolution testing. In Biopharmaceutics Applications in Drug Development; Springer: Berlin/Heidelberg, Germany, 2008; pp. 47–74. [Google Scholar]
- Jalota, S.; Bhaduri, S.B.; Tas, A.C. Using a synthetic body fluid (SBF) solution of 27 mM HCO3− to make bone substitutes more osteointegrative. Mater. Sci. Eng. C 2008, 28, 129–140. [Google Scholar] [CrossRef]
- Zeng, L.; An, L.; Wu, X. Modeling drug-carrier interaction in the drug release from nanocarriers. J. Drug Deliv. 2011, 2011, 370308. [Google Scholar] [CrossRef] [Green Version]
- Jamei Khosroshahi, A.R.; Maleki Dizaj, S.; Sharifi, S.; Torab, A.; Negahdari, R.; Aghbolaghi, N.; Vahedi, P. The preparation, the physicochemical assessment, and the antimicrobial action of nanocurcumin-loaded dental temporary restorative material. J. Nanomater. 2022, 2022, 5339809. [Google Scholar] [CrossRef]
- Choukhachizadeh Moghaddam, S.; Negahdari, R.; Sharifi, S.; Maleki Dizaj, S.; Torab, A.; Rezaei, Y. Preparation and assessment of physicochemical possessions, solubility, and antimicrobial properties of dental prosthesis glass ionomer cement containing curcumin nanocrystals. J. Nanomater. 2022, 2022, 1229185. [Google Scholar] [CrossRef]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saadipour, M.; Karkhaneh, A.; Haghbin Nazarpak, M. An investigation into curcumin release from PLA particles loaded in PCL-GELATIN fibers for skin application. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 386–394. [Google Scholar] [CrossRef]
- Rubini, K.; Boanini, E.; Parmeggiani, S.; Bigi, A. Curcumin-functionalized gelatin films: Antioxidant materials with modulated physico-chemical properties. Polymers 2021, 13, 1824. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, S.; Zaheri Khosroshahi, A.; Maleki Dizaj, S.; Rezaei, Y. Preparation, physicochemical assessment and the antimicrobial action of hydroxyapatite—Gelatin/curcumin nanofibrous composites as a dental biomaterial. Biomimetics 2021, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Labis, V.; Bazikyan, E.; Zhigalina, O.; Sizova, S.; Oleinikov, V.; Khmelenin, D.; Dyachkova, I.; Zolotov, D.; Buzmakov, A.; Asadchikov, V.; et al. Assessment of dental implant surface stability at the nanoscale level. Dent. Mater. 2022, 38, 924–934. [Google Scholar] [CrossRef]
- Dias, F.J.; Fuentes, R.; Navarro, P.; Weber, B.; Borie, E. Assessment of the chemical composition in different dental implant types: An analysis through EDX system. Coatings 2020, 10, 882. [Google Scholar] [CrossRef]
Time | Number | Mean | SD |
---|---|---|---|
Primary weight | 16 | 0.3993 | 0.001 |
Weight after coating | 16 | 0.4051 | 0.005 |
One day after coating | 16 | 0.4050 | 0.005 |
30 days after coating | 16 | 0.4034 | 0.004 |
60 days after coating | 16 | 0.4013 | 0.003 |
Time | Mean Difference | The Confidence Level of 95% for the Mean Differences | p-Value | ||
---|---|---|---|---|---|
(I) | (J) | Low | High | ||
Primary weight | Immediately after coating | −0.006 | −0.0087 | −0.0028 | 0.001 |
One day after coating | −0.006 | −0.0087 | −0.0027 | 0.001 | |
30 days after coating | −0.0040 | −0.0067 | −0.0015 | 0.001 | |
60 days after coating | −0.0020 | −0.0038 | −0.0002 | 0.021 | |
Immediately after coating | One day after coating | 0.0001 | 0.0000 | 0.0001 | 0.034 |
30 days after coating | 0.0017 | −0.0003 | 0.0036 | 0.135 | |
60 days after coating | 0.0040 | 0.0015 | 0.0060 | 0.001 | |
One day after coating | 30 days after coating | 0.0016 | −0.0004 | 0.0036 | 0.167 |
60 days after coating | 0.0040 | 0.0014 | 0.0059 | 0.001 | |
30 days after coating | 60 days after coating | 0.0020 | 0.0009 | 0.0033 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maleki Dizaj, S.; Torab, A.; Kouhkani, S.; Sharifi, S.; Negahdari, R.; Bohlouli, S.; Fattahi, S.; Salatin, S. Gelatin–Curcumin Nanocomposites as a Coating for Implant Healing Abutment: In Vitro Stability Investigation. Clin. Pract. 2023, 13, 88-101. https://doi.org/10.3390/clinpract13010009
Maleki Dizaj S, Torab A, Kouhkani S, Sharifi S, Negahdari R, Bohlouli S, Fattahi S, Salatin S. Gelatin–Curcumin Nanocomposites as a Coating for Implant Healing Abutment: In Vitro Stability Investigation. Clinics and Practice. 2023; 13(1):88-101. https://doi.org/10.3390/clinpract13010009
Chicago/Turabian StyleMaleki Dizaj, Solmaz, Ali Torab, Shadi Kouhkani, Simin Sharifi, Ramin Negahdari, Sepideh Bohlouli, Shirin Fattahi, and Sara Salatin. 2023. "Gelatin–Curcumin Nanocomposites as a Coating for Implant Healing Abutment: In Vitro Stability Investigation" Clinics and Practice 13, no. 1: 88-101. https://doi.org/10.3390/clinpract13010009
APA StyleMaleki Dizaj, S., Torab, A., Kouhkani, S., Sharifi, S., Negahdari, R., Bohlouli, S., Fattahi, S., & Salatin, S. (2023). Gelatin–Curcumin Nanocomposites as a Coating for Implant Healing Abutment: In Vitro Stability Investigation. Clinics and Practice, 13(1), 88-101. https://doi.org/10.3390/clinpract13010009