Myoclonus Secondary to Amantadine: Case Report and Literature Review
Abstract
:1. Introduction
2. Case Report
3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rascol, O.; Fabbri, M.; Poewe, W. Amantadine in the treatment of Parkinson’s disease and other movement disorders. Lancet Neurol. 2021, 20, 1048–1056. [Google Scholar] [CrossRef]
- Chevalier, J.F.; Renier, E.; Brion, S. Edema and myoclonus in a patient with Parkinson’s disease treated by amantadine. L’encephale 1980, 6, 381–384. [Google Scholar]
- Marmol, S.; Feldman, M.; Singer, C.; Margolesky, J. Amantadine Revisited: A Contender for Initial Treatment in Parkinson’s Disease? CNS Drugs 2021, 35, 1141–1152. [Google Scholar] [CrossRef]
- Pfeiffer, R.F. Amantadine-induced “vocal” myoclonus. Mov. Disord. 1996, 11, 104–106. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, K.; Uozumi, T.; Qingrui, L.; Hashimoto, T.; Tsuji, S. Amantadine-induced cortical myoclonus. Neurology 2001, 56, 279–280. [Google Scholar] [CrossRef] [PubMed]
- Nakata, M.; Ito, S.; Shirai, W.; Hattori, T. Severe reversible neurological complications following amantadine treatment in three elderly patients with renal insufficiency. Eur. Neurol. 2006, 56, 59–61. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.L.; Hung, S.W.; Lin, L.W.; Chong, C.F.; Lau, C.L. Amantadine-induced serotonin syndrome in a patient with renal failure. Am. J. Emerg. Med. 2008, 26, 112.e5-6. [Google Scholar] [CrossRef]
- Hong, C.T.; Sun, Y.; Lu, C.J. Fatal intoxication using amantadine and pramipexole in a uremic patient. Acta Neurol. Taiwan. 2008, 17, 109–111. [Google Scholar]
- Nishikawa, N.; Nagai, M.; Moritoyo, T.; Yabe, H.; Nomoto, M. Plasma amantadine concentrations in patients with Parkinson’s disease. Park. Relat. Disord. 2009, 15, 351–353. [Google Scholar] [CrossRef]
- Gupta, A.; Lang, A.E. Drug-induced cranial myoclonus. Mov. Disord. 2010, 25, 2264–2265. [Google Scholar] [CrossRef]
- Hardwick, A.; Devereaux, M.; Walter, B. A Case of Subacute Encephalopathy, Ataxia and Myoclonus Due to Amantadine Toxicity in Chronic Renal Insufficiency. Mov. Disord. 2010, 25, 493. [Google Scholar]
- Yarnall, A.J.; Burn, D.J. Amantadine-induced myoclonus in a patient with progressive supranuclear palsy. Age Ageing 2012, 41, 695–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamura, K.; Arii, Y.; Inui, T.; Mitsui, T. A case of progressive supranuclear palsy with cortical myoclonus. Tokushima 2013, 4, 62–63. [Google Scholar]
- Estraneo, A.; Pascarella, A.; Moretta, P.; Loreto, V.; Trojano, L. Clinical and electroencephalographic on-off effect of amantadine in chronic non-traumatic minimally conscious state. J. Neurol. 2015, 262, 1584–1586. [Google Scholar] [CrossRef] [PubMed]
- Janssen, S.; Bloem, B.R.; Warrenburg, B.P. The clinical heterogeneity of drug-induced myoclonus: An illustrated review. J. Neurol. 2017, 264, 1559–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunieda, K.; Shigematsu, T.; Fujishima, I. Case Reports Describing Amantadine Intoxication in a Rehabilitation Hospital. Prog. Rehabil. Med. 2017, 2, 20170017. [Google Scholar] [CrossRef] [Green Version]
- Dames, B.; Karl, J.A.; Metman, L.V. High dose amantadine therapy may cause increased falling in patients with Parkinson’s disease: A case report. Clin. Park. Relat. Disord. 2020, 3, 100045. [Google Scholar] [CrossRef]
- Poon, L.H.; Lee, A.J.; Vuong, M.; Zuzuarregui, J.R. Amantadine Associated Myoclonus: Case Report and Review of the Literature. J. Pharm. Pract. 2021, 34, 814–817. [Google Scholar] [CrossRef]
- Raupp-Barcaro, I.F.M.; Dias, I.C.S.; Meyer, E.; Vieira, J.C.F.; Pereira, G.S.; Petkowicz, A.R.; Oliveira, R.M.W.; Andreatini, R. Involvement of dopamine D(2) and glutamate NMDA receptors in the antidepressant-like effect of amantadine in mice. Behav. Brain Res. 2021, 413, 113443. [Google Scholar] [CrossRef] [PubMed]
- Strömberg, U.; Svensson, T.H. Further studies on the mode of action of amantadine. Acta Pharmacol. Toxicol. 1971, 30, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Peeters, M.; Romieu, P.; Maurice, T.; Su, T.P.; Maloteaux, J.M.; Hermans, E. Involvement of the sigma 1 receptor in the modulation of dopaminergic transmission by amantadine. Eur. J. Neurosci. 2004, 19, 2212–2220. [Google Scholar] [CrossRef] [PubMed]
- Otton, H.J.; McLean, A.L.; Pannozzo, M.A.; Davies, C.H.; Wyllie, D.J.A. Quantification of the Mg2+-induced potency shift of amantadine and memantine voltage-dependent block in human recombinant GluN1/GluN2A NMDARs. Neuropharmacology 2011, 60, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Krzystanek, M.; Pałasz, A. Possibility of a New Indication for Amantadine in the Treatment of Bipolar Depression—Case Series Study. Pharmaceuticals 2020, 13, 326. [Google Scholar] [CrossRef]
- Lemmer, B. Effects of amantadine and amphetamine on serotonin uptake and release by human blood platelets. Eur. J. Pharmacol. 1973, 21, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.P.; Placantonakis, D.G.; Warsetsky, S.I.; Marquez, R.G.; Bernstein, L.; Aicher, S.A. The serotonin hypothesis of myoclonus from the perspective of neuronal rhythmicity. Adv. Neurol. 2002, 89, 307–329. [Google Scholar] [PubMed]
- Rissardo, J.P.; Caprara, A.L.; Durante, Í.; Rauber, A. Lithium-associated movement disorder: A literature review. Brain Circ. 2022, 8, 76–86. [Google Scholar] [CrossRef]
- Rissardo, J.P.; Caprara, A.L.F. Fluoroquinolone-Associated Movement Disorder: A Literature Review. Medicines 2023, 10, 33. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, I.S.; Lim, H.K.; Choi, H.S.; Oh, S.; Park, W.K.; Jang, C.G.; Kim, S.H.; Chang, M.J. N-Methyl-D-aspartate receptor antagonists enhance the head-twitch response, a 5-hydroxytryptamine2 receptor-mediated behaviour, in reserpine-treated mice. J. Pharm. Pharmacol. 2000, 52, 717–722. [Google Scholar] [CrossRef]
- Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin. Geriatr. Med. 2020, 36, 1–12. [Google Scholar] [CrossRef]
- Pena, A.B.; Caviness, J.N. Physiology-Based Treatment of Myoclonus. Neurotherapeutics 2020, 17, 1665–1680. [Google Scholar] [CrossRef]
- Horadam, V.W.; Sharp, J.G.; Smilack, J.D.; McAnalley, B.H.; Garriott, J.C.; Stephens, M.K.; Prati, R.C.; Brater, D.C. Pharmacokinetics of amantadine hydrochloride in subjects with normal and impaired renal function. Ann. Intern. Med. 1981, 94, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Hayden, F.G.; Minocha, A.; Spyker, D.A.; Hoffman, H.E. Comparative single-dose pharmacokinetics of amantadine hydrochloride and rimantadine hydrochloride in young and elderly adults. Antimicrob. Agents Chemother. 1985, 28, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Cheng, P.J.; Ing, T.S.; Daugirdas, J.T.; Jeevanandhan, R.; Soung, L.S.; Galinis, S. In vitro binding of amantadine to plasma proteins. Clin. Neuropharmacol. 1984, 7, 149–151. [Google Scholar] [CrossRef] [PubMed]
- Brenner, M.; Haass, A.; Jacobi, P.; Schimrigk, K. Amantadine sulphate in treating Parkinson’s disease: Clinical effects, psychometric tests and serum concentrations. J. Neurol. 1989, 236, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Köppel, C.; Tenczer, J. A revision of the metabolic disposition of amantadine. Biomed. Mass. Spectrom. 1985, 12, 499–501. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, F.J.; Puertas, I.; Toledo-Heras, M. Drug-induced myoclonus: Frequency, mechanisms and management. CNS Drugs 2004, 18, 93–104. [Google Scholar] [CrossRef]
- Degelau, J.; Somani, S.; Cooper, S.L.; Irvine, P.W. Occurrence of adverse effects and high amantadine concentrations with influenza prophylaxis in the nursing home. J. Am. Geriatr. Soc. 1990, 38, 428–432. [Google Scholar] [CrossRef]
- Factor, S.A.; Molho, E.S.; Brown, D.L. Acute delirium after withdrawal of amantadine in Parkinson’s disease. Neurology 1998, 50, 1456–1458. [Google Scholar] [CrossRef]
- Oertel, W.; Eggert, K.; Pahwa, R.; Tanner, C.M.; Hauser, R.A.; Trenkwalder, C.; Ehret, R.; Azulay, J.P.; Isaacson, S.; Felt, L.; et al. Randomized, placebo-controlled trial of ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson’s disease (EASE LID 3). Mov. Disord. 2017, 32, 1701–1709. [Google Scholar] [CrossRef] [Green Version]
Reference (Year) | Age/Sex | AMT Dosing (mg/Daily) and Indication | MCL Presentation | KF | MCL Onset a | Management | MCL Recovery b | EEG c | F/U | Considerations |
---|---|---|---|---|---|---|---|---|---|---|
Chevalier et al. (1980) [2] | 64, M | NA; PD | Generalized MCL. | N | NA | AMT withdrawal | NA | NA | NA | First report of AMT-induced MCL. Diuretics increased the intoxication by AMT. |
Pfeiffer et al. (1996) [4] | 64, F | 200; PD | Focal (cranial) MCL. | N | NA | AMT withdrawal. Clonazepam was attempted. | NA | NA | NA | First report of vocal (cranial) MCL. Misdiagnosed with stuttering. Videotape. |
Matsunaga et al. (2001) [5] | 87, F | 100; NA | Generalized (multifocal) MCL. Cortical MCL. | Y | 30 days | AMT withdrawal | 14 days | Abnormal | CR | Plasma AMT concentration. |
78, F | 200; PD | Generalized (multifocal) MCL. Cortical MCL. | N | 90 days | AMT withdrawal | 8 days | Abnormal | CR | Dose-dependent MCL. AMT-dose increase was associated with a rise in MCL frequency. | |
79, F | 200; PD | Generalized (multifocal) MCL. Cortical MCL. | Y | 9 days after worsening of renal function | AMT withdrawal | 7 days | Abnormal | Plasma AMT concentration. MCL appeared with worsening renal function. | ||
Nakata et al. (2006) [6] | 70, F | 150; PD | Generalized MCL. | Y | NA (y) | AMT withdrawal | 21 days | Normal | CR | Plasma AMT concentration. |
74, F | 200; Depression | Generalized MCL | N | NA (y) | AMT withdrawal | 21 days | Normal | CR | Possible serotonin syndrome. | |
73, F | 300; PD | Generalized MCL. | Y | 7 days | AMT withdrawal | NA | Abnormal | No | Possible serotonin syndrome. | |
Cheng et al. (2008) [7] | 78, M | 100; PD | Generalized MCL | Y | 3 days | AMT withdrawal | 12 days | Abnormal | CR | Serotonin syndrome. |
Hong et al. (2008) [8] | 59, F | 200; PD | Generalized MCL | Y | 11 days | AMT withdrawal | NA | NA | NA | Possible interaction with pramipexole. |
Nishikawa et al. (2009) [9] | 62, F | 200; PD | Generalized MCL | Y | NA | AMT withdrawal | NA | NA | CR | Plasma AMT concentration. |
55, F | 150; PD | Generalized MCL | Y | NA | AMT withdrawal | NA | NA | CR | Plasma AMT concentration. | |
Gupta et al. (2010) [10] | 63, M | 300; parkinsonism with postural instability | Focal (cranial) MCL. Resting and action MCL of lower face. | N | NA (several months) | AMT withdrawal | NA | NA | CR | Videotape. Misdiagnosed as stuttering. |
Hardwick et al. (2010) [11] | 63, M | NA; pruritus | Generalized MCL | Y | NA | AMT withdrawal | 56 days | Normal | CR | Plasma AMT concentration. |
Yarnall et al. (2012) [12] | 74, M | 200; PSP | Generalized MCL | N | 26 days | AMT withdrawal | 5 days | NA | CR | PSP diagnosis supported by abnormal DaTSCAN. |
Kawamura et al. (2013) [13] | 58, M | NA; PSP | Generalized MCL | N | NA | Clonazepam was attempted | NA | NA | NA | Giant potential was found in somatosensory evoked potential of the median nerve. |
Estraneo et al. (2015) [14] | 57, F | 200; coma state | Focal (cranial) MCL | N | 21 days | AMT withdrawal | 21 days | Abnormal | NA | Three attempts of AMT rechallenge. |
Janssen et al. (2017) [15] | 66, M | 300; PD with Levodopa-induced dyskinesias | Generalized MCL | N | 30 days | AMT withdrawal | 14 days | NA | CR | Videotape. |
Kunieda et al. (2017) [16] | 83, M | 150; PD | Generalized MCL. | Y | 5 days | AMT withdrawal | 29 days | NA | CR | Plasma AMT concentration |
53, M | 100; spontaneity | Generalized MCL. | Y | 21 days | AMT withdrawal. AMT rechallenge. | NA | NA | CR | AMT rechallenge without symptoms occurrence. | |
Dames et al. (2020) [17] | 55, M | 400; PD | Generalized MCL. | Y | NA (y) | AMT withdrawal | 7 days | NA | No | Videotape. |
Poon et al. (2021) [18] | 80, M | PD with Levodopa-induced dyskinesias | Generalized MCL. Asterixis. | N | 9 days | AMT withdrawal | 3 days | NA | CR | Subcortical MCL. |
Present report | 64, M | PD | Generalized MCL. Asterixis. | N | 7 days | AMT withdrawal | 3 days | Normal | CR | Subcortical MCL. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rissardo, J.P.; Fornari Caprara, A.L. Myoclonus Secondary to Amantadine: Case Report and Literature Review. Clin. Pract. 2023, 13, 830-837. https://doi.org/10.3390/clinpract13040075
Rissardo JP, Fornari Caprara AL. Myoclonus Secondary to Amantadine: Case Report and Literature Review. Clinics and Practice. 2023; 13(4):830-837. https://doi.org/10.3390/clinpract13040075
Chicago/Turabian StyleRissardo, Jamir Pitton, and Ana Letícia Fornari Caprara. 2023. "Myoclonus Secondary to Amantadine: Case Report and Literature Review" Clinics and Practice 13, no. 4: 830-837. https://doi.org/10.3390/clinpract13040075
APA StyleRissardo, J. P., & Fornari Caprara, A. L. (2023). Myoclonus Secondary to Amantadine: Case Report and Literature Review. Clinics and Practice, 13(4), 830-837. https://doi.org/10.3390/clinpract13040075