Are Maternal Vitamin D (25(OH)D) Levels a Predisposing Risk Factor for Neonatal Growth? A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mithal, A.; Kalra, S. Vitamin D supplementation in pregnancy. Indian. J. Endocrinol. Metab. 2014, 18, 593–596. Available online: https://pubmed.ncbi.nlm.nih.gov/25285272 (accessed on 1 September 2014).
- Roth, D.E.; Morris, S.K.; Zlotkin, S.; Gernand, A.D.; Ahmed, T.; Shanta, S.S.; Papp, E.; Korsiak, J.; Shi, J.; Islam, M.M.; et al. Vitamin D Supplementation in Pregnancy and Lactation and Infant Growth. N. Engl. J. Med. 2018, 379, 535–546. Available online: https://pubmed.ncbi.nlm.nih.gov/30089075 (accessed on 9 August 2018). [CrossRef]
- Vafaei, H.; Assadi, N.; Kasraeian, M.; Shahraki, H.R.; Bazrafshan, K.; Namazi, N.l. Positive effect of low dose vitamin D Supplementation on growth of fetal bones: A randomized prospective study. Bone 2019, 122, 136–142. Available online: https://pubmed.ncbi.nlm.nih.gov/30798000 (accessed on 1 May 2019). [CrossRef] [PubMed]
- Motamed, S.; Nikooyeh, B.; Kashanian, M.; Hollis, B.W.; Neyestani, T.R. Efficacy of two different doses of oral vitamin D supplementation on inflammatory biomarkers and maternal and neonatal outcomes. Matern. Child. Nutr. 2019, 15, e12867. Available online: https://pubmed.ncbi.nlm.nih.gov/31250540 (accessed on 5 September 2019). [CrossRef] [PubMed]
- Papadakis, G.; Keramidas, I.; Kakava, K.; Pappa, T.; Villiotou, V.; Manitarou, P.; Kalaitzidou, S.; Triantafillou, E.; Kaltzidou, V.; Pappas, A. Vitamin D and seasonal variation among Greek female patients with osteoporosis. In Vivo 2015, 29, 409–413. Available online: https://pubmed.ncbi.nlm.nih.gov/25977390 (accessed on 1 May 2015). [CrossRef] [PubMed]
- Hellenic National Meteorological Service/HNMS. Climatology, HNMS, Hellenic National Meteorological Service. 2015. Available online: https://www.emy.gr (accessed on 1 January 2024).
- Hosseinpanah, F.; Pour, S.H.; Heibatollahi, M.; Moghbel, N.; Asefzade, S.; Azizi, F. The effects of air pollution on vitamin D status in healthy women: A cross sectional study. BMC Public Health 2010, 10, 519. Available online: https://ncbi.nlm.nih.gov/20799984 (accessed on 29 August 2010). [CrossRef] [PubMed]
- Heidari, B.; Mirghassemi, M.B.H. Seasonal variations in serum vitamin D according to age and sex. Casp. J. Intern. Med. 2012, 3, 535–540. Available online: https://ncbi.nlm.nih.gov/24009930 (accessed on 1 September 2012).
- Costanzo, P.R.; Elias, N.O.; Rubinsztein, J.K.; Garcia Basavilbaso, N.X.; Piacentini, R. Ultraviolet radiation impact on seasonal variations of serum 25-hydroxy-vitamin D in healthy young adults in Buenow Aires. Medicina 2011, 71, 336–342. Available online: https://pubmed.ncbi.nlm.nih.gov/21893446 (accessed on 1 January 2024).
- Farrell, S.W.; Meyer, K.J.; Leonard, D.; Shuval, K.; Barlow, C.E.; Pavlovic, A.; DeFina, L.; Haskell, W.L. Physical Activity, Adiposity, and Serum Vitamin D Levels in Healthy Women: The Cooper Center Longitudinal Study. J. Women’s Health 2022, 31, 957–964. [Google Scholar] [CrossRef] [PubMed]
- González-Parra, E.; Avila, P.J.; Mahillo-Fernández, I.; Lentisco, C.; Gracia, C.; Egido, J.; Ortiz, A.; Arduan, A.O. High prevalence of winter 25-hydroxyvitamin D deficiency despite supplementation according to guidelines for hemodialysis patients. Clin. Exp. Nephrol. 2012, 16, 945–951. Available online: https://pubmed.ncbi.nlm.nih.gov/22644091 (accessed on 1 December 2012). [CrossRef]
- Kashi, Z.; Saeedian, F.S.; Akha, O.; Gorgi, M.A.H.; Emadi, S.F.; Zakeri, H. Vitamin D deficiency prevalence in Summer compared to Winter in a city with high humidity and sultry climate. Endokrinol. Pol. 2011, 62, 249–251. Available online: https://pubmed.ncbi.nlm.nih.gov/21717408 (accessed on 1 January 2024).
- Xyda, S.E.; Kotsa, K.; Doumas, A.; Papanastasiou, M.; Samoutis, G.; Garyfallos, A.A. The prevalence of Vitamin D deficiency in a Greek and Cypriot population sample. Endocr. Abstr. 2018, 56, P212. Available online: https://www.endocrine-abstracts.org/ea/0056/ea0056p212 (accessed on 1 January 2024). [CrossRef]
- Dimakopoulos, I.; Magriplis, E.; Mitsopoulou, A.-V.; Karageorgou, D.; Bakogianni, I.; Micha, R.; Michas, G.; Chourdakis, M.; Ntouroupi, T.; Tsaniklidou, S.-M.; et al. Association of serum vitamin D status with dietary intake and sun exposure in adults. Clin. Nutr. ESPEN 2019, 34, 23–31. Available online: https://pubmed.ncbi.nlm.nih.gov/31677707 (accessed on 1 December 2019). [CrossRef] [PubMed]
- ACOG. Vitamin D: Screening and Supplementation During Pregnancy/ACOG, ACOG/Clinical 2011, Number 495 (Reaffirmed 2021). Available online: https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2011/07/vitamin-d-screening-and-supplementation-during-pregnancy (accessed on 1 January 2024).
- Ministry of Health and Ministry of Education and Culture. National Nutrition Guide for Women, Pregnant and Breastfeeding, Institute for Preventive Enviromental & Occupational Medicine, Prolepsis 1999 (updated in 2014). Available online: https://www.fao.org/nutrition/education/food-based-dietary-guidelines/regions/countries/greece/fr/ (accessed on 1 January 2024).
- Harvey, N.C.; Holroyd, C.; Ntani, G.; Javaid, K.; Cooper, P.; Moon, R.; Cole, Z.; Tinati, T.; Godfrey, K.; Dennison, E.; et al. Vitamin D Supplementation in pregnancy: A systematic review. Health Technol. Assess. 2014, 18, 1–190. Available online: https://pubmed.ncbi.nlm.nih.gov/25025896 (accessed on 1 January 2024). [CrossRef] [PubMed]
- Khalessi, N.; Kalani, M.; Araghi, M.; Farahani, Z. The relationship between Maternal Vitamin D Deficiency and Low Birth Weight Neonates. J. Family Reprod. Health 2015, 9, 113–117. Available online: https://pubmed.ncbi.nlm.nih.gov/26622309 (accessed on 1 July 2014). [PubMed]
- Dalgard, C.; Petersen, M.S.; Steuerwald, U.; Weihe, P.; Grandjean, P. Umbilical Cord Serum 25-Hydroxyvitamin D Concentrations and Relation to Birthweight, Head Circuference and Infant Length at Age 14 Days. Paediatr. Perinat. Epidemiol. 2016, 30, 238–245. Available online: https://pubmed.ncbi.nlm.nih.gov/27038010 (accessed on 1 May 2016). [CrossRef] [PubMed]
- Moradi, A.; Zadeh, F.S. The relationship between maternal vitamin D level with infants’ birth-weight, height and head circumference at birth. J. Prev. Epidemiol. 2020, 5, e17. Available online: https://www.researchgate.net/publication/354567402_The_relationship_between_maternal_vitamin_D_level_with_infants’_birth-weight_height_and_head_circumference_at_birth (accessed on 1 January 2020). [CrossRef]
- Viljakainen, H.T.; Saarnio, E.; Hytinantti, T.; Miettinen, M.; Surcel, H.; Mäkitie, O.; Andersson, S.; Laitinen, K.; Lamberg-Allardt, C. Maternal vitamin D status determines bone variables in the newborn. J. Clin. Endocrinol. Metab. 2010, 95, 1749–1757. Available online: https://pubmed.ncbi.nlm.nih.gov/20139235 (accessed on 1 January 2024). [CrossRef] [PubMed]
- Kilicaslan, A.O.; Kutlu, R.; Kilinc, I.; Ozberk, D.I. The effects of vitamin D supplementation during pregnancy and maternal vitamin D levels on neonatal vitamin D levels and birth parameters. J. Matern. Fetal Neonatal Med. 2018, 31, 1727–1734. Available online: https://pubmed.ncbi.nlm.nih.gov/28475394 (accessed on 1 January 2024). [CrossRef]
- Thompson, W.D.; Tyrrell, J.; Borges, M.C.; Beaumont, R.N.; Knight, B.A.; Wood, A.R.; Ring, S.M.; Hattersley, A.T.; Freathy, R.M.; Lawlor, D.A. Association of maternal circulating 25(OH)D and calcium with birth weigh: A mendelian randomisation analysis. PLoS Med. 2019, 16, e1002828. Available online: https://pubmed.ncbi.nlm.nih.gov/31211782 (accessed on 1 April 2010). [CrossRef]
- Almidani, E.; Barkoumi, A.; Elsaaidawi, W.; Al Aliyan, S.; Kattan, A.; Alhazzani, F.; Jabr, M.b.; Binmanee, A.; Alsahan, N.; Alazmeh, S. Maternal Vitamin D levels and Its Correlation with Low Birth Weight in Neonates: A Tertiary Care Hospital Experience in Saudi Arabia. Cureus 2021, 13, e14528. Available online: https://www.cureus.com/articles/54013-maternal-vitamin-d-levels-and-its-correlation-with-low-birth-weight-in-neonates-a-tertiary-care-hospital-experience-in-saudi-arabia#!/ (accessed on 16 April 2021). [CrossRef]
- Hajhasshemi, M.; Khorsandi, A.; Haghollahi, F. Comparison of sun exposure versus vitamin D supplementation for pregnant women with vitamin D deficiency. J. Matern. Fetal Neonatal Med. 2019, 32, 1347–1352. Available online: https://pubmed.ncbi.nlm.nih.gov/29141476 (accessed on 1 April 2019). [CrossRef] [PubMed]
- Gale, C.R.; Robinson, S.M.; Harvey, N.C.; Javaid, M.K.; Jiang, B.; Martyn, C.N. Maternal vitamin D status during pregnancy and child outcomes. Eur. J. Clin. Nutr. 2008, 62, 68–77. Available online: https://pubmed.ncbi.nlm.nih.gov/17311057 (accessed on 1 January 2008). [CrossRef]
- Aji, A.S.; Erwinda, E.; Rasyid, R.; Yusrawati, Y.; Malik, S.G.; Alathari, B.; Lovegrove, J.A.; Lipoeto, N.I.; Vimaleswaran, K.S. A genetic approach to study the relationship between maternal Vitamin D status and newborn anthropometry measurments: The vitamin D pregnant mother (VDPM) cohort study. J. Diabetes Metab. Disord. 2020, 19, 91–103. Available online: https://pubmed.ncbi.nlm.nih.gov/32548071 (accessed on 1 January 2024). [CrossRef] [PubMed]
- Sarma, S.K.; Mudgal, S.K.; Thakur, K.; Gaur, R. How to calculate sample size for observational and experimental nursing research studies? Natl. J. Physiol. Pharm. Pharmacol. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. Available online: https://pubmed.ncbi.nlm.nih.gov/21646368 (accessed on 1 July 2011). [CrossRef] [PubMed]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Berisha, A.T.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. Available online: https://pubmed.ncbi.nlm.nih.gov/31959942 (accessed on 1 January 2024). [CrossRef] [PubMed]
- Surve, S.; Chauhan, S.; Amdekar, Y.; Joshi, B. Vitamin D deficiency in Children: An update on its Prevalence, Therapeutics and Knowledge gaps. Indian. J. Nutri. 2017, 4, 167. Available online: https://opensciencepublications.com (accessed on 1 January 2024).
- Misra, M.; Pacaud, D.; Petryk, A.; Collett-Solberg, P.; Kappy, M. Vitamin D deficiency in children and its management: Review of current Knowledge and recommendations. Pediatrics 2008, 122, 398–417. Available online: https://pubmed.ncbi.nlm.nih.gov/18676559 (accessed on 1 August 2008). [CrossRef]
- Braegger, C.; Campoy, C.; Colomb, V.; Decsi, T.; Domellof, M.; Fewtrell, M.; Hojsak, I.; Mihatsch, W.; Molgaard, C.; Shamir, R.; et al. Vitamin D in the healthy European paediatric population. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 692–701. Available online: https://pubmed.ncbi.nlm.nih.gov/23708639 (accessed on 1 June 2013). [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic. WHO Consultation on Obesity 1999. Available online: https://scholar.google.com/scholar_lookup?title=Obesity:+Obesity:+Preventing+and+Managing+the+Global+Epidemic&publication_year=2000& (accessed on 1 January 2024).
- Gorsuch, R.L. Factor Analysis; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1983; ISBN 0-89859-202-X. [Google Scholar] [CrossRef]
- McNutt, L.A.; Woolson, R.F. Sample Size for Prospective and Retrospective Studies: The 2 × 2 Table. Infect. Control. Hosp. Epidemiol. 1988, 9, 562–566. Available online: https://www.jstor.org/stable/info/10.2307/30144196 (accessed on 1 December 1988). [CrossRef]
- Freiman, J.; Chalmers, T.C.; Smith, H.; Kuebler, R.R. The importance of beta, the type II error and sample size in the design and interpretation of the randomized control trial. Survey of 71 “negative” trials. N. Engl. J. Med. 1978, 299, 690–694. Available online: https://pubmed.ncbi.nlm.nih.gov/355881 (accessed on 28 September 1978). [CrossRef]
- Moher, D.; Dulberg, C.S.; Wells, G.A. Statistical power, sample size, and their reporting in randomized controlled trials. J. Am. Med. Assoc. 1994, 272, 122–124. Available online: https://pubmed.ncbi.nlm.nih.gov/8015121 (accessed on 13 July 1994). [CrossRef]
- Miliku, K.; Vinkhuyzen, A.; Blanken, L.M.; McGrath, J.J.; Eyles, D.W.; Burne, T.H.; Hofman, A.; Tiemeier, H.; AP Steegers, E.; Gaillard, R.; et al. Maternal vitamin D concentrations during pregnancy, fetal growth patterns, and risks of adverse birth outcomes. Am. J. Clin. Nutr. 2016, 103, 1514–1522. Available online: https://pubmed.ncbi.nlm.nih.gov/27099250 (accessed on 1 June 2016). [CrossRef] [PubMed]
- Vaziri, F.; Nasiri, S.; Tavana, Z.; Dabbaghmanesh, M.H.; Sharif, F.; Jafari, P. A randomized controlled trial of vitamin D supplementation on perinatal depression: In Iranian pregnant mothers. BMC Pregnancy Childbirth 2016, 16, 239. Available online: https://pubmed.ncbi.nlm.nih.gov/27544544 (accessed on 20 August 2016). [CrossRef] [PubMed]
Group of Mothers Who Received Vitamin D Supplements | |||||
Chi-Square Tests | |||||
Value | df | Asymptotic Significance (2-Sided) | Exact Sig. (2-Sided) | Exact Sig. (1-Sided) | |
Pearson Chi-Square | 2.612 | 1 | 0.106 | ||
Continuity Correction | 1.866 | 1 | 0.172 | ||
Likelihood Ratio | 2.556 | 1 | 0.110 | ||
Fisher’s Exact Test | 0.135 | 0.087 | |||
Linear-by-Linear Association | 2.581 | 1 | 0.108 | ||
No. of Valid Cases | 83 | ||||
Group of Mothers Who Did Not Receive Vitamin D Supplements | |||||
Chi-Square Tests | |||||
Value | df | Asymptotic Significance (2-Sided) | Exact Sig. (2-Sided) | Exact Sig. (1-Sided) | |
Pearson Chi-Square | 0.044 | 1 | 0.834 | ||
Continuity Correction | 0.000 | 1 | 1.000 | ||
Likelihood Ratio | 0.043 | 1 | 0.836 | ||
Fisher’s Exact Test | 0.781 | 0.517 | |||
Linear-by-Linear Association | 0.043 | 1 | 0.835 | ||
No. of Valid Cases | 165 |
Group of Mothers Who Received Vitamin D Supplements | |||||
Chi-Square Tests | |||||
Value | df | Asymptotic Significance (2-Sided) | Exact Sig. (2-Sided) | Exact Sig. (1-Sided) | |
Pearson Chi-Square | 1.177 | 1 | 0.278 | ||
Continuity Correction | 0.541 | 1 | 0.462 | ||
Likelihood Ratio | 1.117 | 1 | 0.291 | ||
Fisher’s Exact Test | 0.308 | 0.227 | |||
Linear-by-Linear Association | 1.163 | 1 | 0.281 | ||
No. of Valid Cases | 83 | ||||
Group of Mothers Who Did Not Receive Vitamin D Supplements | |||||
Chi-Square Tests | |||||
Value | df | Asymptotic Significance (2-Sided) | Exact Sig. (2-Sided) | Exact Sig. (1-Sided) | |
Pearson Chi-Square | 17.625 | 1 | 0.000 | ||
Continuity Correction | 9.170 | 1 | 0.002 | ||
Likelihood Ratio | 9.312 | 1 | 0.002 | ||
Fisher’s Exact Test | 0.010 | 0.010 | |||
Linear-by-Linear Association | 17.519 | 1 | 0.000 | ||
No. of Valid Cases | 165 |
Group of Mothers Who Received Vitamin D Supplements | |||||
Chi-Square Tests | |||||
Value | df | Asymptotic Significance (2-Sided) | Exact Sig. (2-Sided) | Exact Sig. (1-Sided) | |
Pearson Chi-Square | 14.179 | 1 | 0.000 | ||
Continuity Correction | 10.947 | 1 | 0.001 | ||
Likelihood Ratio | 14.990 | 1 | 0.000 | ||
Fisher’s Exact Test | 0.001 | 0.001 | |||
Linear-by-Linear Association | 14.008 | 1 | 0.000 | ||
No. of Valid Cases | 83 | ||||
Group of Mothers Who Did Not Receive Vitamin D Supplements | |||||
Chi-Square Tests | |||||
Value | df | Asymptotic Significance (2-Sided) | Exact Sig. (2-Sided) | Exact Sig. (1-Sided) | |
Pearson Chi-Square | 1.895 | 1 | 0.169 | ||
Continuity Correction | 0.867 | 1 | 0.352 | ||
Likelihood Ratio | 3.429 | 1 | 0.064 | ||
Fisher’s Exact Test | 0.370 | 0.181 | |||
Linear-by-Linear Association | 1.884 | 1 | 0.170 | ||
No. of Valid Cases | 165 |
Dependent Variable: Head Circumference (HC) | |||||
---|---|---|---|---|---|
Unstandardized Coefficients | Standardized Coefficients | t | Sig. | ||
B | Std. Error | Beta | |||
Independent variables (Constant) | 33.574 | 0.748 | 44.885 | 0.000 | |
GDM | 0.335 | 0.298 | 0.068 | 1.126 | 0.261 |
BMI beginning of pregnancy | −0.058 | 0.038 | −0.237 | −1.501 | 0.135 |
maternal D | −0.255 | 0.283 | −0.059 | −0.903 | 0.368 |
neonatal D | −0.100 | 0.467 | −0.013 | −0.214 | 0.831 |
husband height | 0.006 | 0.003 | 0.139 | 2.249 | 0.025 |
maternal age | 0.120 | 0.195 | 0.037 | 0.616 | 0.538 |
weight gain in pregnancy | 0.006 | 0.003 | 0.122 | 2.016 | 0.045 |
initial pregnancy weight | 0.029 | 0.014 | 0.340 | 2.163 | 0.032 |
financial situation | −0.233 | 0.219 | −0.069 | −1.068 | 0.287 |
smoking | 0.338 | 0.213 | 0.103 | 1.589 | 0.114 |
mother’s activity | −0.975 | 0.361 | −0.170 | −2.705 | 0.007 |
child gender | −0.797 | 0.195 | −0.248 | −4.088 | 0.000 |
vitamin D intake | −0.033 | 0.213 | −0.010 | −0.154 | 0.878 |
caffeine | −0.315 | 0.210 | −0.098 | −1.503 | 0.134 |
Dependent Variable: Neonatal Weight | |||||
---|---|---|---|---|---|
Unstandardized Coefficients | Standardized Coefficients | t | Sig. | ||
B | Std. Error | Beta | |||
Independent Variables (Constant) | 2986.019 | 267.694 | 11.155 | 0.000 | |
GDM | 259.427 | 106.671 | 0.152 | 2.432 | 0.016 |
BMI beginning of pregnancy | −23.166 | 13.767 | −0.273 | −1.683 | 0.094 |
maternal D | −21.490 | 101.254 | −0.014 | −0.212 | 0.832 |
neonatal D | 65.106 | 167.211 | 0.025 | 0.389 | 0.697 |
husband height | 0.954 | 1.003 | 0.061 | 0.951 | 0.342 |
maternal age | 54.149 | 69.956 | 0.048 | 0.774 | 0.440 |
weight gain in pregnancy | 0.876 | 1.091 | 0.050 | 0.803 | 0.423 |
initial pregnancy weight | 12.207 | 4.862 | 0.406 | 2.511 | 0.013 |
financial situation | −136.430 | 78.236 | −0.115 | −1.744 | 0.083 |
smoking | 44.758 | 76.106 | 0.039 | 0.588 | 0.557 |
mother’s activity | −227.807 | 129.021 | −0.114 | −1.766 | 0.079 |
child gender | −214.013 | 69.779 | −0.191 | −3.067 | 0.002 |
vitamin D intake | 109.121 | 76.250 | 0.096 | 1.431 | 0.154 |
caffeine | −61.784 | 75.049 | −0.055 | −0.823 | 0.411 |
Dependent Variable: Neonatal_Height | |||||
---|---|---|---|---|---|
Unstandardized Coefficients | Standardized Coefficients | t | Sig. | ||
B | Std. Error | Beta | |||
Independent Variables (Constant) | 51.456 | 2.136 | 24.088 | 0.000 | |
GDM | −1.067 | 0.830 | −0.081 | −1.285 | 0.020 |
weight gain in pregnancy | 0.009 | 0.009 | 0.063 | 1.007 | 0.315 |
BMI beginning of pregnancy | 0.015 | 0.043 | 0.022 | 0.343 | 0.732 |
maternal vitamin D | 0.021 | 0.040 | 0.057 | 0.528 | 0.598 |
neonatal vitamin D | −0.013 | 0.053 | −0.025 | −0.239 | 0.812 |
financial situation | 0.117 | 0.607 | 0.013 | 0.193 | 0.847 |
husband height | 0.002 | 0.008 | 0.015 | 0.232 | 0.817 |
smoking | 0.285 | 0.598 | 0.032 | 0.476 | 0.634 |
vitamin D intake | −0.077 | 0.613 | −0.009 | −0.126 | 0.900 |
mother’s activity | −3.962 | 1.004 | −0.257 | −3.948 | 0.080 |
child gender | −1.503 | 0.542 | −0.174 | −2.772 | 0.006 |
caffeine | −0.125 | 0.575 | −0.014 | −0.218 | 0.828 |
maternal age | 0.576 | 0.546 | 0.067 | 1.055 | 0.293 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkinari, A.; Dagla, M.; Antoniou, E.; Lykeridou, A.; Iatrakis, G. Are Maternal Vitamin D (25(OH)D) Levels a Predisposing Risk Factor for Neonatal Growth? A Cross-Sectional Study. Clin. Pract. 2024, 14, 265-279. https://doi.org/10.3390/clinpract14010021
Kokkinari A, Dagla M, Antoniou E, Lykeridou A, Iatrakis G. Are Maternal Vitamin D (25(OH)D) Levels a Predisposing Risk Factor for Neonatal Growth? A Cross-Sectional Study. Clinics and Practice. 2024; 14(1):265-279. https://doi.org/10.3390/clinpract14010021
Chicago/Turabian StyleKokkinari, Artemisia, Maria Dagla, Evangelia Antoniou, Aikaterini Lykeridou, and Georgios Iatrakis. 2024. "Are Maternal Vitamin D (25(OH)D) Levels a Predisposing Risk Factor for Neonatal Growth? A Cross-Sectional Study" Clinics and Practice 14, no. 1: 265-279. https://doi.org/10.3390/clinpract14010021
APA StyleKokkinari, A., Dagla, M., Antoniou, E., Lykeridou, A., & Iatrakis, G. (2024). Are Maternal Vitamin D (25(OH)D) Levels a Predisposing Risk Factor for Neonatal Growth? A Cross-Sectional Study. Clinics and Practice, 14(1), 265-279. https://doi.org/10.3390/clinpract14010021