Safety and Efficacy of Very Early Conversion to Belatacept in Pediatric Kidney Transplantation with Transplant-Associated Thrombotic Microangiopathy: Case Study and Review of Literature
Abstract
:1. Introduction
2. Case Presentation
3. Discussion
Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trimarchi, H.M.; Truong, L.D.; Brennan, S.; Gonzalez, J.M.; Suki, W.N. FK506-associated thrombotic microangiopathy: Report of two cases and review of the literature. Transplantation 1999, 67, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Ashman, N.; Chapagain, A.; Dobbie, H.; Raftery, M.J.; Sheaff, M.T.; Yaqoob, M.M. Belatacept as maintenance immunosuppression for postrenal transplant de novo drug-induced thrombotic microangiopathy. Am. J. Transplant. 2009, 9, 424–427. [Google Scholar] [CrossRef] [PubMed]
- Bren, A.; Pajek, J.; Grego, K.; Buturovic, J.; Ponikvar, R.; Lindic, J.; Knap, B.; Vizjak, A.; Ferluga, D.; Kandus, A. Follow-up of kidney graft recipients with cyclosporine-associated hemolytic-uremic syndrome and thrombotic microangiopathy. Transplant. Proc. 2005, 37, 1889–1891. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.C.; Agodoa, L.Y.; Yuan, C.M.; Abbott, K.C. Thrombotic microangiopathy after renal transplantation in the United States. Am. J. Kidney Dis. 2003, 42, 1058–1068. [Google Scholar] [CrossRef] [PubMed]
- Merola, J.; Yoo, P.S.; Schaub, J.; Smith, J.D.; Rodriguez-Davalos, M.I.; Tichy, E.; Mulligan, D.C.; Asch, W.; Formica, R.; Kashgarian, M.; et al. Belatacept and Eculizumab for treatment of calcineurin inhibitor-induced thrombotic microangiopathy after kidney transplantation: Case report. Transplant. Proc. 2016, 48, 3106–3108. [Google Scholar] [CrossRef] [PubMed]
- Safa, K.; Logan, M.S.; Batal, I.; Gabardi, S.; Rennke, H.G.; Abdi, R. Eculizumab for drug-induced de novo posttransplantation thrombotic microangiopathy: A case report. Clin. Nephrol. 2015, 83, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, V.; Parasuraman, R.; Shah, V.; Vera, E.; Venkat, K.K. Outcome of plasma exchange therapy in thrombotic microangiopathy after renal transplantation. Am. J. Transplant. 2003, 3, 1289–1294. [Google Scholar] [CrossRef] [PubMed]
- Karpe, K.M.; Talaulikar, G.S.; Walters, G.D. Calcineurin inhibitor withdrawal or tapering for kidney transplant recipients. Cochrane Database Syst. Rev. 2017, 7, CD006750. [Google Scholar] [CrossRef] [PubMed]
- Archdeacon, P.; Dixon, C.; Belen, O.; Albrecht, R.; Meyer, J. Summary of the US FDA approval of belatacept. Am. J. Transplant. 2012, 12, 554–562. [Google Scholar] [CrossRef]
- Larsen, C.P.; Pearson, T.C.; Adams, A.B.; Tso, P.; Shirasugi, N.; Strobert, E.; Anderson, D.; Cowan, S.; Price, K.; Naemura, J.; et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am. J. Transplant. 2005, 5, 443–453. [Google Scholar] [CrossRef]
- Masson, P.; Henderson, L.; Chapman, J.R.; Craig, J.C.; Webster, A.C. Belatacept for kidney transplant recipients. Cochrane Database Syst. Rev. 2014, 24, CD010699. [Google Scholar] [CrossRef] [PubMed]
- Blew, K.H.; Chua, A.; Foreman, J.; Gbadegesin, R.; Jackson, A.; Nagaraj, S.; Sadun, R.; Wigfall, D.; Kirk, A.D.; Chambers, E.T. Tailored use of belatacept in adolescent kidney transplantation. Am. J. Transplant. 2020, 20, 884–888. [Google Scholar] [CrossRef] [PubMed]
- Garro, R.; Winterberg, P.; Liverman, R.; Serluco, A.; Warshaw, B.; George, R. Outcomes and experience with belatacept in pediatric kidney transplantation [abstract]. Am. J. Transplant. 2020, 20 (Suppl. S3). Available online: https://atcmeetingabstracts.com/abstract/outcomes-and-experience-with-belatacept-in-pediatric-kidney-transplantation/ (accessed on 3 November 2023).
- Lerch, C.; Kanzelmeyer, N.K.; Ahlenstiel-Grunow, T.; Froede, K.; Kreuzer, M.; Drube, J.; Verboom, M.; Pape, L. Belatacept after kidney transplantation in adolescents: A retrospective study. Transpl. Int. 2017, 30, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, S.; Israni, A.K.; Danovitch, G. Long-term survival after kidney transplantation. N. Engl. J. Med. 2021, 385, 729–743. [Google Scholar] [CrossRef] [PubMed]
- Gaston, R.S. Chronic calcineurin inhibitor nephrotoxicity: Reflections on an evolving paradigm. Clin. J. Am. Soc. Nephrol. 2009, 4, 2029–2034. [Google Scholar] [CrossRef] [PubMed]
- Vincenti, F.; Charpentier, B.; Vanrenterghem, Y.; Rostaing, L.; Bresnahan, B.; Darji, P.; Massari, P.; Mondragon-Ramirez, G.A.; Agarwal, M.; Di Russo, G.; et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am. J. Transplant. 2010, 10, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Durrbach, A.; Pestana, J.M.; Pearson, T.; Vincenti, F.; Garcia, V.D.; Campistol, J.; Rial, M.d.C.; Florman, S.; Block, A.; Di Russo, G.; et al. A phase III study of belatacept versus cyclosporine in kidney transplants from extended criteria donors (BENEFIT-EXT study). Am. J. Transplant. 2010, 10, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Vincenti, F.; Larsen, C.P.; Alberu, J.; Bresnahan, B.; Garcia, V.D.; Kothari, J.; Lang, P.; Urrea, E.M.; Massari, P.; Mondragon-Ramirez, G.; et al. Three-year outcomes from BENEFIT, a randomized, active-controlled, parallel-group study in adult kidney transplant recipients. Am. J. Transplant. 2012, 12, 210–217. [Google Scholar] [CrossRef]
- Pestana, J.O.; Grinyo, J.M.; Vanrenterghem, Y.; Becker, T.; Campistol, J.M.; Florman, S.; Garcia, V.D.; Kamar, N.; Lang, P.; Manfro, R.C.; et al. Three-year outcomes from BENEFIT-EXT: A phase III study of belatacept versus cyclosporine in recipients of extended criteria donor kidneys. Am. J. Transplant. 2012, 12, 630–639. [Google Scholar] [CrossRef]
- Vincenti, F.; Rostaing, L.; Grinyo, J.; Rice, K.; Steinberg, S.; Gaite, L.; Moal, M.C.; Mondragon-Ramirez, G.A.; Kothari, J.; Polinsky, M.S.; et al. Belatacept and long-term outcomes in kidney transplantation. N. Engl. J. Med. 2016, 374, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Darres, A.; Ulloa, C.; Brakemeier, S.; Garrouste, C.; Bestard, O.; Del Bello, A.; Sberro Soussan, R.; Dürr, M.; Budde, K.; Legendre, C.; et al. Conversion to belatacept in maintenance kidney transplant patients: A retrospective multicenter European study. Transplantation 2018, 102, 1545–1552. [Google Scholar] [CrossRef] [PubMed]
- Schulte, K.; Vollmer, C.; Klasen, V.; Bräsen, J.H.; Püchel, J.; Borzikowsky, C.; Kunzendorf, U.; Feldkamp, T. Late conversion from tacrolimus to a belatacept-based immunosuppression regime in kidney transplant recipients improves renal function, acid-base derangement and mineral-bone metabolism. J. Nephrol. 2017, 30, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Najjar, R.; Peng, A.; Choi, J.; Lim, K.; Vo, A.; Jordan, S.C.; Huang, E. Outcomes of conversion from calcineurin inhibitor to belatacept-based immunosuppression in HLA-sensitized kidney transplant recipients. Transplantation 2020, 104, 1500–1507. [Google Scholar] [CrossRef] [PubMed]
- Kirk, A.D.; Guasch, A.; Xu, H.; Cheeseman, J.; Mead, S.I.; Ghali, A.; Mehta, A.K.; Wu, D.; Gebel, H.; Bray, R.; et al. Renal transplantation using belatacept without maintenance steroids or calcineurin inhibitors. Am. J. Transplant. 2014, 14, 1142–1151. [Google Scholar] [CrossRef] [PubMed]
- Moudgil, A.; Dharnidharka, V.R.; Feig, D.I.; Warshaw, B.L.; Perera, V.; Murthy, B.; Roberts, M.E.; Polinsky, M.S.; Ettenger, R.B. Phase I study of single-dose pharmacokinetics and pharmacodynamics of belatacept in adolescent kidney transplant recipients. Am. J. Transplant. 2019, 19, 1218–1223. [Google Scholar] [CrossRef]
- Garg, N.; Rennke, H.G.; Pavlakis, M.; Zandi-Nejad, K. De novo thrombotic microangiopathy after kidney transplantation. Transplant. Rev. 2018, 32, 58–68. [Google Scholar] [CrossRef]
- Le Clech, A.; Simon-Tillaux, N.; Provôt, F.; Delmas, Y.; Vieira-Martins, P.; Limou, S.; Halimi, J.M.; Le Quintrec, M.; Lebourg, L.; Grangé, S.; et al. Atypical and secondary hemolytic uremic syndromes have a distinct presentation and no common genetic risk factors. Kidney Int. 2019, 95, 1443–1452. [Google Scholar] [CrossRef] [PubMed]
- Young, J.A.; Pallas, C.R.; Knovich, M.A. Transplant-associated thrombotic microangiopathy: Theoretical considerations and a practical approach to an unrefined diagnosis. Bone Marrow Transplant. 2021, 56, 1805–1817. [Google Scholar] [CrossRef]
- Schwimmer, J.; Nadasdy, T.A.; Spitalnik, P.F.; Kaplan, K.L.; Zand, M.S. De novo thrombotic microangiopathy in renal transplant recipients: A comparison of hemolytic uremic syndrome with localized renal thrombotic microangiopathy. Am. J. Kidney Dis. 2003, 41, 471–479. [Google Scholar] [CrossRef]
- Satoskar, A.A.; Pelletier, R.; Adams, P.; Nadasdy, G.M.; Brodsky, S.; Pesavento, T.; Henry, M.; Nadasdy, T. De novo thrombotic microangiopathy in renal allograft biopsies-role of antibody-mediated rejection. Am. J. Transplant. 2010, 10, 1804–1811. [Google Scholar] [CrossRef] [PubMed]
- Cavero, T.; Rabasco, C.; López, A.; Román, E.; Ávila, A.; Sevillano, Á.; Huerta, A.; Rojas-Rivera, J.; Fuentes, C.; Blasco, M.; et al. Eculizumab in secondary atypical haemolytic uraemic syndrome. Nephrol. Dial. Transplant. 2017, 32, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Meehan, S.M.; Kremer, J.; Ali, F.N.; Curley, J.; Marino, S.; Chang, A.; Kadambi, P.V. Thrombotic microangiopathy and peritubular capillary C4d expression in renal allograft biopsies. Clin. J. Am. Soc. Nephrol. 2011, 6, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Petr, V.; Hruba, P.; Kollar, M.; Krejci, K.; Safranek, R.; Stepankova, S.; Dedochova, J.; Machova, J.; Zieg, J.; Slatinska, J.; et al. Rejection-associated phenotype of de novo thrombotic microangiopathy represents a risk for premature graft loss. Transplant. Direct. 2021, 7, e779. [Google Scholar] [CrossRef] [PubMed]
- Lanfranco, L.; Joly, M.; Del Bello, A.; Esposito, L.; Cognard, N.; Perrin, P.; Moulin, B.; Kamar, N.; Caillard, S. Eculizumab for thrombotic microangiopathy associated with antibody-mediated rejection after ABO-incompatible kidney transplantation. Case Rep. Transplant. 2017, 2017, 3197042. [Google Scholar] [CrossRef] [PubMed]
- Sahin, G.; Akay, O.M.; Bal, C.; Yalcin, A.U.; Gulbas, Z. The effect of calcineurin inhibitors on endothelial and platelet function in renal transplant patients. Clin. Nephrol. 2011, 76, 218–225. [Google Scholar] [PubMed]
- Tomasiak, M.; Rusak, T.; Gacko, M.; Stelmach, H. Cyclosporine enhances platelet procoagulant activity. Nephrol. Dial. Transplant. 2007, 22, 1750–1756. [Google Scholar] [CrossRef] [PubMed]
- Palma, L.M.P.; Sridharan, M.; Sethi, S. Complement in secondary thrombotic microangiopathy. Kidney Int. Rep. 2021, 6, 11–23. [Google Scholar] [CrossRef]
- Chua, J.S.; Baelde, H.J.; Zandbergen, M.; Wilhelmus, S.; van Es, L.A.; de Fijter, J.W.; Bruijn, J.A.; Bajema, I.M.; Cohen, D. Complement factor C4d Is a common denominator in thrombotic microangiopathy. J. Am. Soc. Nephrol. 2015, 26, 2239–2247. [Google Scholar] [CrossRef]
- Bhutani, G.; Leung, N.; Said, S.M.; Valeri, A.M.; Astor, B.C.; Fidler, M.E.; Alexander, M.P.; Cornell, L.D.; Nasr, S.H. The prevalence and clinical outcomes of microangiopathic hemolytic anemia in patients with biopsy-proven renal thrombotic microangiopathy. Am. J. Hematol. 2022, 97, E426–E429. [Google Scholar] [CrossRef]
- Le Quintrec, M.; Lionet, A.; Kamar, N.; Karras, A.; Barbier, S.; Buchler, M.; Fakhouri, F.; Provost, F.; Fridman, W.H.; Thervet, E.; et al. Complement mutation-associated de novo thrombotic microangiopathy following kidney transplantation. Am. J. Transplant. 2008, 8, 1694–1701. [Google Scholar] [CrossRef] [PubMed]
- Praga, M.; Rodríguez de Córdoba, S. Secondary atypical hemolytic uremic syndromes in the era of complement blockade. Kidney Int. 2019, 95, 1298–1300. [Google Scholar] [CrossRef] [PubMed]
Investigations | Initial Values | Values at Discharge | Normal Values |
---|---|---|---|
WBC count | 10.2 × 109/L | 6.2 × 109/L | 4–11 × 109/L |
Hemoglobin | 7.3 g/dL | 12.1 g/dL | 10.5–13.5 g/dL |
Platelet count | 35 × 109/L | 310 × 109/L | 150–450 × 109/L |
LDH | 1452 IU/L | 247 IU/L | 135–225 IU/L |
Haptoglobin | <30 mg/dL | 110 mg/dL | 40–215 mg/dL |
Peripheral smear | Few schistocytes | ||
Direct antiglobulin test, C3 and IgG | Negative | ||
ADAMTS13 activity | 80% | >60% | |
C3 complement | 104 mg/dL | 87–200 mg/dL | |
C4 complement | 18 mg/dL | 13–50 mg/dL | |
SC5B-9 level | 480 ng/mL | ≤244 ng/mL | |
Genetic testing for atypical HUS | Negative for complement mutations or deficiencies | ||
Serum sodium | 141 mmol/L | 140 mmol/L | 135–145 mmol/L |
Serum potassium | 4.3 mmol/L | 4.2 mmol/L | 3.5–4.5 mmol/L |
Serum bicarbonate | 23 mmol/L | 22 mmol/L | 22–30 mmol/L |
BUN | 126 mg/dL | 52 mg/dL | 6–21 mg/dL |
Serum creatinine | 9.5 mg/dL | 2.8 mg/dL | 0.20–0.43 mg/dL |
Serum calcium | 8.3 mg/dL | 10.4 mg/dL | 8.4–10.2 mg/dL |
Serum phosphorus | 5.8 mg/dL | 4.4 mg/dL | 4.3–6.8 mg/dL |
Serum albumin | 3 g/dL | 4.1 g/dL | 3.5–5.2 g/dL |
EBV DNA PCR, CMV DNA PCR, BK virus DNA PCR | Negative | ||
Urinalysis | 2 RBC/hpf, 2 WBC/hpf, trace proteinuria, negative nitrites and leukocytes, pH 7, specific gravity 1.025 | ||
Renal transplant sonogram |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acharya, R.; Clapp, W.; Upadhyay, K. Safety and Efficacy of Very Early Conversion to Belatacept in Pediatric Kidney Transplantation with Transplant-Associated Thrombotic Microangiopathy: Case Study and Review of Literature. Clin. Pract. 2024, 14, 882-891. https://doi.org/10.3390/clinpract14030069
Acharya R, Clapp W, Upadhyay K. Safety and Efficacy of Very Early Conversion to Belatacept in Pediatric Kidney Transplantation with Transplant-Associated Thrombotic Microangiopathy: Case Study and Review of Literature. Clinics and Practice. 2024; 14(3):882-891. https://doi.org/10.3390/clinpract14030069
Chicago/Turabian StyleAcharya, Ratna, William Clapp, and Kiran Upadhyay. 2024. "Safety and Efficacy of Very Early Conversion to Belatacept in Pediatric Kidney Transplantation with Transplant-Associated Thrombotic Microangiopathy: Case Study and Review of Literature" Clinics and Practice 14, no. 3: 882-891. https://doi.org/10.3390/clinpract14030069
APA StyleAcharya, R., Clapp, W., & Upadhyay, K. (2024). Safety and Efficacy of Very Early Conversion to Belatacept in Pediatric Kidney Transplantation with Transplant-Associated Thrombotic Microangiopathy: Case Study and Review of Literature. Clinics and Practice, 14(3), 882-891. https://doi.org/10.3390/clinpract14030069