Augmented Reality in Dentistry: Enhancing Precision in Clinical Procedures—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
“Does the use of AR-based instruments (I) increase precision (O) of dental interventions (P) compared to non-AR techniques (C)?”
2.2. Eligibility Criteria
- Studies comparing variation in the precision of interventions carried out with AR instruments and non-AR techniques.
- Research that evaluates the effects of AR instruments without comparing with non-AR techniques;
- Reviews and meta-analyses.
- Papers without the full text being available.
- Papers not in English language.
2.3. Study Selection and Data Extraction
2.4. Risk of Bias Assessment
3. Results
3.1. Study Selection
3.2. Risk of Bias
4. Discussion
4.1. Implant Dentistry
4.2. Endodontics
4.3. Orthodontics
4.4. Tooth Preparation
4.5. Oral Surgery
4.6. Result Evaluation
4.7. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ayoub, A.; Pulijala, Y. The application of virtual reality and augmented reality in Oral & Maxillofacial Surgery. BMC Oral Health 2019, 19, 238. [Google Scholar]
- Elbashti, M.E.; Itamiya, T.; Aswehlee, A.M.; Sumita, Y.I.; Ella, B.; Naveau, A. Augmented Reality for Interactive Visualization of 3D Maxillofacial Prosthetic Data. Int. J. Prosthodont. 2020, 33, 680–683. [Google Scholar] [CrossRef] [PubMed]
- Slowinski, P.; Grindley, B.; Muncie, H.; Harris, D.J.; Vine, S.J.; Wilson, M.R. Assessment of cognitive biases in Augmented Reality: Beyond eye tracking. J. Eye Mov. Res. 2022, 15. [Google Scholar] [CrossRef] [PubMed]
- Kohn-Refaat, V.; Harborth, D. Augmented Reality—A Game Changing Technology for Manufacturing Processes? In Proceedings of the Twenty-Sixth European Conference on Information Systems (ECIS2018), Portsmouth, UK, 23–28 June 2018. [Google Scholar]
- Maier-Hein, L.; Franz, A.M.; Fangerau, M.; Schmidt, M.; Seitel, A.; Mersmann, S.; Kilgus, T.; Groch, A.; Yung, K.; dos Santos, T.R.; et al. Towards Mobile Augmented Reality for On-Patient Visualization of Medical Images. In Bildverarbeitung Für Die Medizin 2011: Algorithmen-Systeme-Anwendungen Proceedings des Workshops Vom 20–22 März 2011 in Lübeck; Handels, H., Ehrhardt, J., Deserno, T.M., Meinzer, H.-P., Tolxdorff, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 389–393. [Google Scholar]
- Sielhorst, T.; Feuerstein, M.; Navab, N. Advanced Medical Displays: A Literature Review of Augmented Reality. J. Disp. Technol. 2008, 4, 451–467. [Google Scholar] [CrossRef]
- Yoon, J.W.; Chen, R.E.; Kim, E.J.; Akinduro, O.O.; Kerezoudis, P.; Han, P.K.; Si, P.; Freeman, W.D.; Diaz, R.J.; Komotar, R.J.; et al. Augmented reality for the surgeon: Systematic review. Int. J. Med. Robot. 2018, 14, e1914. [Google Scholar] [CrossRef]
- Ma, L.; Fan, Z.; Ning, G.; Zhang, X.; Liao, H. 3D Visualization and Augmented Reality for Orthopedics. Adv. Exp. Med. Biol. 2018, 1093, 193–205. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, J.; Sun, J.; Wu, D.; Xu, S. User’s image perception improved strategy and application of augmented reality systems in smart medical care: A review. Int. J. Med. Robot. 2023, 19, e2497. [Google Scholar] [CrossRef]
- Pietruski, P.; Majak, M.; Swiatek-Najwer, E.; Zuk, M.; Popek, M.; Swiecka, M.; Jaworowski, J.; Mazurek, M. Replacing cutting guides with an augmented reality-based navigation system: A feasibility study in the maxillofacial region. Int. J. Med. Robot. 2023, 19, e2499. [Google Scholar] [CrossRef]
- Perez-Pachon, L.; Poyade, M.; Lowe, T.; Groning, F. Image Overlay Surgery Based on Augmented Reality: A Systematic Review. Adv. Exp. Med. Biol. 2020, 1260, 175–195. [Google Scholar]
- Bosc, R.; Fitoussi, A.; Hersant, B.; Dao, T.H.; Meningaud, J.P. Intraoperative augmented reality with heads-up displays in maxillofacial surgery: A systematic review of the literature and a classification of relevant technologies. Int. J. Oral Maxillofac. Surg. 2019, 48, 132–139. [Google Scholar] [CrossRef]
- Venkatesan, M.; Mohan, H.; Ryan, J.R.; Schurch, C.M.; Nolan, G.P.; Frakes, D.H.; Coskun, A.F. Virtual and augmented reality for biomedical applications. Cell Rep. Med. 2021, 2, 100348. [Google Scholar] [CrossRef] [PubMed]
- Gibby, J.; Cvetko, S.; Javan, R.; Parr, R.; Gibby, W. Use of augmented reality for image-guided spine procedures. Eur. Spine J. 2020, 29, 1823–1832. [Google Scholar] [CrossRef] [PubMed]
- Badiali, G.; Cercenelli, L.; Battaglia, S.; Marcelli, E.; Marchetti, C.; Ferrari, V.; Cutolo, F. Review on Augmented Reality in Oral and Cranio-Maxillofacial Surgery: Toward “Surgery-Specific” Head-Up Displays. IEEE Access 2020, 8, 59015–59028. [Google Scholar] [CrossRef]
- Southworth, M.K.; Silva, J.N.A.; Blume, W.M.; Hare, G.F.V.; Dalal, A.S.; Silva, J.R. Performance Evaluation of Mixed Reality Display for Guidance During Transcatheter Cardiac Mapping and Ablation. IEEE J. Transl. Eng. Health Med. 2020, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lo Giudice, R.; Fama, F. Health Care and Health Service Digital Revolution. Int. J. Environ. Res. Public Health 2020, 17, 4913. [Google Scholar] [CrossRef]
- Nahm, K.Y.; Kim, Y.; Choi, Y.S.; Lee, J.; Kim, S.H.; Nelson, G. Accurate registration of cone-beam computed tomography scans to 3-dimensional facial photographs. Am. J. Orthod. Dentofac. Orthop. 2014, 145, 256–264. [Google Scholar] [CrossRef]
- Herklotz, I.; Beuer, F.; Bruhnke, M.; Zoske, J.; Bose, M.W.H. Accuracy of fully guided dental implant placement: A prospective clinical in-vivo investigation using intraoral scan data. Int. J. Comput. Dent. 2023, 26, 137–148. [Google Scholar]
- Butler, A.J.; Colman, M.W.; Lynch, J.; Phillips, F.M. Augmented reality in minimally invasive spine surgery: Early efficiency and complications of percutaneous pedicle screw instrumentation. Spine J. 2023, 23, 27–33. [Google Scholar] [CrossRef]
- Felix, B.; Kalatar, S.B.; Moatz, B.; Hofstetter, C.; Karsy, M.; Parr, R.; Gibby, W. Augmented Reality Spine Surgery Navigation: Increasing Pedicle Screw Insertion Accuracy for Both Open and Minimally Invasive Spine Surgeries. Spine 2022, 47, 865–872. [Google Scholar] [CrossRef]
- Zhu, T.; Jiang, S.; Yang, Z.; Zhou, Z.; Li, Y.; Ma, S.; Zhuo, J. A neuroendoscopic navigation system based on dual-mode augmented reality for minimally invasive surgical treatment of hypertensive intracerebral hemorrhage. Comput. Biol. Med. 2022, 140, 105091. [Google Scholar] [CrossRef]
- Lecointre, L.; Verde, J.; Goffin, L.; Venkatasamy, A.; Seeliger, B.; Lodi, M.; Swanstrom, L.L.; Akladios, C.; Gallix, B. Robotically assisted augmented reality system for identification of targeted lymph nodes in laparoscopic gynecological surgery: A first step toward the identification of sentinel node: Augmented reality in gynecological surgery. Surg. Endosc. 2022, 36, 9224–9233. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Li, X.; Tang, Y.; Huang, Y.; Luo, L. Augmented reality and three-dimensional plate library-assisted posterior minimally invasive surgery for scapula fracture. Int. Orthop. 2022, 46, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Cui, X.; Han, B.; Liu, J.; Zhang, X.; Liao, H. Augmented reality navigation for minimally invasive knee surgery using enhanced arthroscopy. Comput. Methods Programs Biomed. 2021, 201, 105952. [Google Scholar] [CrossRef] [PubMed]
- Jud, L.; Fotouhi, J.; Andronic, O.; Aichmair, A.; Osgood, G.; Navab, N.; Farshad, M. Applicability of augmented reality in orthopedic surgery—A systematic review. BMC Musculoskelet. Disord. 2020, 21, 103. [Google Scholar] [CrossRef] [PubMed]
- Benmahdjoub, M.; van Walsum, T.; van Twisk, P.; Wolvius, E.B. Augmented reality in craniomaxillofacial surgery: Added value and proposed recommendations through a systematic review of the literature. Int. J. Oral Maxillofac. Surg. 2021, 50, 969–978. [Google Scholar] [CrossRef]
- Hussain, R.; Lalande, A.; Guigou, C.; Bozorg-Grayeli, A. Contribution of Augmented Reality to Minimally Invasive Computer-Assisted Cranial Base Surgery. IEEE J. Biomed. Health Inform. 2020, 24, 2093–2106. [Google Scholar] [CrossRef]
- Okamoto, T.; Onda, S.; Yanaga, K.; Suzuki, N.; Hattori, A. Clinical application of navigation surgery using augmented reality in the abdominal field. Surg. Today 2015, 45, 397–406. [Google Scholar] [CrossRef]
- Chicchi Giglioli, I.A.; Pallavicini, F.; Pedroli, E.; Serino, S.; Riva, G. Augmented Reality: A Brand New Challenge for the Assessment and Treatment of Psychological Disorders. Comput. Math. Methods Med. 2015, 2015, 862942. [Google Scholar] [CrossRef]
- Assis, G.A.; Correa, A.G.; Martins, M.B.; Pedrozo, W.G.; Lopes Rde, D. An augmented reality system for upper-limb post-stroke motor rehabilitation: A feasibility study. Disabil. Rehabil. Assist. Technol. 2016, 11, 521–528. [Google Scholar] [CrossRef]
- Chang, Y.J.; Kang, Y.S.; Huang, P.C. An augmented reality (AR)-based vocational task prompting system for people with cognitive impairments. Res. Dev. Disabil. 2013, 34, 3049–3056. [Google Scholar] [CrossRef]
- Hervas, R.; Bravo, J.; Fontecha, J. An assistive navigation system based on augmented reality and context awareness for people with mild cognitive impairments. IEEE J. Biomed. Health Inform. 2014, 18, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Brockmeyer, P.; Wiechens, B.; Schliephake, H. The Role of Augmented Reality in the Advancement of Minimally Invasive Surgery Procedures: A Scoping Review. Bioengineering 2023, 10, 501. [Google Scholar] [CrossRef] [PubMed]
- Grad, P.; Przeklasa-Bierowiec, A.M.; Malinowski, K.P.; Witowski, J.; Proniewska, K.; Taton, G. Application of HoloLens-based augmented reality and three-dimensional printed anatomical tooth reference models in dental education. Anat. Sci. Educ. 2023, 16, 743–755. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, L.; Qiu, S.; Hu, C.; Wang, L.; Li, Y.; Tan, X.; Gao, Y.; Huang, D. Application of Real-time Augmented Reality-guided Osteotomy and Apex Location in Endodontic Microsurgery: A Surgical Simulation Study Based on 3D-printed Alveolar Bone Model. J. Endod. 2023, 49, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Turkyilmaz, I.; Wilkins, G.N. Taking surgical training to another level with mixed reality advanced dental simulator. J. Stomatol. Oral. Maxillofac. Surg. 2023, 124, 101384. [Google Scholar] [CrossRef]
- Durham, M.; Engel, B.; Ferrill, T.; Halford, J.; Singh, T.P.; Gladwell, M. Digitally Augmented Learning in Implant Dentistry. Oral. Maxillofac. Surg. Clin. N. Am. 2019, 31, 387–398. [Google Scholar] [CrossRef]
- Palumbo, A. Microsoft HoloLens 2 in Medical and Healthcare Context: State of the Art and Future Prospects. Sensors 2022, 22, 7709. [Google Scholar] [CrossRef]
- Monterubbianesi, R.; Tosco, V.; Vitiello, F.; Orilisi, G.; Fraccastoro, F.; Putignano, A.; Orsini, G. Augmented, Virtual and Mixed Reality in Dentistry: A Narrative Review on the Existing Platforms and Future Challenges. Appl. Sci. 2022, 12, 877. [Google Scholar] [CrossRef]
- Faggion, C.M., Jr. Guidelines for reporting pre-clinical in vitro studies on dental materials. J. Evid. Based Dent. Pract. 2012, 12, 182–189. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernan, M.A.; Reeves, B.C.; Savovic, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Riad Deglow, E.; Toledano Gil, S.; Zubizarreta-Macho, A.; Bufala Perez, M.; Rodriguez Torres, P.; Tzironi, G.; Albaladejo Martinez, A.; Lopez Roman, A.; Hernandez Montero, S. Influence of the Computer-Aided Static Navigation Technique and Mixed Reality Technology on the Accuracy of the Orthodontic Micro-Screws Placement. An In Vitro Study. J. Pers. Med. 2021, 11, 964. [Google Scholar] [CrossRef] [PubMed]
- Bosshard, F.A.; Valdec, S.; Dehghani, N.; Wiedemeier, D.; Furnstahl, P.; Stadlinger, B. Accuracy of augmented reality-assisted vs template-guided apicoectomy—An ex vivo comparative study. Int. J. Comput. Dent. 2023, 26, 11–18. [Google Scholar] [PubMed]
- Ochandiano, S.; Garcia-Mato, D.; Gonzalez-Alvarez, A.; Moreta-Martinez, R.; Tousidonis, M.; Navarro-Cuellar, C.; Navarro-Cuellar, I.; Salmeron, J.I.; Pascau, J. Computer-Assisted Dental Implant Placement Following Free Flap Reconstruction: Virtual Planning, CAD/CAM Templates, Dynamic Navigation and Augmented Reality. Front. Oncol. 2021, 11, 754943. [Google Scholar] [CrossRef] [PubMed]
- Kivovics, M.; Takacs, A.; Penzes, D.; Nemeth, O.; Mijiritsky, E. Accuracy of dental implant placement using augmented reality-based navigation, static computer assisted implant surgery, and the free-hand method: An in vitro study. J. Dent. 2022, 119, 104070. [Google Scholar] [CrossRef] [PubMed]
- Faus-Matoses, V.; Faus-Llacer, V.; Moradian, T.; Riad Deglow, E.; Ruiz-Sanchez, C.; Hamoud-Kharrat, N.; Zubizarreta-Macho, A.; Faus-Matoses, I. Accuracy of Endodontic Access Cavities Performed Using an Augmented Reality Appliance: An In Vitro Study. Int. J. Environ. Res. Public Health 2022, 19, 11167. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Guan, M.; Fan, Y.; Yang, Z.; Li, D.; Bai, Y.; Li, H. A mixed reality-based navigation method for dental implant navigation method: A pilot study. Comput. Biol. Med. 2023, 154, 106568. [Google Scholar] [CrossRef]
- Riad Deglow, E.; Zubizarreta-Macho, A.; Gonzalez Menendez, H.; Lorrio Castro, J.; Galparsoro Catalan, A.; Tzironi, G.; Lobo Galindo, A.B.; Alonso Ezpeleta, L.O.; Hernandez Montero, S. Comparative analysis of two navigation techniques based on augmented reality technology for the orthodontic mini-implants placement. BMC Oral Health 2023, 23, 542. [Google Scholar] [CrossRef]
- Gonzalez-Rueda, J.R.; Galparsoro-Catalan, A.; de Paz-Hermoso, V.M.; Riad-Deglow, E.; Zubizarreta-Macho, A.; Pato-Mourelo, J.; Hernandez-Montero, S.; Montero-Martin, J. Accuracy of zygomatic dental implant placement using computer-aided static and dynamic navigation systems compared with a mixed reality appliance. An in vitro study. J. Clin. Exp. Dent. 2023, 15, e1035–e1044. [Google Scholar] [CrossRef]
- Obispo, C.; Gragera, T.; Giovannini, G.; Zubizarreta-Macho, A.; Aragoneses Lamas, J.M. Influence of Augmented Reality Appliances on Tooth Preparation Designs-An In Vitro Study. J. Pers. Med. 2023, 14, 37. [Google Scholar] [CrossRef]
- Hsu, M.C.; Lin, C.C.; Hsu, J.T.; Yu, J.H.; Huang, H.L. Effects of an augmented reality aided system on the placement precision of orthodontic miniscrews: A pilot study. J. Dent. Sci. 2024, 19, 100–108. [Google Scholar] [CrossRef]
- Marhuenda Ramos, M.T.; Faus-Matoses, I.; Zubizarreta-Macho, A.; Riad Deglow, E.; Lobo Galindo, A.B.; Abella Sans, F.; Belanche Monterde, A.; Faus Matoses, V. Influence of augmented reality technique on the accuracy of autotransplanted teeth in surgically created sockets. BMC Oral Health 2024, 24, 415. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Gao, Q.; Wang, N.; Greene, N.; Song, T.; Dianat, O.; Azimi, E. Mixed reality guided root canal therapy. Healthc. Technol. Lett. 2024, 11, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Kihara, T.; Keller, A.; Ogawa, T.; Armand, M.; Martin-Gomez, A. Evaluating the feasibility of using augmented reality for tooth preparation. J. Dent. 2024, 148, 105217. [Google Scholar] [CrossRef] [PubMed]
- Leblebicioglu, B.; Rawal, S.; Mariotti, A. A review of the functional and esthetic requirements for dental implants. J. Am. Dent. Assoc. 2007, 138, 321–329. [Google Scholar] [CrossRef]
- Lo Giudice, R.; Machado, P.S.; Dal Piva, A.M.d.O.; Tribst, J.P.M. Influence of Placement of Ultrashort Implant at Sub-Crestal, Crestal and Supra-Crestal Level with Titanium or Polyetheretherketone Hybrid Abutment: 3D Finite Element Analysis. Prosthesis 2023, 5, 721–732. [Google Scholar] [CrossRef]
- Zupanc, J.; Vahdat-Pajouh, N.; Schafer, E. New thermomechanically treated NiTi alloys—A review. Int. Endod. J. 2018, 51, 1088–1103. [Google Scholar] [CrossRef]
- Shabbir, J.; Zehra, T.; Najmi, N.; Hasan, A.; Naz, M.; Piasecki, L.; Azim, A.A. Access Cavity Preparations: Classification and Literature Review of Traditional and Minimally Invasive Endodontic Access Cavity Designs. J. Endod. 2021, 47, 1229–1244. [Google Scholar] [CrossRef]
- Puleio, F.; Bellezza, U.; Torre, A.; Giordano, F.; Lo Giudice, G. Apical Transportation of Apical Foramen by Different NiTi Alloy Systems: A Systematic Review. Appl. Sci. 2023, 13, 10555. [Google Scholar] [CrossRef]
- Puleio, F.; Lo Giudice, G.; Militi, A.; Bellezza, U.; Lo Giudice, R. Does Low-Taper Root Canal Shaping Decrease the Risk of Root Fracture? A Systematic Review. Dent. J. 2022, 10, 94. [Google Scholar] [CrossRef]
- Puleio, F.; Lizio, A.S.; Coppini, V.; Lo Giudice, R.; Lo Giudice, G. CBCT-Based Assessment of Vapor Lock Effects on Endodontic Disinfection. Appl. Sci. 2023, 13, 9542. [Google Scholar] [CrossRef]
- Strobele, D.A.; Othman, A.; Meier, M.A.; Aboulazm, K.; von See, C. Augmented reality in orthodontics for bracket placement using conventional mobile devices: Technical note. J. World Fed. Orthod. 2023, 12, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Amantini, S.N.S.R.; Montilha, A.A.P.; Antonelli, B.C.; Leite, K.T.M.; Rios, D.; Cruvinel, T.; Lourenço Neto, N.; Oliveira, T.M.; Machado, M.A.A.M. Using Augmented Reality to Motivate Oral Hygiene Practice in Children: Protocol for the Development of a Serious Game. JMIR Res. Protoc. 2020, 9, e10987. [Google Scholar] [CrossRef] [PubMed]
- Matthie, N.S.; Giordano, N.A.; Jenerette, C.M.; Magwood, G.S.; Leslie, S.L.; Northey, E.E.; Webster, C.I.; Sil, S. Use and efficacy of virtual, augmented, or mixed reality technology for chronic pain: A systematic review. Pain. Manag. 2022, 12, 859–878. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.K.; Ryu, J.; Yoon, H.M.; Yang, H.C.; Kim, S.K. Ergonomic effects of medical augmented reality glasses in video-assisted surgery. Surg. Endosc. 2022, 36, 988–998. [Google Scholar] [CrossRef]
Author and Year | Intervention | Object | Technique | Field of Interest | Conclusions |
---|---|---|---|---|---|
Riad Deglow, E., 2021 [43] | Orthodontic miniscrew placement | Resin models using ex vivo material | Computer-aided static navigation (NemoScan®, Nemotec Dental Systems, Madrid, Spain) vs. AR-based technique (Hololens1, Microsoft, Redmond, WA, USA) vs. Conventional technique | Orthodontics | The navigation techniques based on augmented reality technology influence the accuracy of orthodontic self-drilling mini-implant placement and result in fewer intraoperative complications compared to the conventional freehand technique. |
Bosshard-Gerber, F., 2022 [44] | Apicectomy | Cadaver pig mandibles | AR-assisted technique (Microsoft HoloLens 2 Augmented Reality Headset, Microsoft, Redmond, WA, USA) vs. Template-guided technique (MED610, Stratasys Ltd., Eden Prairie, MN, USA) | Endodontics | Both methods showed similar accuracy in the ex vivo model. |
Ochandiano, S., 2022 [45] | Implant surgery | Oncologic patients treated with implant therapy | New navigation protocol testing | Implant dentistry/oral surgery | The computer-aided implant surgery based on dynamic navigation and 3D-printed surgical modified guides guaranteed accurate implant placement. |
Kivovics, M., 2022 [46] | Implant surgery | Three-dimensional printed models | AR-based navigation (Magic Leap One, Plantation, FL, USA) vs. Free technique vs. Static computer-assisted implant surgery (Dental Wings, Dental— Wings Inc., Montreal QC, Canada) | Implant dentistry | The AR-based technique and CAIS showed similar accuracy; both were superior to the freehand technique. |
Faus-Matoses, V., 2022 [47] | Endodontic access cavity | Ex vivo specimens | AR-guided technique (Hololens2, Microsoft, Redmond, WA, USA) vs. Freehand technique | Endodontics | The AR technique showed better accuracy compared with the freehand technique. |
Liu, L., 2023 [48] | Implant surgery | Resin models | Mixed reality (Hololens, Microsoft, Redmond, WA, USA) vs. Conventional technique | Implant dentistry | The AR-based navigation increased precision in implant surgery compared to the conventional technique, based on entry deviation. |
Riad Deglow, E., 2023 [49] | Orthodontic miniscrew placement | Resin models with ex vivo specimens | Two AR-based techniques (Hololens2, Microsoft, Redmond, WA, USA) vs. Conventional technique | Orthodontics | Both AR approaches increased the accuracy in orthodontic miniscrew placement, with less intraoperative complications than freehand technique. |
González-Rueda, J.-R., 2023 [50] | Zygomatic implant surgery | Resin models | Static navigation implant surgery vs. Dynamic navigation implant surgery (Navident, ClaroNav, Toronto, ON, Canada) vs. AR-aided implant placement vs. Freehand technique | Implant dentistry | The freehand technique provides greater accuracy of zygomatic dental implant placement than computer-assisted implant surgical techniques, and zygomatic dental implants placed in the anterior region are more accurate than those in the posterior region. |
Obispo, C., 2024 [51] | Tooth preparation | Resin models | Freehand technique vs. AR appliance (Hololens1) | Fixed prosthodontics | The AR appliance provides a more conservative and predictable complete crown preparation design than the freehand preparation technique. |
Hsu, M.-C., 2024 [52] | Miniscrew placement | Resin models | Conventional technique vs. AR-aided technique | Orthodontics | The AR-aided system improved the accuracy of the miniscrew placement regardless of the clinician’s level of experience. |
Marhuenda Ramos, M.T., 2024 [53] | Tooth autotransplantation | Resin models with ex vivo specimens | AR technique (Hololens2) vs. Freehand technique | Oral surgery | The AR appliance provides higher accuracy in the positioning of single-root autotransplanted teeth compared to the conventional freehand technique. |
Li, F., 2024 [54] | Root canal treatment | Typodont | New AR-based protocol testing | Endodontics | The protocol ensured better accuracy in simulated root canal treatment. |
Kihara, T., 2024 [55] | Tooth preparation | Tooth model | New AR device testing | Fixed prosthodontics | The use of the device allowed for a more conservative approach in tooth preparation. |
Item | Riad Deglow, E., 2021 [43] | Bosshard-Gerber, F., 2022 [44] | Kivovics, M., 2022 [46] | Faus-Matoses, V., 2022 [47] | Liu, L., 2023 [48] | Riad Deglow, E., 2023 [49] | González-Rueda, J.-R., 2023 [50] | Obispo, C., 2024 [51] | Hsu, M.-C., 2024 [52] | Marhuenda Ramos, M.T., 2024 [53] | Li, F., 2024 [54] | Kihara, T., 2024 [55] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 Abstract | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
2a Background and objectives | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
2b Background and objectives | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
3 Intervention | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
4 Outcomes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
5 Sample size | Yes | No | Yes | Yes | No | Yes | Yes | Yes | No | Yes | No | Yes |
6 Randomization: sequence generation | Yes | No | Yes | Yes | No | Yes | Yes | Yes | No | Yes | No | Yes |
7 Allocation concealment mechanism | No | No | No | No | No | No | No | No | No | No | No | No |
8 Implementation | Yes | No | No | Yes | No | No | No | No | No | No | No | No |
9 Blinding | No | No | Yes | No | No | No | No | No | No | No | No | No |
10 Statistical methods | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
11 Results, outcomes, and estimation | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
12 Discussion and limitations | No | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No | No | No |
13 Other information and funding | No | Yes | Yes | No | Yes | No | No | No | No | No | No | Yes |
14 Protocol | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Bias Domain | Ochandiano, S., 2022 [45] | |
---|---|---|
Bias because of confounding | 1.1 | Y |
1.2 | N | |
1.3 | NA | |
1.4 | PN | |
1.5 | NA | |
1.6 | N | |
1.7 | N | |
1.8 | NA | |
RoB judgment | Serious | |
Bias in selection of participants into the study | 2.1 | N |
2.2 | NA | |
2.3 | NA | |
2.4 | Y | |
2.5 | NA | |
RoB Judgment | Low | |
Bias in classification of interventions | 3.1 | Y |
3.2 | Y | |
3.3 | NO | |
RoB Judgment | Low | |
Bias because of deviations from intended interventions | 4.1 | PY |
4.2 | PN | |
4.3 | PY | |
4.4 | Y | |
4.5 | PY | |
4.6 | NA | |
RoB Judgment | Low | |
Bias because of missing data | 5.1 | Y |
5.2 | N | |
5.3 | N | |
5.4 | NA | |
5.5 | NA | |
RoB judgment | Low | |
Bias in measurement of outcomes | 6.1 | Y |
6.2 | Y | |
6.3 | Y | |
6.4 | NP | |
RoB judgment | Low | |
Bias in selection of reported results | 7.1 | PY |
7.2 | PY | |
7.3 | PN | |
RoB judgment | Moderate | |
Overall bias | Serious risk of bias |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puleio, F.; Tosco, V.; Pirri, R.; Simeone, M.; Monterubbianesi, R.; Lo Giudice, G.; Lo Giudice, R. Augmented Reality in Dentistry: Enhancing Precision in Clinical Procedures—A Systematic Review. Clin. Pract. 2024, 14, 2267-2283. https://doi.org/10.3390/clinpract14060178
Puleio F, Tosco V, Pirri R, Simeone M, Monterubbianesi R, Lo Giudice G, Lo Giudice R. Augmented Reality in Dentistry: Enhancing Precision in Clinical Procedures—A Systematic Review. Clinics and Practice. 2024; 14(6):2267-2283. https://doi.org/10.3390/clinpract14060178
Chicago/Turabian StylePuleio, Francesco, Vincenzo Tosco, Rosario Pirri, Michele Simeone, Riccardo Monterubbianesi, Giorgio Lo Giudice, and Roberto Lo Giudice. 2024. "Augmented Reality in Dentistry: Enhancing Precision in Clinical Procedures—A Systematic Review" Clinics and Practice 14, no. 6: 2267-2283. https://doi.org/10.3390/clinpract14060178