Manganese-Based Contrast Agents as Alternatives to Gadolinium: A Comprehensive Review
Abstract
1. Introduction to MRI and Contrast Agents
2. Manganese-Based MRI Contrast Agents
- Responsive (activatable) agents, such as Mn complexes that release Mn2+ or change relaxivity in response to specific stimuli (e.g., pH, enzymes, and redox environment). Examples: Mn-Tyr-EDTA and redox-responsive Mn chelates [32].
- Controlled-release systems, or rather carriers engineered to gradually release Mn2+ at target sites, aiming to prolong contrast effect and reduce systemic toxicity. Examples: polymeric or liposomal Mn formulations [31].
Manganese Pharmacokinetics and Toxicity
3. Future Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
MRI | magnetic resonance imaging |
RF | radiofrequency |
CEST | Chemical Exchange Saturation Transfer |
PET | Positron Emission Tomography |
SPECT | Single-Photon Emission Computed Tomography |
NSF | nephrogenic systemic fibrosis |
MEMRI | manganese-enhanced MRI |
OATPs | organic anion-transporting polypeptides |
References
- Quattrocchi, C.C.; Errante, Y.; Mallio, C.A.; Marinelli, L.; LoVullo, G.; Giannotti, G.; Della Sala, S.W.; van der Molen, A.J.; Beomonte Zobel, B. Effect of Age on High T1 Signal Intensity of the Dentate Nucleus and Globus Pallidus in a Large Population Exposed to Gadodiamide. Investig. Radiol. 2018, 53, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Strijkers, G.J.; Mulder, W.J.M.; Van Tilborg, G.A.F.; Nicolay, K. MRI Contrast Agents: Current Status and Future Perspectives. ACAMC 2007, 7, 291–305. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.W.; Cheng, Y.N.; Haacke, E.M.; Thompson, M.R.; Venkatesan, R. Magnetic Resonance Imaging: Physical Principles and Sequence Design, 1st ed.; Wiley: New York, NY, USA, 2014; ISBN 978-0-471-72085-0. [Google Scholar]
- Blümich, B.M.T.; Vlaardingerbroek, M.T.; Boer, J.A. Magnetic Resonance Imaging Theory and Practice; Springer: Berlin/Heidelberg, Germany, 1996; pp. xxiv+350, DM128; ISBN 3540600809. [Google Scholar]
- De Graaf, R.A. In Vivo NMR Spectroscopy: Principles and Techniques, 1st ed.; Wiley: New York, NY, USA, 2007; ISBN 978-0-470-02670-0. [Google Scholar]
- Callaghan, P.T. Principles of Nuclear Magnetic Resonance Microscopy; Clarendon Press: Oxford, UK, 1991; ISBN 978-0-19-853944-5. [Google Scholar]
- Le Bihan, D.; Breton, E.; Lallemand, D.; Grenier, P.; Cabanis, E.; Laval-Jeantet, M. MR Imaging of Intravoxel Incoherent Motions: Application to Diffusion and Perfusion in Neurologic Disorders. Radiology 1986, 161, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Bammer, R. Basic Principles of Diffusion-Weighted Imaging. Eur. J. Radiol. 2003, 45, 169–184. [Google Scholar] [CrossRef]
- Forsting, M.; Weber, J. MR Perfusion Imaging: A Tool for More than Stroke. Eur. Radiol. Suppl. 2004, 14, M2–M7. [Google Scholar] [CrossRef]
- Wedeen, V.J.; Meuli, R.A.; Edelman, R.R.; Geller, S.C.; Frank, L.R.; Brady, T.J.; Rosen, B.R. Projective Imaging of Pulsatile Flow with Magnetic Resonance. Science 1985, 230, 946–948. [Google Scholar] [CrossRef]
- Mutlu, H.; Basekim, C.; Silit, E.; Pekkafali, Z.; Ozturk, E.; Karaman, B.; Kantarci, M.; Kizilkaya, E.; Karsli, F. Gadolinium-Enhanced 3D MR Angiography of Pulmonary Hypoplasia and Aplasia. Am. J. Roentgenol. 2006, 187, 398–403. [Google Scholar] [CrossRef]
- Axel, L.; Dougherty, L. MR Imaging of Motion with Spatial Modulation of Magnetization. Radiology 1989, 171, 841–845. [Google Scholar] [CrossRef]
- Mallio, C.A.; Lo Vullo, G.; Messina, L.; Beomonte Zobel, B.; Parizel, P.M.; Quattrocchi, C.C. Increased T1 Signal Intensity of the Anterior Pituitary Gland on Unenhanced Magnetic Resonance Images After Chronic Exposure to Gadodiamide. Investig. Radiol. 2020, 55, 25–29. [Google Scholar] [CrossRef]
- Ward, K.M.; Aletras, A.H.; Balaban, R.S. A New Class of Contrast Agents for MRI Based on Proton Chemical Exchange Dependent Saturation Transfer (CEST). J. Magn. Reson. 2000, 143, 79–87. [Google Scholar] [CrossRef]
- Quattrocchi, C.C.; Rovira, À.; Van Der Molen, A.J.; Mallio, C.A. ESR Essentials: Gadolinium-Wise MRI—Practice Recommendations by the European Society for Magnetic Resonance in Medicine and Biology. Eur. Radiol. 2025, 35, 3347–3353. [Google Scholar] [CrossRef]
- Jasanoff, A. MRI Contrast Agents for Functional Molecular Imaging of Brain Activity. Curr. Opin. Neurobiol. 2007, 17, 593–600. [Google Scholar] [CrossRef]
- Wahsner, J.; Gale, E.M.; Rodríguez-Rodríguez, A.; Caravan, P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem. Rev. 2019, 119, 957–1057. [Google Scholar] [CrossRef] [PubMed]
- Iyad, N.; S.Ahmad, M.; Alkhatib, S.G.; Hjouj, M. Gadolinium Contrast Agents-Challenges and Opportunities of a Multidisciplinary Approach: Literature Review. Eur. J. Radiol. Open 2023, 11, 100503. [Google Scholar] [CrossRef] [PubMed]
- Bäuerle, T.; Saake, M.; Uder, M. Gadolinium-based contrast agents: What we learned from acute adverse events, nephrogenic systemic fibrosis and brain retention. Rofo 2021, 193, 1010–1018. [Google Scholar] [CrossRef] [PubMed]
- Martino, F.; Amici, G.; Rosner, M.; Ronco, C.; Novara, G. Gadolinium-Based Contrast Media Nephrotoxicity in Kidney Impairment: The Physio-Pathological Conditions for the Perfect Murder. JCM 2021, 10, 271. [Google Scholar] [CrossRef]
- McDonald, J.S.; McDonald, R.J. MR Imaging Safety Considerations of Gadolinium-Based Contrast Agents. Magn. Reson. Imaging Clin. N. Am. 2020, 28, 497–507. [Google Scholar] [CrossRef]
- Ali, A.; Shah, T.; Ullah, R.; Zhou, P.; Guo, M.; Ovais, M.; Tan, Z.; Rui, Y. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front. Chem. 2021, 9, 629054. [Google Scholar] [CrossRef]
- Mo, Y.; Huang, C.; Liu, C.; Duan, Z.; Liu, J.; Wu, D. Recent Research Progress of 19F Magnetic Resonance Imaging Probes: Principle, Design, and Their Application. Macromol. Rapid Commun. 2023, 44, 2200744. [Google Scholar] [CrossRef]
- Akakuru, O.U.; Iqbal, M.Z.; Saeed, M.; Liu, C.; Paunesku, T.; Woloschak, G.; Hosmane, N.S.; Wu, A. The Transition from Metal-Based to Metal-Free Contrast Agents for T1 Magnetic Resonance Imaging Enhancement. Bioconjugate Chem. 2019, 30, 2264–2286. [Google Scholar] [CrossRef]
- Gupta, A.; Caravan, P.; Price, W.S.; Platas-Iglesias, C.; Gale, E.M. Applications for Transition-Metal Chemistry in Contrast-Enhanced Magnetic Resonance Imaging. Inorg. Chem. 2020, 59, 6648–6678. [Google Scholar] [CrossRef] [PubMed]
- Wan, F.; Wu, L.; Chen, X.; Zhang, Y.; Jiang, L. Research Progress on Manganese Complexes as Contrast Agents for Magnetic Resonance Imaging. Polyhedron 2023, 242, 116489. [Google Scholar] [CrossRef]
- Botta, M.; Carniato, F.; Esteban-Gómez, D.; Platas-Iglesias, C.; Tei, L. Mn(II) Compounds as an Alternative to Gd-Based MRI Probes. Future Med. Chem. 2019, 11, 1461–1483. [Google Scholar] [CrossRef] [PubMed]
- Henoumont, C.; Devreux, M.; Laurent, S. Mn-Based MRI Contrast Agents: An Overview. Molecules 2023, 28, 7275. [Google Scholar] [CrossRef]
- Zhou, I.Y.; Ramsay, I.A.; Ay, I.; Pantazopoulos, P.; Rotile, N.J.; Wong, A.; Caravan, P.; Gale, E.M. Positron Emission Tomography–Magnetic Resonance Imaging Pharmacokinetics, In Vivo Biodistribution, and Whole-Body Elimination of Mn-PyC3A. Investig. Radiol. 2021, 56, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.K.; Baek, A.-R.; Yang, B.-W.; Kim, S.; Hwang, D.W.; Nam, S.-W.; Lee, G.-H.; Chang, Y. Manganese (II) Complex of 1,4,7-Triazacyclononane-1,4,7-Triacetic Acid (NOTA) as a Hepatobiliary MRI Contrast Agent. Pharmaceuticals 2023, 16, 602. [Google Scholar] [CrossRef]
- Troughton, J.S.; Greenfield, M.T.; Greenwood, J.M.; Dumas, S.; Wiethoff, A.J.; Wang, J.; Spiller, M.; McMurry, T.J.; Caravan, P. Synthesis and Evaluation of a High Relaxivity Manganese(II)-Based MRI Contrast Agent. Inorg. Chem. 2004, 43, 6313–6323. [Google Scholar] [CrossRef]
- Leone, L.; Anemone, A.; Carella, A.; Botto, E.; Longo, D.L.; Tei, L. A Neutral and Stable Macrocyclic Mn(II) Complex for MRI Tumor Visualization. ChemMedChem 2022, 17, e202200508. [Google Scholar] [CrossRef]
- Chen, K.; Li, P.; Zhu, C.; Xia, Z.; Xia, Q.; Zhong, L.; Xiao, B.; Cheng, T.; Wu, C.; Shen, C.; et al. Mn(II) Complex of Lipophilic Group-Modified Ethylenediaminetetraacetic Acid (EDTA) as a New Hepatobiliary MRI Contrast Agent. J. Med. Chem. 2021, 64, 9182–9192. [Google Scholar] [CrossRef]
- Crossgrove, J.; Zheng, W. Manganese Toxicity upon Overexposure. NMR Biomed. 2004, 17, 544–553. [Google Scholar] [CrossRef]
- O’Neal, S.L.; Zheng, W. Manganese Toxicity Upon Overexposure: A Decade in Review. Curr. Environ. Health Rep. 2015, 2, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Castets, C.R.; Koonjoo, N.; Hertanu, A.; Voisin, P.; Franconi, J.-M.; Miraux, S.; Ribot, E.J. In Vivo MEMRI Characterization of Brain Metastases Using a 3D Look-Locker T1-Mapping Sequence. Sci. Rep. 2016, 6, 39449. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, A.; Gobbo, O.L.; Dufort, S.; Sancey, L.; Lux, F.; Tillement, O.; Coll, J.; Crémillieux, Y. Orotracheal Manganese-enhanced MRI (MEMRI): An Effective Approach for Lung Tumor Detection. NMR Biomed. 2017, 30, e3790. [Google Scholar] [CrossRef]
- Rocklage, S.M.; Cacheris, W.P.; Quay, S.C.; Hahn, F.E.; Raymond, K.N. Manganese(II) N,N’-Dipyridoxylethylenediamine-N,N’-Diacetate 5, 5′-Bis(Phosphate). Synthesis and Characterization of a Paramagnetic Chelate for Magnetic Resonance Imaging Enhancement. Inorg. Chem. 1989, 28, 477–485. [Google Scholar] [CrossRef]
- Elizondo, G.; Fretz, C.J.; Stark, D.D.; Rocklage, S.M.; Quay, S.C.; Worah, D.; Tsang, Y.M.; Chen, M.C.; Ferrucci, J.T. Preclinical Evaluation of MnDPDP: New Paramagnetic Hepatobiliary Contrast Agent for MR Imaging. Radiology 1991, 178, 73–78. [Google Scholar] [CrossRef]
- Daksh, S.; Kaul, A.; Deep, S.; Datta, A. Current advancement in the development of manganese complexes as magnetic resonance imaging probes. J. Inorg. Biochem. 2022, 237, 112018. [Google Scholar] [CrossRef]
- Wahab, A.; Suhail, M.; Eggers, T.; Shehzad, K.; Akakuru, O.U.; Ahmad, Z.; Sun, Z.; Iqbal, M.Z.; Kong, X. Innovative perspectives on metal free contrast agents for MRI: Enhancing imaging efficacy, and AI-driven future diagnostics. Acta Biomater. 2025, 193, 83–106. [Google Scholar] [CrossRef]
- Laurent, S.; Elst, L.V.; Muller, R.N. Comparative Study of the Physicochemical Properties of Six Clinical Low Molecular Weight Gadolinium Contrast Agents. Contrast Media Mol. Imaging 2006, 1, 128–137. [Google Scholar] [CrossRef]
- Barandov, A.; Bartelle, B.B.; Gonzalez, B.A.; White, W.L.; Lippard, S.J.; Jasanoff, A. Membrane-Permeable Mn(III) Complexes for Molecular Magnetic Resonance Imaging of Intracellular Targets. J. Am. Chem. Soc. 2016, 138, 5483–5486. [Google Scholar] [CrossRef]
- Mallio, C.A.; Piervincenzi, C.; Gianolio, E.; Cirimele, V.; Papparella, L.G.; Marano, M.; Quintiliani, L.; Aime, S.; Carducci, F.; Parizel, P.M.; et al. Absence of dentate nucleus resting-state functional connectivity changes in nonneurological patients with gadolinium-related hyperintensity on T1-weighted images. J. Magn. Reson. Imaging 2019, 2, 445–455. [Google Scholar] [CrossRef]
- Islam, M.K.; Kim, S.; Kim, H.-K.; Park, S.; Lee, G.-H.; Kang, H.J.; Jung, J.-C.; Park, J.-S.; Kim, T.-J.; Chang, Y. Manganese Complex of Ethylenediaminetetraacetic Acid (EDTA)–Benzothiazole Aniline (BTA) Conjugate as a Potential Liver-Targeting MRI Contrast Agent. J. Med. Chem. 2017, 60, 2993–3001. [Google Scholar] [CrossRef]
- Mattison, D.; Momoli, F.; Alyanak, C.; Aschner, M.; Baker, M.; Cashman, N.; Dydak, U.; Farhat, N.; Guilarte, T.; Karyakina, N.; et al. Diagnosis of Manganism and Manganese Neurotoxicity: A Workshop Report. Med. Int. 2024, 4, 11. [Google Scholar] [CrossRef]
- Lucchini, R.G.; Martin, C.J.; Doney, B.C. From Manganism to Manganese-Induced Parkinsonism: A Conceptual Model Based on the Evolution of Exposure. NeuroMolecular Med. 2009, 11, 311–321. [Google Scholar] [CrossRef]
Investigators and Year | Country | In Vitro/In Vivo | Cohorts or Model | Study Design | Dose/Follow-Up | Toxicity/Model Details | Main Findings | Conclusions |
---|---|---|---|---|---|---|---|---|
Chen et al., 2021 [33] | China | In vitro and in vivo | OATP-transfected cell lines; mouse liver tumor model | Mechanistic imaging and transport study | 0.1 mM Mn agent; 24 h follow-up | Hepatic uptake assessed; mouse (female, −20–25 g); no acute neurotoxicity reported | Demonstrated OATP-mediated uptake of Mn complexes in normal liver; reduced uptake in tumors using inhibitor | OATPs are key in liver-specific targeting of Mn agents |
Islam et al., 2023 [30] | Korea | In vivo | Mouse liver tumor model | Comparative tumor imaging study | 0.05 mmol/kg; imaging up to 1 h post-injection | MRP2-linked retention; mouse model (−25 g), no explicit toxicity measured | Observed hyperintense signal in tumors; MRP2 downregulation caused Mn accumulation | Tumor MRP2 levels influence Mn complex retention; uptake mechanisms may vary across agents |
Zhou et al., 2021 [29] | USA | In vivo | Rat model with renal dysfunction | Biodistribution in a renal impairment model | 0.2 mmol/kg; 1- and 7-day PET-MRI follow-ups | Renal vs. hepatic excretion; adult rats (−250 g); systemic clearance tracked | Increased hepatobiliary clearance of Mn-PyC3A in impaired renal function | Hepatic clearance may compensate in renal impairment |
Troughton et al., 2004 [31] | USA | In vivo | New Zealand white rabbits | Blood pool imaging and safety-focused imaging study | 10 and 30 µmol/kg; acute evaluation after administration | Rabbit (−3 kg); no acute cardiotoxicity; protein binding and vascular imaging | Effective vascular imaging at 10 and 30 µmol/kg; no acute cardiac toxicity observed | Suggests complex stability; more direct safety data required |
Leone et al., 2022 [32] | Italy | In vivo | Mouse breast tumor model | Tumor vascular imaging | 0.1 mmol/kg; imaging within 1 h post-injection | Mouse (−25 g); no systemic toxicity reported | Strong contrast enhancement in vascularized tumor tissue | Potential agent for tumor imaging |
Islam et al., 2017 [45] | Korea | In vitro and in vivo | Mouse model (for in vivo imaging studies) | Relaxivity measurements in vitro and MRI and biodistribution analysis in vivo | 0.05 mmol/kg; follow-up up to 24 h | Liver contrast and biodistribution in mice; low cytotoxicity in vitro | High liver uptake and strong T1 MRI contrast enhancement | Promising liver-specific MRI contrast agent alternative to Gd-based agents |
Mn-Agent Class | Structural Type | Targeting Strategy | Relaxivity (r1, mM−1s−1) | Toxicity Status | Translational Stage |
---|---|---|---|---|---|
Small Molecule (e.g., Mn-DPDP and Mn-EDTA-BTA) | Linear chelates | Passive liver uptake via OATPs | 1.5–3.0 | Generally low; concerns with free Mn2+ release | One agent (Mn-DPDP) was FDA/EMA-approved but is now withdrawn |
Macrocyclic Chelates (e.g., Mn-NOTA-NP and Mn-DO2AM-Bn) | Macrocyclic ligands with hydrophobic moieties | HSA binding and hepatocyte targeting | 3.5–9.0 (depending on protein binding) | Good in vitro/in vivo profile; enhanced stability | Preclinical and early clinical trials (e.g., Mn-PyC3A) |
Nanoparticles (e.g., MnO NPs) | Inorganic or hybrid nanoformulations | Passive or active targeting (e.g., EPR effect) | Up to 30 (per particle); variable | Low acute toxicity; limited long-term data | Mostly preclinical |
Theranostic Platforms (e.g., MnO@SiO2-drug) | Nanoparticle-based carriers with dual function | Targeted delivery and therapy (e.g., tumor markers) | Variable; often enhanced due to NP matrix | Preclinical safety under evaluation | Preclinical proof-of-concept |
Responsive Agents (e.g., Mn-Tyr-EDTA) | Stimulus-sensitive molecular constructs | Environment-triggered activation (pH and redox) | Moderate; stimulus-dependent | Preclinical studies; limited systemic data | Preclinical models |
Controlled-Release Systems (e.g., Mn-liposomes) | Encapsulated Mn2+ in biodegradable carriers | Slow Mn2+ release at target tissue | Sustained enhancement; moderate | Minimized systemic toxicity by design | Early stage, preclinical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poggiarelli, L.; Bernetti, C.; Pugliese, L.; Greco, F.; Beomonte Zobel, B.; Mallio, C.A. Manganese-Based Contrast Agents as Alternatives to Gadolinium: A Comprehensive Review. Clin. Pract. 2025, 15, 137. https://doi.org/10.3390/clinpract15080137
Poggiarelli L, Bernetti C, Pugliese L, Greco F, Beomonte Zobel B, Mallio CA. Manganese-Based Contrast Agents as Alternatives to Gadolinium: A Comprehensive Review. Clinics and Practice. 2025; 15(8):137. https://doi.org/10.3390/clinpract15080137
Chicago/Turabian StylePoggiarelli, Linda, Caterina Bernetti, Luca Pugliese, Federico Greco, Bruno Beomonte Zobel, and Carlo A. Mallio. 2025. "Manganese-Based Contrast Agents as Alternatives to Gadolinium: A Comprehensive Review" Clinics and Practice 15, no. 8: 137. https://doi.org/10.3390/clinpract15080137
APA StylePoggiarelli, L., Bernetti, C., Pugliese, L., Greco, F., Beomonte Zobel, B., & Mallio, C. A. (2025). Manganese-Based Contrast Agents as Alternatives to Gadolinium: A Comprehensive Review. Clinics and Practice, 15(8), 137. https://doi.org/10.3390/clinpract15080137