29 pages, 6457 KB  
Article
Intra-Annual Sentinel-2 Time-Series Supporting Grassland Habitat Discrimination
by Cristina Tarantino, Luigi Forte, Palma Blonda, Saverio Vicario, Valeria Tomaselli, Carl Beierkuhnlein and Maria Adamo
Remote Sens. 2021, 13(2), 277; https://doi.org/10.3390/rs13020277 - 14 Jan 2021
Cited by 31 | Viewed by 4770
Abstract
The present study aims to discriminate four semi-arid grassland habitats in a Mediterranean Natura 2000 site, Southern Italy, involving 6210/E1.263, 62A0/E1.55, 6220/E1.434 and X/E1.61-E1.C2-E1.C4 (according to Annex I of the European Habitat Directive/EUropean Nature Information System (EUNIS) taxonomies). For this purpose, an intra-annual [...] Read more.
The present study aims to discriminate four semi-arid grassland habitats in a Mediterranean Natura 2000 site, Southern Italy, involving 6210/E1.263, 62A0/E1.55, 6220/E1.434 and X/E1.61-E1.C2-E1.C4 (according to Annex I of the European Habitat Directive/EUropean Nature Information System (EUNIS) taxonomies). For this purpose, an intra-annual time-series of 30 Sentinel-2 images, embedding phenology information, were investigated for 2018. The methodology adopted was based on a two-stage workflow employing a Support Vector Machine classifier. In the first stage only four Sentinel-2 multi-season images were analyzed, to provide an updated land cover map from where the grassland layer was extracted. The layer obtained was then used for masking the input features to the second stage. The latter stage discriminated the four grassland habitats by analyzing several input features configurations. These included multiple spectral indices selected from the time-series and the Digital Terrain Model. The results obtained from the different input configurations selected were compared to evaluate if the phenology information from time-series could improve grassland habitats discrimination. The highest F1 values (95.25% and 80.27%) were achieved for 6210/E1.263 and 6220/E1.434, respectively, whereas the results remained stable (97,33%) for 62A0/E1.55 and quite low (75,97%) for X/E1.61-E1.C2-E1.C4. However, since for all the four habitats analyzed no single configuration resulted effective, a Majority Vote algorithm was applied to achieve a reduction in classification uncertainty. Full article
(This article belongs to the Special Issue Remote Sensing for Habitat Mapping)
Show Figures

Graphical abstract

45 pages, 34843 KB  
Article
Non-Linear Modeling of Detectability of Ship Wake Components in Dependency to Influencing Parameters Using Spaceborne X-Band SAR
by Björn Tings
Remote Sens. 2021, 13(2), 165; https://doi.org/10.3390/rs13020165 - 6 Jan 2021
Cited by 18 | Viewed by 4740
Abstract
The detection of the wakes of moving ships in Synthetic Aperture Radar (SAR) imagery requires the presence of wake signatures, which are sufficiently distinctive from the ocean background. Various wake components exist, which constitute the SAR signatures of ship wakes. For successful wake [...] Read more.
The detection of the wakes of moving ships in Synthetic Aperture Radar (SAR) imagery requires the presence of wake signatures, which are sufficiently distinctive from the ocean background. Various wake components exist, which constitute the SAR signatures of ship wakes. For successful wake detection, the contrast between the detectable wake components and the background is crucial. The detectability of those wake components is affected by a number of parameters, which represent the image acquisition settings, environmental conditions or ship properties including voyage information. In this study the dependency of the detectability of individual wake components to these parameters is characterized. For each wake component a detectability model is built, which takes the influence of incidence angle, polarization, wind speed, wind direction, sea state (significant wave height, wavelength, wave direction), vessel’s velocity, vessel’s course over ground and vessel’s length into account. The presented detectability models are based on regression or classification using Support Vector Machines and a dataset of manually labelled TerraSAR‑X wake samples. The considered wake components are: near‑hull turbulences, turbulent wakes, Kelvin wake arms, Kelvin wake’s transverse waves, Kelvin wake’s divergent waves, V‑narrow wakes and ship‑generated internal waves. The statements derived about wake component detectability are mainly in good agreement with statements from previous research, but also some new assumptions are provided. The most expressive influencing parameter is the movement velocity of the vessels, as all wake components are more detectable the faster vessels move. Full article
(This article belongs to the Special Issue Target Recognition in Synthetic Aperture Radar Imagery)
Show Figures

Graphical abstract

21 pages, 5772 KB  
Article
Relating Hyperspectral Vegetation Indices with Soil Salinity at Different Depths for the Diagnosis of Winter Wheat Salt Stress
by Kangying Zhu, Zhigang Sun, Fenghua Zhao, Ting Yang, Zhenrong Tian, Jianbin Lai, Wanxue Zhu and Buju Long
Remote Sens. 2021, 13(2), 250; https://doi.org/10.3390/rs13020250 - 13 Jan 2021
Cited by 43 | Viewed by 4713
Abstract
Abundant shallow underground brackish water resources could help in alleviating the shortage of fresh water resources and the crisis concerning agricultural water resources in the North China Plain. Improper brackish water irrigation will increase soil salinity and decrease the final yield due to [...] Read more.
Abundant shallow underground brackish water resources could help in alleviating the shortage of fresh water resources and the crisis concerning agricultural water resources in the North China Plain. Improper brackish water irrigation will increase soil salinity and decrease the final yield due to salt stress affecting the crops. Therefore, it is urgent to develop a practical and low-cost method to monitor the soil salinity of brackish irrigation systems. Remotely sensed spectral vegetation indices (SVIs) of crops are promising proxies for indicating the salinity of the surface soil layer. However, there is still a challenge concerning quantitatively correlating SVIs with the salinity of deeper soil layers, in which crop roots are mainly distributed. In this study, a field experiment was conducted to investigate the relationship between SVIs and salinity measurements at four soil depths within six winter wheat plots irrigated using three salinity levels at the Yucheng Comprehensive Experimental Station of the Chinese Academy of Sciences during 2017–2019. The hyperspectral reflectance was measured during the grain-filling stage of winter wheat, since it is more sensitive to soil salinity during this period. The SVIs derived from the observed hyperspectral data of winter wheat were compared with the salinity at four soil depths. The results showed that the optimized SVIs, involving soil salt-sensitive blue, red-edge, and near-infrared wavebands, performed better when retrieving the soil salinity (R2 ≥ 0.58, root mean square error (RMSE) ≤ 0.62 g/L), especially at the 30-cm depth (R2 = 0.81, RMSE = 0.36 g/L). For practical applications, linear or quadratic models based on the screened SVIs in the form of normalized differential vegetation indices (NDVIs) could be used to retrieve soil salinity (R2 ≥ 0.63, RMSE ≤ 0.62 g/L) at all soil depths and then diagnose salt stress in winter wheat. This could provide a practical technique for evaluating regional brackish water irrigation systems. Full article
Show Figures

Graphical abstract

27 pages, 41140 KB  
Article
SAR Image Classification Using Fully Connected Conditional Random Fields Combined with Deep Learning and Superpixel Boundary Constraint
by Zhensheng Sun, Miao Liu, Peng Liu, Juan Li, Tao Yu, Xingfa Gu, Jian Yang, Xiaofei Mi, Weijia Cao and Zhouwei Zhang
Remote Sens. 2021, 13(2), 271; https://doi.org/10.3390/rs13020271 - 14 Jan 2021
Cited by 14 | Viewed by 4693
Abstract
As one of the most important active remote sensing technologies, synthetic aperture radar (SAR) provides advanced advantages of all-day, all-weather, and strong penetration capabilities. Due to its unique electromagnetic spectrum and imaging mechanism, the dimensions of remote sensing data have been considerably expanded. [...] Read more.
As one of the most important active remote sensing technologies, synthetic aperture radar (SAR) provides advanced advantages of all-day, all-weather, and strong penetration capabilities. Due to its unique electromagnetic spectrum and imaging mechanism, the dimensions of remote sensing data have been considerably expanded. Important for fundamental research in microwave remote sensing, SAR image classification has been proven to have great value in many remote sensing applications. Many widely used SAR image classification algorithms rely on the combination of hand-designed features and machine learning classifiers, which still experience many issues that remain to be resolved and overcome, including optimized feature representation, the fuzzy confusion of speckle noise, the widespread applicability, and so on. To mitigate some of the issues and to improve the pattern recognition of high-resolution SAR images, a ConvCRF model combined with superpixel boundary constraint is developed. The proposed algorithm can successfully combine the local and global advantages of fully connected conditional random fields and deep models. An optimizing strategy using a superpixel boundary constraint in the inference iterations more efficiently preserves structure details. The experimental results demonstrate that the proposed method provides competitive advantages over other widely used models. In the land cover classification experiments using the MSTAR, E-SAR and GF-3 datasets, the overall accuracy of our proposed method achieves 90.18 ± 0.37, 91.63 ± 0.27, and 90.91 ± 0.31, respectively. Regarding the issues of SAR image classification, a novel integrated learning containing local and global image features can bring practical implications. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

22 pages, 17956 KB  
Article
Estimating Artificial Impervious Surface Percentage in Asia by Fusing Multi-Temporal MODIS and VIIRS Nighttime Light Data
by Fanggang Li, Erzhu Li, Ce Zhang, Alim Samat, Wei Liu, Chunmei Li and Peter M. Atkinson
Remote Sens. 2021, 13(2), 212; https://doi.org/10.3390/rs13020212 - 9 Jan 2021
Cited by 13 | Viewed by 4690
Abstract
Impervious surfaces have important effects on the natural environment, including promoting hydrological run-off and impeding evapotranspiration, as well as increasing the urban heat island effect. Obtaining accurate and timely information on the spatial distribution and dynamics of urban surfaces is, thus, of paramount [...] Read more.
Impervious surfaces have important effects on the natural environment, including promoting hydrological run-off and impeding evapotranspiration, as well as increasing the urban heat island effect. Obtaining accurate and timely information on the spatial distribution and dynamics of urban surfaces is, thus, of paramount importance for socio-economic analysis, urban planning, and environmental modeling and management. Previous studies have indicated that the fusion of multi-source remotely sensed imagery can increase the accuracy of prediction for impervious surface information across large areas. However, the majority of them are limited to the use of specific data sources to construct a few features with which it can be challenging to characterize adequately the variation in impervious surfaces over large areas. Thus, impervious surface maps are often presented with high uncertainty. In response to this problem, we proposed the use of multi-temporal MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime light data to construct a more general and robust feature set for large-area artificial impervious surface percentage (AISP) prediction. Three fusion methods were proposed for application to multi-temporal MODIS surface reflectance product (MOD09A1) and Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) Day/Night Band (DNB) data to construct three different types of features: spectral features, index features (band calculations), and fusion features. These features were then used as variables in a random-forest-based AISP prediction model. The model was fitted to China and then applied to predict AISP across Asia. Fifteen typical cities from different regions of Asia were selected to assess the accuracy of the prediction model. The use of multi-temporal MODIS and VIIRS DNB data was found to significantly increase the accuracy of prediction for large-area AISP. The feature set constructed in this research was demonstrated to be suitable for large-area AISP prediction, and the random forest model based on optimization of the selected features achieved the highest accuracy, amongst benchmarks, with testing R2 of 0.690, and testing RMSE of 0.044 in 2018, respectively. In addition, to further test the performance of the proposed method, three existing impervious products (GAIA, HBASE, and NUACI) were used to compare quantitatively. The results showed that the predicted AISP achieved superior performance in comparison with others in some areas (e.g., arid areas and cloudy areas). Full article
Show Figures

Graphical abstract

24 pages, 7451 KB  
Article
Classification of Soybean Genotypes Assessed Under Different Water Availability and at Different Phenological Stages Using Leaf-Based Hyperspectral Reflectance
by  Luis Guilherme Teixeira Crusiol, Marcos Rafael Nanni, Renato Herrig Furlanetto, Rubson Natal Ribeiro Sibaldelli, Everson Cezar, Liang Sun, José Salvador Simonetto Foloni, Liliane Marcia Mertz-Henning, Alexandre Lima Nepomuceno, Norman Neumaier and José Renato Bouças Farias
Remote Sens. 2021, 13(2), 172; https://doi.org/10.3390/rs13020172 - 6 Jan 2021
Cited by 22 | Viewed by 4651
Abstract
Monitoring of soybean genotypes is important because of intellectual property over seed technology, better management over seed genetics, and more efficient strategies for its agricultural production process. This paper aims at spectrally classifying soybean genotypes submitted to diverse water availability levels at different [...] Read more.
Monitoring of soybean genotypes is important because of intellectual property over seed technology, better management over seed genetics, and more efficient strategies for its agricultural production process. This paper aims at spectrally classifying soybean genotypes submitted to diverse water availability levels at different phenological stages using leaf-based hyperspectral reflectance. Leaf reflectance spectra were collected using a hyperspectral proximal sensor. Two experiments were conducted as field trials: one experiment was at Embrapa Soja in the 2016/2017, 2017/2018, and 2018/2019 cropping seasons, where ten soybean genotypes were grown under four water conditions; and another experiment was in the experimental farm of Unoeste University in the 2018/2019 cropping season, where nine soybean genotypes were evaluated. The spectral data collected was divided into nine spectral datasets, comprising single and multiple cropping seasons (from 2016 to 2019), and two contrasting crop-growing environments. Principal component analysis, applied as an indicator of the explained variance of the reflectance spectra among genotypes within each spectral dataset, explained over 94% of the spectral variance in the first three principal components. Linear discriminant analysis, used to obtain a model of classification of each reflectance spectra of soybean leaves into each soybean genotype, achieved accuracy between 61% and 100% in the calibration procedure and between 50% and 100% in the validation procedure. Misclassification was observed only between genotypes from the same genetic background. The results demonstrated the great potential of the spectral classification of soybean genotypes at leaf-scale, regardless of the phenological stages or water status to which plants were submitted. Full article
(This article belongs to the Special Issue Spectroscopic Analysis of Plants and Vegetation)
Show Figures

Graphical abstract

24 pages, 19013 KB  
Article
Error Correction of Multi-Source Weighted-Ensemble Precipitation (MSWEP) over the Lancang-Mekong River Basin
by Xiongpeng Tang, Jianyun Zhang, Guoqing Wang, Gebdang Biangbalbe Ruben, Zhenxin Bao, Yanli Liu, Cuishan Liu and Junliang Jin
Remote Sens. 2021, 13(2), 312; https://doi.org/10.3390/rs13020312 - 18 Jan 2021
Cited by 15 | Viewed by 4609
Abstract
The demand for accurate long-term precipitation data is increasing, especially in the Lancang-Mekong River Basin (LMRB), where ground-based data are mostly unavailable and inaccessible in a timely manner. Remote sensing and reanalysis quantitative precipitation products provide unprecedented observations to support water-related research, but [...] Read more.
The demand for accurate long-term precipitation data is increasing, especially in the Lancang-Mekong River Basin (LMRB), where ground-based data are mostly unavailable and inaccessible in a timely manner. Remote sensing and reanalysis quantitative precipitation products provide unprecedented observations to support water-related research, but these products are inevitably subject to errors. In this study, we propose a novel error correction framework that combines products from various institutions. The NASA Modern-Era Retrospective Analysis for Research and Applications (AgMERRA), the Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), the Climate Hazards group InfraRed Precipitation with Stations (CHIRPS), the Multi-Source Weighted-Ensemble Precipitation Version 1.0 (MSWEP), and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Records (PERSIANN) were used. Ground-based precipitation data from 1998 to 2007 were used to select precipitation products for correction, and the remaining 1979–1997 and 2008–2014 observe data were used for validation. The resulting precipitation products MSWEP-QM derived from quantile mapping (QM) and MSWEP-LS derived from linear scaling (LS) are evaluated by statistical indicators and hydrological simulation across the LMRB. Results show that the MSWEP-QM and MSWEP-LS can better capture major annual precipitation centers, have excellent simulation results, and reduce the mean BIAS and mean absolute BIAS at most gauges across the LMRB. The two corrected products presented in this study constitute improved climatological precipitation data sources, both time and space, outperforming the five raw gridded precipitation products. Among the two corrected products, in terms of mean BIAS, MSWEP-LS was slightly better than MSWEP-QM at grid-scale, point scale, and regional scale, and it also had better simulation results at all stations except Strung Treng. During the validation period, the average absolute value BIAS of MSWEP-LS and MSWEP-QM decreased by 3.51% and 3.4%, respectively. Therefore, we recommend that MSWEP-LS be used for water-related scientific research in the LMRB. Full article
(This article belongs to the Special Issue Remote Sensing in Hydrology and Water Resources Management)
Show Figures

Graphical abstract

17 pages, 2908 KB  
Article
Integrating Spectral Information and Meteorological Data to Monitor Wheat Yellow Rust at a Regional Scale: A Case Study
by Qiong Zheng, Huichun Ye, Wenjiang Huang, Yingying Dong, Hao Jiang, Chongyang Wang, Dan Li, Li Wang and Shuisen Chen
Remote Sens. 2021, 13(2), 278; https://doi.org/10.3390/rs13020278 - 14 Jan 2021
Cited by 29 | Viewed by 4598
Abstract
Wheat yellow rust has a severe impact on wheat production and threatens food security in China; as such, an effective monitoring method is necessary at the regional scale. We propose a model for yellow rust monitoring based on Sentinel-2 multispectral images and a [...] Read more.
Wheat yellow rust has a severe impact on wheat production and threatens food security in China; as such, an effective monitoring method is necessary at the regional scale. We propose a model for yellow rust monitoring based on Sentinel-2 multispectral images and a series of two-stage vegetation indices and meteorological data. Sensitive spectral vegetation indices (single- and two-stage indices) and meteorological features for wheat yellow rust discrimination were selected using the random forest method. Wheat yellow rust monitoring models were established using three different classification methods: linear discriminant analysis (LDA), support vector machine (SVM), and artificial neural network (ANN). The results show that models based on two-stage indices (i.e., those calculated using images from two different days) significantly outperform single-stage index models (i.e., those calculated using an image from a single day), the overall accuracy improved from 63.2% to 78.9%. The classification accuracies of models combining a vegetation index with meteorological feature are higher than those of pure vegetation index models. Among them, the model based on two-stage vegetation indices and meteorological features performs best, with a classification accuracy exceeding 73.7%. The SVM algorithm performed best for wheat yellow rust monitoring among the three algorithms; its classification accuracy (84.2%) was ~10.5% and 5.3% greater than those of LDA and ANN, respectively. Combined with crop growth and environmental information, our model has great potential for monitoring wheat yellow rust at a regional scale. Future work will focus on regional-scale monitoring and forecasting of crop disease. Full article
(This article belongs to the Special Issue Crop Disease Detection Using Remote Sensing Image Analysis)
Show Figures

Graphical abstract

16 pages, 3409 KB  
Article
Modeling Spatiotemporal Population Changes by Integrating DMSP-OLS and NPP-VIIRS Nighttime Light Data in Chongqing, China
by Dan Lu, Yahui Wang, Qingyuan Yang, Kangchuan Su, Haozhe Zhang and Yuanqing Li
Remote Sens. 2021, 13(2), 284; https://doi.org/10.3390/rs13020284 - 15 Jan 2021
Cited by 40 | Viewed by 4586
Abstract
The sustained growth of non-farm wages has led to large-scale migration of rural population to cities in China, especially in mountainous areas. It is of great significance to study the spatial and temporal pattern of population migration mentioned above for guiding population spatial [...] Read more.
The sustained growth of non-farm wages has led to large-scale migration of rural population to cities in China, especially in mountainous areas. It is of great significance to study the spatial and temporal pattern of population migration mentioned above for guiding population spatial optimization and the effective supply of public services in the mountainous areas. Here, we determined the spatiotemporal evolution of population in the Chongqing municipality of China from 2000–2018 by employing multi-period spatial distribution data, including nighttime light (NTL) data from the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) and the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS). There was a power function relationship between the two datasets at the pixel scale, with a mean relative error of NTL integration of 8.19%, 4.78% less than achieved by a previous study at the provincial scale. The spatial simulations of population distribution achieved a mean relative error of 26.98%, improved the simulation accuracy for mountainous population by nearly 20% and confirmed the feasibility of this method in Chongqing. During the study period, the spatial distribution of Chongqing’s population has increased in the west and decreased in the east, while also increased in low-altitude areas and decreased in medium-high altitude areas. Population agglomeration was common in all of districts and counties and the population density of central urban areas and its surrounding areas significantly increased, while that of non-urban areas such as northeast Chongqing significantly decreased. Full article
(This article belongs to the Special Issue Nighttime Lights as a Proxy for Economic Performance of Regions)
Show Figures

Graphical abstract

28 pages, 5107 KB  
Article
On the Generalization Ability of Data-Driven Models in the Problem of Total Cloud Cover Retrieval
by Mikhail Krinitskiy, Marina Aleksandrova, Polina Verezemskaya, Sergey Gulev, Alexey Sinitsyn, Nadezhda Kovaleva and Alexander Gavrikov
Remote Sens. 2021, 13(2), 326; https://doi.org/10.3390/rs13020326 - 19 Jan 2021
Cited by 17 | Viewed by 4572
Abstract
Total Cloud Cover (TCC) retrieval from ground-based optical imagery is a problem that has been tackled by several generations of researchers. The number of human-designed algorithms for the estimation of TCC grows every year. However, there has been no considerable progress in terms [...] Read more.
Total Cloud Cover (TCC) retrieval from ground-based optical imagery is a problem that has been tackled by several generations of researchers. The number of human-designed algorithms for the estimation of TCC grows every year. However, there has been no considerable progress in terms of quality, mostly due to the lack of systematic approach to the design of the algorithms, to the assessment of their generalization ability, and to the assessment of the TCC retrieval quality. In this study, we discuss the optimization nature of data-driven schemes for TCC retrieval. In order to compare the algorithms, we propose a framework for the assessment of the algorithms’ characteristics. We present several new algorithms that are based on deep learning techniques: A model for outliers filtering, and a few models for TCC retrieval from all-sky imagery. For training and assessment of data-driven algorithms of this study, we present the Dataset of All-Sky Imagery over the Ocean (DASIO) containing over one million all-sky optical images of the visible sky dome taken in various regions of the world ocean. The research campaigns that contributed to the DASIO collection took place in the Atlantic ocean, the Indian ocean, the Red and Mediterranean seas, and the Arctic ocean. Optical imagery collected during these missions are accompanied by standard meteorological observations of cloudiness characteristics made by experienced observers. We assess the generalization ability of the presented models in several scenarios that differ in terms of the regions selected for the train and test subsets. As a result, we demonstrate that our models based on convolutional neural networks deliver a superior quality compared to all previously published approaches. As a key result, we demonstrate a considerable drop in the ability to generalize the training data in the case of a strong covariate shift between the training and test subsets of imagery which may occur in the case of region-aware subsampling. Full article
Show Figures

Graphical abstract

18 pages, 4492 KB  
Article
The Assessment of Hydrologic- and Flood-Induced Land Deformation in Data-Sparse Regions Using GRACE/GRACE-FO Data Assimilation
by Natthachet Tangdamrongsub and Michal Šprlák
Remote Sens. 2021, 13(2), 235; https://doi.org/10.3390/rs13020235 - 12 Jan 2021
Cited by 13 | Viewed by 4517
Abstract
The vertical motion of the Earth’s surface is dominated by the hydrologic cycle on a seasonal scale. Accurate land deformation measurements can provide constructive insight into the regional geophysical process. Although the Global Positioning System (GPS) delivers relatively accurate measurements, GPS networks are [...] Read more.
The vertical motion of the Earth’s surface is dominated by the hydrologic cycle on a seasonal scale. Accurate land deformation measurements can provide constructive insight into the regional geophysical process. Although the Global Positioning System (GPS) delivers relatively accurate measurements, GPS networks are not uniformly distributed across the globe, posing a challenge to obtaining accurate deformation information in data-sparse regions, e.g., Central South-East Asia (CSEA). Model simulations and gravity data (from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO)) have been successfully used to improve the spatial coverage. While combining model estimates and GRACE/GRACE-FO data via the GRACE/GRACE-FO data assimilation (DA) framework can potentially improve the accuracy and resolution of deformation estimates, the approach has rarely been considered or investigated thus far. This study assesses the performance of vertical displacement estimates from GRACE/GRACE-FO, the PCRaster Global Water Balance (PCR-GLOBWB) hydrology model, and the GRACE/GRACE-FO DA approach (assimilating GRACE/GRACE-FO into PCR-GLOBWB) in CSEA, where measurements from six GPS sites are available for validation. The results show that GRACE/GRACE-FO, PCR-GLOBWB, and GRACE/GRACE-FO DA accurately capture regional-scale hydrologic- and flood-induced vertical displacements, with the correlation value and RMS reduction relative to GPS measurements up to 0.89 and 53%, respectively. The analyses also confirm the GRACE/GRACE-FO DA’s effectiveness in providing vertical displacement estimates consistent with GRACE/GRACE-FO data while maintaining high-spatial details of the PCR-GLOBWB model, highlighting the benefits of GRACE/GRACE-FO DA in data-sparse regions. Full article
(This article belongs to the Special Issue GRACE Satellite Gravimetry for Geosciences)
Show Figures

Graphical abstract

24 pages, 2775 KB  
Article
Triple-Attention-Based Parallel Network for Hyperspectral Image Classification
by Lei Qu, Xingliang Zhu, Jiannan Zheng and Liang Zou
Remote Sens. 2021, 13(2), 324; https://doi.org/10.3390/rs13020324 - 19 Jan 2021
Cited by 30 | Viewed by 4458
Abstract
Convolutional neural networks have been highly successful in hyperspectral image classification owing to their unique feature expression ability. However, the traditional data partitioning strategy in tandem with patch-wise classification may lead to information leakage and result in overoptimistic experimental insights. In this paper, [...] Read more.
Convolutional neural networks have been highly successful in hyperspectral image classification owing to their unique feature expression ability. However, the traditional data partitioning strategy in tandem with patch-wise classification may lead to information leakage and result in overoptimistic experimental insights. In this paper, we propose a novel data partitioning scheme and a triple-attention parallel network (TAP-Net) to enhance the performance of HSI classification without information leakage. The dataset partitioning strategy is simple yet effective to avoid overfitting, and allows fair comparison of various algorithms, particularly in the case of limited annotated data. In contrast to classical encoder–decoder models, the proposed TAP-Net utilizes parallel subnetworks with the same spatial resolution and repeatedly reuses high-level feature maps of preceding subnetworks to refine the segmentation map. In addition, a channel–spectral–spatial-attention module is proposed to optimize the information transmission between different subnetworks. Experiments were conducted on three benchmark hyperspectral datasets, and the results demonstrate that the proposed method outperforms state-of-the-art methods with the overall accuracy of 90.31%, 91.64%, and 81.35% and the average accuracy of 93.18%, 87.45%, and 78.85% over Salinas Valley, Pavia University and Indian Pines dataset, respectively. It illustrates that the proposed TAP-Net is able to effectively exploit the spatial–spectral information to ensure high performance. Full article
Show Figures

Graphical abstract

18 pages, 7920 KB  
Article
Integrated Drought Monitoring and Evaluation through Multi-Sensor Satellite-Based Statistical Simulation
by Jong-Suk Kim, Seo-Yeon Park, Joo-Heon Lee, Jie Chen, Si Chen and Tae-Woong Kim
Remote Sens. 2021, 13(2), 272; https://doi.org/10.3390/rs13020272 - 14 Jan 2021
Cited by 19 | Viewed by 4453
Abstract
To proactively respond to changes in droughts, technologies are needed to properly diagnose and predict the magnitude of droughts. Drought monitoring using satellite data is essential when local hydrogeological information is not available. The characteristics of meteorological, agricultural, and hydrological droughts can be [...] Read more.
To proactively respond to changes in droughts, technologies are needed to properly diagnose and predict the magnitude of droughts. Drought monitoring using satellite data is essential when local hydrogeological information is not available. The characteristics of meteorological, agricultural, and hydrological droughts can be monitored with an accurate spatial resolution. In this study, a remote sensing-based integrated drought index was extracted from 849 sub-basins in Korea’s five major river basins using multi-sensor collaborative approaches and multivariate dimensional reduction models that were calculated using monthly satellite data from 2001 to 2019. Droughts that occurred in 2001 and 2014, which are representative years of severe drought since the 2000s, were evaluated using the integrated drought index. The Bayesian principal component analysis (BPCA)-based integrated drought index proposed in this study was analyzed to reflect the timing, severity, and evolutionary pattern of meteorological, agricultural, and hydrological droughts, thereby enabling a comprehensive delivery of drought information. Full article
(This article belongs to the Special Issue Remote Sensing of Hydro-Meteorology)
Show Figures

Graphical abstract

18 pages, 59509 KB  
Article
Attribution of Long-Term Evapotranspiration Trends in the Mekong River Basin with a Remote Sensing-Based Process Model
by Shi Hu and Xingguo Mo
Remote Sens. 2021, 13(2), 303; https://doi.org/10.3390/rs13020303 - 16 Jan 2021
Cited by 15 | Viewed by 4446
Abstract
Using the Global Land Surface Satellite (GLASS) leaf area index (LAI), the actual evapotranspiration (ETa) and available water resources in the Mekong River Basin were estimated with the Remote Sensing-Based Vegetation Interface Processes Model (VIP-RS). The relative contributions of climate variables [...] Read more.
Using the Global Land Surface Satellite (GLASS) leaf area index (LAI), the actual evapotranspiration (ETa) and available water resources in the Mekong River Basin were estimated with the Remote Sensing-Based Vegetation Interface Processes Model (VIP-RS). The relative contributions of climate variables and vegetation greening to ETa were estimated with numerical experiments. The results show that the average ETa in the entire basin increased at a rate of 1.16 mm year−2 from 1980 to 2012 (36.7% of the area met the 95% significance level). Vegetation greening contributed 54.1% of the annual ETa trend, slightly higher than that of climate change. The contributions of air temperature, precipitation and the LAI were positive, whereas contributions of solar radiation and vapor pressure were negative. The effects of water supply and energy availability were equivalent on the variation of ETa throughout most of the basin, except the upper reach and downstream Mekong Delta. In the upper reach, climate warming played a critical role in the ETa variability, while the warming effect was offset by reduced solar radiation in the Mekong Delta (an energy-limited region). For the entire basin, the available water resources showed an increasing trend due to intensified precipitation; however, in downstream areas, additional pressure on available water resources is exerted due to cropland expansion with enhanced agricultural water consumption. The results provide scientific basis for practices of integrated catchment management and water resources allocation. Full article
(This article belongs to the Special Issue Remote Sensing in Hydrology and Water Resources Management)
Show Figures

Graphical abstract

32 pages, 28675 KB  
Article
Development of a Miniaturized Mobile Mapping System for In-Row, Under-Canopy Phenotyping
by Raja Manish, Yi-Chun Lin, Radhika Ravi, Seyyed Meghdad Hasheminasab, Tian Zhou and Ayman Habib
Remote Sens. 2021, 13(2), 276; https://doi.org/10.3390/rs13020276 - 14 Jan 2021
Cited by 26 | Viewed by 4443
Abstract
This paper focuses on the development of a miniaturized mobile mapping platform with advantages over current agricultural phenotyping systems in terms of acquiring data that facilitate under-canopy plant trait extraction. The system is based on an unmanned ground vehicle (UGV) for in-row, under-canopy [...] Read more.
This paper focuses on the development of a miniaturized mobile mapping platform with advantages over current agricultural phenotyping systems in terms of acquiring data that facilitate under-canopy plant trait extraction. The system is based on an unmanned ground vehicle (UGV) for in-row, under-canopy data acquisition to deliver accurately georeferenced 2D and 3D products. The paper addresses three main aspects pertaining to the UGV development: (a) architecture of the UGV mobile mapping system (MMS), (b) quality assessment of acquired data in terms of georeferencing information as well as derived 3D point cloud, and (c) ability to derive phenotypic plant traits using data acquired by the UGV MMS. The experimental results from this study demonstrate the ability of the UGV MMS to acquire dense and accurate data over agricultural fields that would facilitate highly accurate plant phenotyping (better than above-canopy platforms such as unmanned aerial systems and high-clearance tractors). Plant centers and plant count with an accuracy in the 90% range have been achieved. Full article
Show Figures

Graphical abstract